Download PDFOpen PDF in browserCurrent versionShort Note about the Robin's InequalityEasyChair Preprint 4169, version 14 pages•Date: September 11, 2020AbstractIn mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. Many consider it to be the most important unsolved problem in pure mathematics. The Robin's inequality consists in $\sigma(n) < e^{\gamma } \times n \times \ln \ln n$ where $\sigma(n)$ is the divisor function and $\gamma \approx 0.57721$ is the EulerMascheroni constant. The Robin's inequality is true for every natural number $n > 5040$ if and only if the Riemann hypothesis is true. Given a natural number $n = q_{1}^{a_{1}} \times q_{2}^{a_{2}} \times \cdots \times q_{m}^{a_{m}}$ such that $n > 5040$, $q_{1}, q_{2}, \cdots, q_{m}$ are prime numbers and $a_{1}, a_{2}, \cdots, a_{m}$ are positive integers, then the Robin's inequality is true for $n$ when $q_{1}^{\alpha} \times q_{2}^{\alpha} \times \cdots \times q_{m}^{\alpha} \leq n$, where $\alpha = (\ln n')^{\beta}$, $\beta = (\frac{\pi^{2}}{6}  1)$ and $n'$ is the squarefree kernel of $n$. Keyphrases: Divisor, Prime, inequality, number theory
