Download PDFOpen PDF in browser

Evaluation of Electrocardiogram Biometric Verification Models Based on Short Enrollment Time on Medical and Wearable Recorders

EasyChair Preprint 6751

6 pagesDate: October 3, 2021

Abstract

Biometric authentication is nowadays widely used in a multitude of scenarios. Several studies have been conducted on electrocardiogram (ECG) for subject identification or verification among the various modalities. However, none have considered a typical implementation with a mobile device and the necessity for a fast-training model with limited recording time for the signal. This study tackles this issue by exploring various classification models on short recordings and evaluating the performance varying the sample length and the training set size. We run our tests on two public datasets collected from wearable and medical devices and propose a pipeline for ECG authentication with limited data required for competitive usage across applications.

Keyphrases: Biometric Authentication, ECG Biometrics, performance assessment, wearable devices

BibTeX entry
BibTeX does not have the right entry for preprints. This is a hack for producing the correct reference:
@booklet{EasyChair:6751,
  author    = {Hazal Su Bıçakcı and Marco Santopietro and Matthew Boakes and Richard Guest},
  title     = {Evaluation of Electrocardiogram Biometric Verification Models Based on Short Enrollment Time on Medical and Wearable Recorders},
  howpublished = {EasyChair Preprint 6751},
  year      = {EasyChair, 2021}}
Download PDFOpen PDF in browser