Download PDFOpen PDF in browserCurrent versionRiemann Hypothesis on Grönwall's FunctionEasyChair Preprint 9117, version 116 pages•Date: June 28, 2023AbstractGrönwall's function $G$ is defined for all natural numbers $n>1$ by $G(n)=\frac{\sigma(n)}{n \cdot \log \log n}$ where $\sigma(n)$ is the sum of the divisors of $n$ and $\log$ is the natural logarithm. We require the properties of extremely abundant numbers, that is to say left to right maxima of $n \mapsto G(n)$. We also use the colossally abundant and hyper abundant numbers. There are several statements equivalent to the famous Riemann hypothesis. We state that the Riemann hypothesis is true if and only if there exist infinitely many pairs $(N,N')$ of consecutive colossally abundant numbers $N< N'$ such that $G(N)< G(N')$. Using this new criterion, we prove that the Riemann hypothesis is true. Keyphrases: Arithmetic Functions, Colossally abundant numbers, Extremely abundant numbers, Hyper abundant numbers, Riemann hypothesis
