Download PDFOpen PDF in browser
EN
The title and the abstract of this preprint are also available
in English

基于暗通道先验损失的无监督单图像去雾

EasyChair Preprint 10375

14 pagesDate: June 11, 2023

Abstract

图像去雾(Haze Removal) 是图像处理领域越发热门的研究方向之一,其任务是将受雾霾影响的模糊图片处理为晴朗天气下的清晰图片。经典的基于图像先验的去雾方法,通常将去雾问题表述为能量最小化任务,需要手动制作输入和输出示例来提供信息。而随着图像处理技术的发展,出现了众多基于大量数据学习的技术,但它们对示例数量的需求很大。由于很难获取相同场景在晴朗和雾霾条件下的图像,并且现有的室外图像数据集的深度信息非常不精确,导致对室外图像的处理尤为困难。为了解决该问题,本文提出了一种无监督的、基于上下文聚合网络(Context Aggregation Network, CAN)的架构,该架构使用暗通道先验(Dark Channel Prior, DCP)能量函数来优化网络权重,不依赖于原始模糊图像之外的任何数据即可得到对应的清晰图像。

Keyphrases: 图像去雾, 无监督, 暗通道先验

BibTeX entry
BibTeX does not have the right entry for preprints. This is a hack for producing the correct reference:
@booklet{EasyChair:10375,
  author    = {Xiangyu Li},
  title     = {Unsupervised Single Image Dehazing Using Dark Channel Prior Loss},
  howpublished = {EasyChair Preprint 10375},
  year      = {EasyChair, 2023}}
Download PDFOpen PDF in browser