A Study of Interaction Diagrams of Irregularly Shaped Reinforced Concrete Column with Hollow Cross Section Using the Closed Polygon Method.

Yudi Susetyo, Agus Maryoto and Nanang Gunawan Wariyatno

A STUDY OF INTERACTION DIAGRAMS OF IRREGULARLY SHAPED REINFORCED CONCRETE COLUMN WITH HOLLOW CROSS SECTION USING THE CLOSED POLYGON METHOD.

Yudi Susetyo ${ }^{(1)}$, Agus Maryoto ${ }^{(1)}$, Nanang Gunawan Wariyatno ${ }^{(1)}$
1. Department of Civil Engineering, Faculty of Engineering, Jenderal Soedirman University, Indonesia

Abstract

1. ABSTRACT

Typically, reinforced concrete (RC) columns use rectangular or circular geometric configurations. In certain unique scenarios, a shape needs to appear irregular or asymmetrical, as well as have many holes in its cross section. The need for this special design arose from the requirements imposed by the need for plumbing holes and holes for cable routes. Analysis of irregular cross-sections of RC columns requires a more comprehensive examination of interaction diagrams. This research aims to develop interaction diagrams and computer programs specifically designed for the analysis of RC columns which are characterized by irregular cross-sections containing several holes. The method for analyzing the cross-sectional configuration of irregular RC columns through the use of the closed polygon method requires assigning numerical labels to the vertices in a counterclockwise manner for the outer boundary (exterior-boundary), and clockwise for the use of the inner boundary (Interior-boundary). This approach differs from various techniques used by previous researchers, in that they combine interior boundaries with exterior boundaries to form integrated polygon boundaries. The analysis results and computer program output were evaluated and validated using PCACOL software output, which revealed near accurate findings. With the NMSE (Normalized Mean Square Error) performance index test to measure how much alignment and accuracy there is, for cross-sectional rotation 0 degree the results are 0.002147 for axial force and 0.0007836 for bending moment. And than for cross-sectional rotation 25 degree the results are 0.000234253 for axial force and 0.000137014 for bending moment. So it has high accuracy

Keywords: Interaction diagram, irregular shape, closed polygon method

2. INTRODUCTION

Reinforced concrete column interaction diagram is a graph that describes the interaction between axial force capacity and bending moment that occurs in the column. This diagram functions as a visual guide in providing information regarding its ability to withstand axial loads and bending moments that occur in pairs. For reasons of aesthetic function and beauty, these columns are generally made in the shape of a square or circle. However, due to demands from; mechanical \& electrical, and plumbing, the column also functions for hoist-cable-try, and hoistplumbing, so a column with a hole in the middle is needed.

How to analyze the strength of irregular shaped columns generally uses the help of computer application programs because manual calculations are more complicated and complex. Helgason (2010), explains that a symmetrical, rectangular column that experiences a biaxial bending moment in both directions of the major and minor axes simultaneously, bending will not occur on the major axis. Due to the changing direction of the bending angle, the plastic axis of the column cross-section divides the two parts which are no longer symmetrical. The plastic axis in the column cross-section becomes irregular. In calculating the area of compression to analyze the crosssection of a column that is irregular and has holes in its cross-section, there are several ways and methods; Fattah et al (2017), Ghoneim \& Mahmoud (2008) have modeled the column cross-section divided into several meshes or networks of smaller discrete elements. Each mesh has a small area and the distance of the center of gravity to the
plastic axis of the cross section is easier to obtain. Hulse \& Mosley (1986) have calculated the area of the compression block and the center of gravity of the hexagon column section which is categorized as a non-rectangular section. The direction of numbering the vertices is determined clockwise. The cross-sectional area is calculated using the closed polygon method. The center of gravity of the crosssection is calculated by dividing the first-moment-of-area about each axis divided by the cross-sectional area. Greulich (1995), Ranjbaran (1992), Kwan \& Liauw (1985), Marin (1983) according to them how to calculate the crosssectional area of an irregular column that has a hole in the middle or Interior-boundary, and the column experiences a two-way bending moment or biaxial bending, calculated using the closed polygon method. The direction of numbering the vertices is counterclockwise. The interiorboundary is assembled into one unit with the exteriorboundary. The center of gravity of the cross-sectional area is calculated by dividing the first-moment-of-area about each main axis divided by the cross-sectional area of that area.

Based on these seven methods, we present several elements that are different from the seven methods mentioned previously. Method for calculating the area of the exterior-boundary concrete compression area and the distance of the center of gravity to the plastic axis of

various cross-sections of any shape represented as a closed polygon with the direction of numbering the vertices counterclockwise. So that the area area calculation results are positive, the differentiating factor with the seven previous methods is the direction of interior-boundary node numbering. That is, it must be arranged clockwise so that the calculated cross-sectional area is negative. The next differentiating factor is that each interior-boundary stands alone and is not assembled into one unit with other exterior-boundaries. To get a smooth interaction diagram graph it takes at least around 26 neutral axis iterations. This is work that is done repeatedly and has the potential for miscalculations, so a consistent tool is needed for calculating, namely an application program on a computer. Meanwhile, the control method results from manual calculations and computer programs were compared with the output from PCA-COL.

3. METHODS

After knowing the variable data for concrete quality f'c, steel quality fy, modulus of elasticity of steel Es, max strain of concrete $\varepsilon \mathrm{cu}$. Then follows the boundary-section data which consists of the number of boundaries, followed by data on the number of nodes for each boundary along with the coordinates Xc and Yc.
Section Properties For Concrete :

f'c	28	Mpa				
Ext Boundary	Pe 1	Pe 2	Pe 3	Pe 4	Pe 5	Pe 6
x-coordinate	28,0303	178,0303	78,0303	$-121,9697$	$-171,9697$	28,0303
y-coordinate	$-152,2727$	$-2,2727$	147,7273	97,7273	$-52,2727$	$-152,2727$
Int Boundary	$\mathrm{Pi1}$	Pi 2	Pi 3	$\mathrm{Pi4}$	$\mathrm{Pi5}$	
x-coordinate	28,0303	$-71,9697$	28,0303	78,0303	28,0303	
y-coordinate	$-2,2727$	47,7273	97,7273	47,7273	$-2,2727$	
Int Boundary	Pi1'	$\mathrm{Pi} 2^{\prime}$	$\mathrm{Pi3}$	$\mathrm{Pi4}$	$\mathrm{Pi5}$	
x-coordinate	3,0303	$-46,9697$	$-46,9697$	53,0303	3,0303	
y-coordinate	$-77,2727$	$-52,2727$	$-27,2727$	$-52,2727$	$-77,2727$	

Properties of Reinforcement :

Id	fy	Es	ds	as
As(1)	400	200000	34,9723	529,7633
As(2)	400	200000	72,8912	529,7633
As(3)	400	200000	142,9321	529,7633
As(4)	400	200000	177,4709	201,0619
As(5)	400	200000	255,7834	529,7633

The vertex numbering direction for the exterior-boundary is counterclockwise, while for the interior-boundary it is clockwise. Pe is the exterior node, while Pi and Pi^{\prime} represent the interior node. As in Figure 2. By changing the location of the neutral axis C , it will cause changes in the size of the concrete compression area and different stresses in the reinforcing steel, resulting in different moment capacities and axial forces. For one step of the neutral axis,
the new polygon-boundary coordinates will be obtained which are above the line at height $\mathrm{a}=\mathrm{C} . \beta 1$. The factor $\beta 1$ is taken as follows:
(a) For concrete strength, $\boldsymbol{f}^{\prime} \boldsymbol{c}$ up to $28 \mathrm{MPa}, \boldsymbol{\beta} \mathbf{1}=0.85$
(b) For concrete $28 \mathrm{MPa}<f^{\prime} c \leq 56 \mathrm{MPa}$,
$\boldsymbol{\beta} \mathbf{1}=0.85-0.05\left(\boldsymbol{f}^{\prime} \boldsymbol{c}-28 \mathrm{Mpa}\right) / 7 \mathrm{Mpa}$.
(c) For concrete greater than $58 \mathrm{Mpa}, \boldsymbol{\beta} 1=0.65$

So we rearrange the concrete area at height a as new boundary data. Next, calculate the area and center of gravity regarding the plastic center Zc.
Figure 1. Boundary node numbering and certain C values along with $\mathrm{Cc} \& \mathrm{Mc}$
Next, calculate the area and center of gravity of each polygon-boundary:

$$
\begin{align*}
& A c=\sum_{i=1}^{n} A p i \tag{2}\\
& A p i=1 / 2\left(\left(x_{i} \cdot y_{i+1}\right)-\left(x_{i+1} \cdot y_{i}\right)\right) \tag{3}\\
& x c=\frac{1}{A c} \sum_{i=1}^{n} \frac{1}{3} \operatorname{Api}\left(x_{i}+x_{i+1}\right) \tag{4}\\
& y c=\frac{1}{A c} \sum_{i=1}^{n} \frac{1}{3} \operatorname{Api}\left(y_{i}+y_{i+1}\right) \tag{5}
\end{align*}
$$

$\boldsymbol{A p}(\boldsymbol{i} . . \boldsymbol{n})$ is the area covered by one step from node i to the next node $\boldsymbol{i}+1, \boldsymbol{A} \boldsymbol{c}$ is the area of one cross-sectional boundary of a closed polygon, $\boldsymbol{x}(\mathbf{i} . . . n)$ is the x coordinate of each polygon vertex, $\boldsymbol{y}(\boldsymbol{i} . . . n)$ is the y coordinate of each polygon vertex, $\boldsymbol{x c}$ is the \boldsymbol{x} coordinate of the centroid of one boundary $\boldsymbol{A c}, \boldsymbol{y c}$ is the y coordinate of the centroid of one boundary $\boldsymbol{A c}, \boldsymbol{n}$ is the number of vertices of each polygonboundary. If there is more than one boundary polygon then the total column cross-sectional area and center of gravity will be:
Act $=\sum_{i=1}^{n b} A c$
$X c=\frac{1}{A c t} \sum_{i=1}^{n b} A c . x c$
$Y c=\frac{1}{A c t} \sum_{i=1}^{n b} A c . y c$
$\boldsymbol{A c t}$ is the total area of the polygon-boundary, $\boldsymbol{A c}$ is the area of each i-polygon-boundary, $\boldsymbol{X c}$ is the \boldsymbol{X} coordinate of the total center of gravity of the Act section, and $\boldsymbol{Y} \boldsymbol{c}$ is the \boldsymbol{Y} coordinate of the center of total gravity of the Act section, $\boldsymbol{x c}(\boldsymbol{i} . . . \boldsymbol{n})$ is the \boldsymbol{x} coordinate of the Center of mass of each i-polygon-boundary, $\boldsymbol{y c}(\boldsymbol{i} \ldots \boldsymbol{n})$ is the \boldsymbol{y} coordinate of the center of gravity of each i-polygon-boundary, $\boldsymbol{n} \boldsymbol{b}$ Number of closed n-polygon-boundaries. With the catch point of the shaded cross section being at the height of $\boldsymbol{Y} \boldsymbol{c}$. And $\boldsymbol{A c}$ is the cross-sectional area of the concrete pressed block. The magnitude of the compressive force due to the pressed concrete section at height a is :

$\boldsymbol{C c}=\mathbf{0 . 8 5} . \boldsymbol{f} \boldsymbol{c}$. Act

Cc is the capacity of the compressive force due to the concrete cross-section at height a, while the moment of resistance to the center of the column cross-section caused by the concrete pressing block at height a towards the plastic center of the cross-section is:
$M c=0.85 \cdot f^{\prime} c . A c t . Y c$

Mc is the Moment of Capacity caused by the concrete section at height $\boldsymbol{a}, \boldsymbol{Y} \boldsymbol{c}$ The height of the center of gravity of the boundary section at height a relative to the plastic center $(0,0)$

The next data is the number of reinforcement points followed by the $X \boldsymbol{S}$ and $\boldsymbol{Y s}$ coordinates of each reinforcement along with the area $\boldsymbol{A s}$. To calculate the reinforcement strain based on the specified \boldsymbol{C} value, a steel reinforcement strain diagram is obtained

Figure 2. Reinforcement stress diagram of certain \boldsymbol{C} values along with $\boldsymbol{C s} \boldsymbol{\&} \boldsymbol{M s}$
In Figure 2. The steel strain is linearly related to the depth of the neutral axis \boldsymbol{C}. The reinforcement strain \boldsymbol{E} at a certain location is calculated based on the strain distribution as in the formula below:
$\varepsilon s i=\left(\frac{c-d i}{c}\right) 0,003$
$\boldsymbol{C s}=\sum_{i=1}^{n} \boldsymbol{A s}\left(f^{\prime} \boldsymbol{s}-0,85 f^{\prime} \boldsymbol{c}\right)$
$\varepsilon s i$ is the strain in the I-th steel reinforcement layer, at the depth of the I-th steel reinforcement layer from the end of the top pressed concrete fiber, \boldsymbol{C} the height of the Neutral Axis from the end of the concrete pressed fiber. In Figure 3. The stress in compression reinforcement is the strain $\boldsymbol{\varepsilon}$ times the modulus of elasticity of the reinforcement $\boldsymbol{E s}$ is not allowed to exceed the value of $f \boldsymbol{y}$, because steel reinforcement behaves elastically only when the strain reaches yield $\varepsilon \boldsymbol{\varepsilon}$, so that when the steel compression strain εs^{\prime} is equal to or greater than the yield strain εy then as the maximum limit of steel compressive stress and strain fs' is taken to be equal to the yield stress and strain $f y$. The $f s^{\prime}$ formula is expressed as
$f_{s}{ }_{s}=\boldsymbol{E}_{s} \boldsymbol{\varepsilon}^{\prime}{ }_{s},-f y \leq f s i \leq f y_{f}$

Figure 3. Image of the stress-strain relationship for reinforcing steel

If a is greater than the distance of a certain i-th layer of reinforcement from the pressed concrete fiber in, then the area of reinforcement in that layer has been included in the area of calculation of the area of pressed concrete ab which is used to calculate the concrete compressive force $\boldsymbol{C c}$. For this reason, the $f^{\prime} s$ value for the i-layer reinforcement is reduced by $0.85 f^{\prime} \mathbf{c}$. Before calculating the $C s$ value, the positive f 's value must be reduced by the value $0.85 . f^{\prime} \boldsymbol{c}$. Then the force in the compression reinforcement is expressed as:
So the axial force caused by the steel reinforcement is:
$\boldsymbol{C} \boldsymbol{s}=\sum_{i=1}^{n} \boldsymbol{A s} \boldsymbol{f} \boldsymbol{s}+\sum_{i=1}^{n} \boldsymbol{A s}\left(\boldsymbol{f}^{\prime} \boldsymbol{s}-\mathbf{0}, 85 \boldsymbol{f}^{\prime} \boldsymbol{c}\right)$
Then the moment of resistance to the center of the column cross-section caused by the steel reinforcement either pulling or pushing against the plastic center of the crosssection is:

$$
\begin{equation*}
M s=\sum_{i=1}^{n} C s . y s+\sum_{i=1}^{n} A s\left(f^{\prime} s-0,85 f^{\prime} c\right) \cdot y s \tag{15}
\end{equation*}
$$

n is the number of layers of reinforcement, $\boldsymbol{C s}$ is the axial force due to the reinforcement, $\boldsymbol{A s}$ is the area of each reinforcement in the 1st layer, \boldsymbol{f} ' \boldsymbol{s} is the steel gap in the each layer which is $\boldsymbol{\varepsilon}^{\prime} \boldsymbol{s}$ multiplied by the modulus of elasticity $\boldsymbol{E s}, \boldsymbol{Y} \boldsymbol{s}$ The distance between each reinforcement to the \boldsymbol{X} plastic axis
The unfactored axial force capacity of the column is calculated as follows:
$\boldsymbol{P n}=\boldsymbol{C c}+\boldsymbol{C s}$
Then the unfactored bending moment of the column capacity is calculated as follows:

$\boldsymbol{M n}=\boldsymbol{M c}+\boldsymbol{M s}$

After carrying out several iterations of the neutral axis \boldsymbol{C} starting from a location as high as 3 times the crosssectional height until it reaches the pressure fiber and is divided into 26 points, then the factored capacity for each value of $\boldsymbol{\phi} \boldsymbol{P} \boldsymbol{n} \boldsymbol{\&} \phi \boldsymbol{M n}$ is calculated. These results just need to be plotted on a Cartesian graph to form a graph resembling a half clove of onion which is called the Reinforced Concrete Column Interaction Diagrams.

Compare results with the PCACOL output

To test the accuracy level of 26 calculation results with the output of the PCACOL program calculation results, the method is respectively $\phi \operatorname{Pn} \& \phi$ Mn the results of manual calculations or a new program against the results of $\phi \operatorname{Pn} \&$ $\phi \mathrm{Mn}$ PCACOL. To test the level of accuracy of the program results according to (Poli \& Cirillo, 1993) a performance index test was carried out with NMSE (Normalized Mean Square Error) to measure how much coherence or harmony there is between the PCACOL output results and what has been assumed or the output results of the new program calculation, level its accuracy is proven by the distribution indication obtained from the use of the NMSE test. If the NMSE value is closer to zero, the calculated results are closer to harmony or accuracy between predictions and measurements. The formula used is:
NMSE $=\sum \boldsymbol{S i}^{2}(1-k i)^{2} / \sum S i k i$
$\mathrm{Si}=\mathrm{Coi} / \mathrm{Co}$
$k i=C p i / C o i$

4. RESULTS AND DISCUSSION

Table 4. Calculation of Pn \& Mn for each iteration of neutral axis C and PCACOL output, angle 0^{0}

No	$\begin{array}{r} \mathrm{C} \\ (\mathrm{~mm}) \end{array}$	$\begin{array}{r} \mathrm{Ac} \\ (\mathrm{~mm} 2) \end{array}$	$\begin{array}{r} \mathrm{Cy} \\ (\mathrm{~mm}) \end{array}$	$\begin{array}{r} \mathrm{Cc} \\ (\mathrm{~N}) \end{array}$	$\begin{array}{r} \mathrm{Mc} \\ (\mathrm{~N}-\mathrm{mm}) \end{array}$	$\begin{array}{r} \mathrm{Cs} \\ \text { (N) } \end{array}$		$\begin{array}{r} \mathrm{Ms} \\ (\mathrm{~N}-\mathrm{mm}) \end{array}$	Output Program					Output Pca-Col			
									Pn (N)		$\begin{array}{r} \mathrm{Mn} \\ (\mathrm{~N}-\mathrm{mm}) \end{array}$		Pn (N)		$\begin{array}{r} \mathrm{Mn} \\ (\mathrm{~N}-\mathrm{mm}) \end{array}$		
1	767	55.000	0	1.309 .000	36	872.786			14.650 .030		2.181 .786		14.650 .065		2.181 .830		14.650.000
2	401	55.000	O	1.309 .000	36	755.212		25.468 .248		2.064 .212		25.468 .284		2.072 .730		24.700 .000	
3	332	54.536	1	1.297 .947	1.553 .504	679.049		30.192 .539		1.976 .996		31.746.043		1.963 .640		32.850 .000	
4	305	52.504	6	1.249 .594	7.430 .377	639.146		32.667 .676		1.888 .740		40.098 .052		1.854 .550		42.990 .000	
5	285	50.000	11	1.190 .008	13.539 .385	605.176		34.774 .748		1.795 .185		48.314 .133		1.745 .460		52.160 .000	
6	267	47.018	18	1.119 .026	19.689 .112	570.346		36.935 .215		1.689 .372		56.624 .326		1.636 .370		60.430 .000	
7	248	43.412	25	1.033.198	25.795 .814	539.376		38.277 .150		1.572 .574		64.072 .964		1.527 .280		66.740 .000	
8	232	40.784	30	970.651	29.399 .933	499.742		40.735.625		1.470 .393		70.135 .558		1.418 .190		72.680 .000	
9	219	38.131	35	907.519	32.115 .784	462.451		43.048 .723		1.369 .970		75.164 .507		1.309 .100		77.560 .000	
10	208	35.083	41	834.973	34.534 .899	421.701		44.865 .374		1.256.674		79.400 .273		1.200 .000		81.270.000	
11	198	32.611	46	776.150	35.964 .569	377.718		46.778 .840		1.153 .868		82.743 .408		1.090 .910		84.420 .000	
12	188	29.851	52	710.461	37.026 .482	331.391		48.794 .288		1.041 .852		85.820 .770		981.820		87.210 .000	
13	178	27.133	58	645.774	37.530 .125	281.719		50.955 .237		927.492		88.485 .362		872.730		89.490 .000	
14	168	24.355	65	579.645	37.491 .738	228.204		53.349 .736		807.848		90.841 .474		763.640		91.590 .000	
15	158	21.926	71	521.846	36.964 .613	164.028		56.141 .653		685.875		93.106 .266		654.550		93.560 .000	
16	146	19.412	78	462.008	35.868 .834	102.817		57.104 .339		564.825		92.973 .173		545.460		92.600 .000	
17	131	16.700	85	397.457	33.943 .194	41.557		56.079 .461		439.015		90.022 .655		436.370		89.960.000	
18	117	14.923	91	355.156	32.147 .481	37.201		54.920 .908		317.955		87.068 .389		327.270		87.300 .000	
19	113	13.545	94	322.383	30.412 .397	118.820		53.655 .953		203.562		84.068 .350		218.180		84.510 .000	
20	106	12.109	98	288.205	28.280 .872	200.286		50.430 .630		87.918		78.711 .502		109.090		79.720 .000	
21	95	10.777	102	256.492	26.045 .653	285.029		47.014 .838	-	28.536		73.060 .490		-		74.450 .000	
22	87	7.626	110	181.494	19.883 .126	383.992		38.625 .580	-	202.498		58.508 .706	-	185.610		60.000 .000	
23	55	5.142	116	122.389	14.249 .765	501.900		28.340 .186	-	379.512		42.589 .951	-	371.220		43.380 .000	
24	45	3.399	122	80.888	9.891 .308	644.720		15.881 .790	-	563.832		25.773 .098	-	556.830		26.410 .000	
25	29	1.423	131	33.860	4.444 .624	780.941		1.029 .659	-	747.081		5.474 .283	-	742.440		6.070 .000	
26	-	-	-	-	-	- 928.046	-	15.572 .093	-	928.046	-	15.572 .093	-	928.050	-	15.570.000	

Table 5. Calculation of Pn \& Mn for each iteration of neutral axis C and PCACOL output, angle 25°

No	$\begin{array}{r} \mathrm{C} \\ (\mathrm{~mm}) \end{array}$	$\begin{array}{r} \mathrm{Ac} \\ (\mathrm{~mm} 2) \end{array}$	$\begin{array}{r} \mathrm{Cy} \\ (\mathrm{~mm}) \end{array}$	$\begin{array}{r} \mathrm{Cc} \\ (\mathrm{~N}) \end{array}$	$\begin{array}{r} \mathrm{Mc} \\ (\mathrm{~N}-\mathrm{mm}) \end{array}$	$\begin{gathered} \mathrm{Cs} \\ (\mathrm{~N}) \end{gathered}$		$\begin{array}{r} \mathrm{Ms} \\ (\mathrm{~N}-\mathrm{mm}) \end{array}$		Output Program			Output Pca-Col				
									Pn (N)	$\begin{array}{r} \mathrm{Mn} \\ (\mathrm{~N}-\mathrm{mm}) \end{array}$		$\begin{array}{r} \text { Pn } \\ (\mathrm{N}) \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ (\mathrm{~N}-\mathrm{mm}) \end{array}$				
1	764	55.002	0	1.309 .054	22		872.827				21.099 .295		2.181 .881	21.099 .317		2.181 .830	21.100 .000
2	439	55.002	0	1.309 .054	22		768.720		29.857 .727		2.077 .773	29.857 .749		2.072 .730	29.860 .000		
3	339	54.501	1	1.297 .123	1.424 .969		672.668		35.408 .760		1.969 .791	36.833 .729		1.963 .640	37.490 .000		
4	320	50.979	9	1.213 .304	10.938 .243		647.023		36.729.408		1.860 .328	47.667 .652		1.854 .550	48.240 .000		
5	303	47.560	17	1.131 .938	18.932 .487		617.199		37.922 .223		1.749 .137	56.854 .710		1.745 .460	57.340 .000		
6	288	44.412	24	1.056 .999	25.267 .423		584.699		38.936 .076		1.641 .698	64.203.499		1.636 .370	64.610 .000		
7	273	41.286	31	982.616	30.600.455		547.589		40.093 .777		1.530 .204	70.694 .232		1.527 .280	70.940 .000		
8	254	38.355	38	912.858	34.575 .040		510.286		40.543 .357		1.423 .144	75.118 .397		1.418 .190	75.280 .000		
9	238	35.704	44	849.746	37.214 .501		465.014		41.756 .619		1.314 .760	78.971 .120		1.309 .100	79.110 .000		
10	225	32.974	50	784.776	39.132 .218		419.925		43.163 .222		1.204 .701	82.295 .440		1.200 .000	82.410 .000		
11	213	30.314	56	721.478	40.356.699		375.589		44.546 .324		1.097 .067	84.903 .023		1.090 .910	84.970 .000		
12	202	27.686	62	658.924	40.968 .141		327.698		46.040 .345		986.621	87.008.486		981.820	87.030 .000		
13	192	25.218	68	600.200	41.009 .140		278.506		47.574 .928		878.706	88.584 .069		872.730	88.570 .000		
14	182	22.798	75	542.602	40.553 .111		222.349		49.326 .793		764.951	89.879 .904		763.640	89.850 .000		
15	170	21.092	79	501.983	39.848 .764		155.454		51.413 .646		657.437	91.262 .410		654.550	91.210 .000		
16	160	19.441	84	462.707	38.810 .795		85.288		53.602 .561		547.995	92.413 .356		545.460	92.350 .000		
17	150	17.753	89	422.519	37.400 .685		16.660		55.172 .013		439.179	92.572 .699		436.370	92.490 .000		
18	137	15.557	95	370.257	35.053 .547	-	40.910		53.574 .431		329.346	88.627 .978		327.270	88.530 .000		
19	122	13.222	101	314.683	31.899 .075	-	94.394		51.012 .458		220.289	82.911 .532		218.180	82.800 .000		
20	111	11.474	106	273.092	29.083 .437	-	162.476		47.493.835		110.616	76.577 .272		109.090	76.470 .000		
21	101	9.875	111	235.016	26.157 .458	-	233.775		43.566 .088		1.242	69.723 .547		-	69.620 .000		
22	87	7.794	118	185.496	21.845 .444	-	369.857		35.910 .634	-	184.361	57.756 .078	-	185.610	57.630 .000		
23	73	5.564	125	132.412	16.604 .784	-	502.763		26.852 .456	-	370.351	43.457 .240	-	371.220	43.350 .000		
24	56	3.219	135	76.614	10.367 .824	-	634.079		15.130.174	-	557.465	25.497 .999	-	556.830	25.430 .000		
25	34	1.171	148	27.879	4.121 .593	-	768.269	-	2.017 .096	-	740.389	2.104 .497	-	742.440	2.070 .000		
26	-	-	-	-	-	-	928.046	-	22.434.119	-	928.046	-22.434.119	-	928.050	- 22.440.000		

Gambar 5. Comparison graph of Output Program with Output PCACOL engle 0° and 25°

4. CONCLUSIONS

Based on the test results of the accuracy level of 26 results of calculating the nominal capacity of axial force and nominal bending moment with the output of the calculation results of the PCACOL program using the NMSE (Normalized Mean Square Error) performance index test, the results obtained for measuring the nominal capacity of column axial forces against predictions from PCACOL obtained an index NMSE was 0.002144193 or 0.214%. Meanwhile, the NMSE test results for the nominal bending moment capacity of the column against predictions from PCACOL obtained an NMSE index of 0.000783626 or 0.078%. So it can be concluded that the performance index of alignment or accuracy between the
manual calculation output results and what has been assumed, namely the PCACOL output results, has a high level of accuracy. Which also means that the closed polygon method with a clockwise exterior-boundary node numbering system and a clockwise interior boundary numbering system has been proven to be suitable for calculating interaction diagrams for reinforced concrete columns with irregular crosssectional shapes accompanied by several holes in the middle.

5. REFERENCES

1. American Concrete Institute (ACI), 2019: Building Code Requirements for Structural Concrete (ACI 318-19), Commentary on Building Code Requirements for Structural Concrete(ACI 318R-19): 38800 Country Club Drive Farmington Hills, MI 48331
2. Fattah, Ahmed M. Abd El, Hayder A. Rasheed and Ahmed H. Al-Rahmani. 2017. Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression : International Journal of Concrete Structures and Materials, Vol.11, No.1, pp.135-149, March 2017, DOI 10.1007/s40069-016-0178-z, ISSN 1976-0485 / eISSN 2234-1315
3. Fanella, David A. 2016. Reinforced Concrete Structures Analysis and Design: Mc Graw Hill education, second Edition , Headquarters: 500 New Jersey Avenue NW, 6th Floor, Washington, DC 20001-2070, USA
4. Ghoneim, Mashhour Ahmed and Mahmoud Tharwat El-Mihilmi. 2008 Design of Reinforced Concrete Structures Volume 2: Cairo University
5. Greulich, Francis E.1995. Accurate Polygon Centroid Computation Using ARC/INFO GIsa: Journal of computing in Civil Engineering 1995.9.88-89
6. Hassoun, M. Nadim and Akthem Al-Manaseer. 2020. Structural Concrete Theory and Design : Seventh Edition Published by John Wiley \& Sons, Inc., Hoboken, New Jersey
7. Helgason, Valdimar Örn. 2010. Development of a computer program to design concrete columns for biaxial moments and normal force: Division of Structural Engineering Lunds Institute of Technology, Sweden
8. Kwan, K. H. and T. C. Liauw. 1985. Computerized Ultimate Strength Analysis Of Reinforced Concrete Section Subjected To Axial Compression And Biaxial Bending : Departement of Civil Engineering, University of Hong Kong, Hong Kong, Journal of Computers \& Structures Vol. 21 No. 6 pp 1119-1127
9. Marin, Joaquin. 1984. Computing Columns, Footings and Gates Through Moments of Area: Instituto de Materiales Modelos Estructurales, IMME, Universidad Central de Venezuela, Carasas, Venezuela. Journal Computers \& Structures Vol. 18. No 2, pp. 343-349
10. Mosley, W.H. \& R. Hulse. 1986. Reinforced Concrete Design by Computer : Macmillan Education Ltd. Houndmills, Basingstoke, Hampshire RG21 2XS and London Companies and representatives throughout the world,London
11. Nawy, Edward G. 1990. Beton Bertulang Suatu Pendekatan Dasar: dicetak oleh PT. Eresco offset Bandung
12. (PCA) ${ }^{\mathrm{TM}}$, Portland Cement Association.1992. PCACOL Strength Design Of Reinforced Concrete Column Section :5420 Old Orchad Road, Skokie, Illinois 60077-1083, USA
13. Poli, A. Attilio \& Mario C. Cirillo. 1993. On The Use Of The Normalized Mean Square Error In Evaluating Dispersion Model Performance. Atmospheric Environment Vol. 27A, No 15, pp. 2427-2434, 1993
14. Ranjbaran, A. 1995 A Computer Model For The Analysis Of Masonry Columns: Journal Computers \& Structures Vol. 55. No. 3. Pp 543-551. Departement of Civil Engineering, UMIST, PO Box 88, Manchester M60 IQD, United Kingdom
15. Steger, Carsten. 1996. On The Calculation of Arbitrary Moments of Polygons: Technical Report FGBV-96-05, Technische Universitat Munchen
16. Wight, James K. 2016. Reinforced Concrete Mechanic and Design : Global edition, Departement of Civil Engineering University of Michigan, Person Education Limited, Edinburgh Gate Harlow Essex CM20 2JE, England
17. Warwick, J.J. and S. J. Haness. 1993. Accurate Polygon Centroid Computation Using ARC/INFO GIS: Journal of Computing In Civil Engineering 7:388-392
