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Abstract. Electroencephalography (EEG) signals provide an objective
reflection of the inner workings of the brain, making them a promis-
ing tool for the diagnosis of depression. However, the classification of
EEG signals for depression is severely affected by individual differences
among subjects, complex intrinsic properties, and low Signal-to-Noise
Ratio (SNR), which limits the classification accuracy. Additionally, tra-
ditional convolutional neural networks extract local features but fail to
capture long-term dependencies in EEG decoding. To address the afore-
mentioned issues, we introduce an adaptive transfer learning method
based on a convolutional transformer model for depression detection.
The experimental results demonstrate the effectiveness of the proposed
model on the public MODMA dataset and EDRA dataset. The results in-
dicate that the MODMA and EDRA datasets exhibit optimal accuracies
of 100% and 98.61%, respectively, outperforming some state-of-the-art
depression identification methods. Our findings provide new perspectives
on the recognition of depression, which could be used as an assisted di-
agnostic tool in the future.

Keywords: Transfer learning · EEG · Depression detection · Convolu-
tional transformer.

1 Introduction

Depression is a common mental disorder that causes persistent sadness, feelings
of hopelessness, and low self-esteem [4]. Unfortunately, clinical diagnostic meth-
ods for depression have some limitations, which can delay effective treatment
for patients. That is why we need to develop an objective assessment method
to detect depression accurately and quickly. EEG is widely used in the medi-
cal field as a rapid, noninvasive tool for monitoring brain activity and is effec-
tive in diagnosing a variety of disorders, including depression [19], epilepsy [6],
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and psychiatric disorders [3]. In recent years, there has been a growing interest
among researchers in utilizing deep learning models to analyze depression EEG
signals. Due to the limitation of the kernel size of Convolutional Neural Net-
works (CNNs), they can only capture features in the local receptive field, thus
making it difficult to capture long-term dependencies in a time series. For this
reason, researchers have further introduced Recurrent Neural Networks (RNN)
and Long Short-Term Memory Networks (LSTM) to capture temporal features
in EEG classification tasks [12, 17]. However, such models are not suitable for
training in parallel and are prone to lose their hidden states rapidly as the time
step increases. Given the significance of global dependency, transformer models
based on the attention mechanism have emerged in the field of EEG decod-
ing and have demonstrated promising performance by capitalizing on long-term
temporal relationships [14, 10]. Moreover, the effect of individual variability on
EEG signal data, including differences in individual brain structure and neural
response levels, results in significant differences in the distribution of EEG signal
data among subjects. Consequently, cross-subject classification tasks frequently
exhibit lower accuracy.

In order to address the aforementioned challenges and shortcomings, we intro-
duce an adaptive transfer learning method based on a convolutional transformer
model for depression detection. The paper’s main contributions include:

• An end-to-end adaptive transfer learning method based on convolutional
transformer model for decoding EEG signals with depression. In addition,
the necessity of adaptive transfer learning is demonstrated, and the general-
ization ability of the model is enhanced by a fine-tuning approach.

• An extensive number of experiments using the publicly available datasets
MODMA and EDRA are conducted to validate the performance of our
model. The results of these experiments provide strong evidence that the
proposed model achieves state-of-the-art performance. This suggests that
the transfer learning approach is an effective method for addressing the chal-
lenges of data distribution differences and limited samples.

2 Related Work

In recent years, the application of deep learning models to analyze depression
EEG signals has attracted the attention of many researchers. Qayyum et al.
[9] integrated a shallow network of convolutional neural networks and gated
recurrent units (GRUs) for depression diagnosis. Zhang et al. [21] proposed a
2DCNN-LSTM classification model that fully utilizes spatial and temporal infor-
mation, achieving an accuracy of 95.1% in depression diagnosis. Zhang et al. [20]
introduced LSTM to extract temporal-domain features and a two-dimensional
convolutional neural network to extract spatial-domain features. The detection
of major depressive disorder (MDD) through the temporal and spatial fea-
ture fusion approach achieved an accuracy of 96.33%. Wan et al. [16] proposed
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a transformer-based EEG analysis model, EEGformer, which employs a one-
dimensional convolutional neural network to automatically extract EEG chan-
nel features and combines multiple transformer modules in order to uniquely
capture multiple EEG features.

3 Methodology

This study introduces an adaptive transfer learning method based on a convo-
lutional transformer model for EEG signal decoding in depression. The model
employs convolution to learn local features, and then employs self-attention to
encapsulate global features, enhancing the model’s generalization ability through
different methods of fine-tuning the scheme. The architecture of this network is
shown in Fig. 1.
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Fig. 1. The convolutional transformer model consists of four modules: data input, con-
volution, self-attention, and classification, where t, Ta, and Tb represent the sampling
points, ch represents the number of channels, and Q, K, and V represent matrices.

3.1 Convolution Module

First, two 1D convolutional layers are employed to design the convolutional mod-
ule for temporal and spatial dimensions, respectively, with the objective of ex-
tracting local features effectively. Subsequently, the batch normalization tech-
nique is introduced to simplify the training process and alleviate the overfitting
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problem. Meanwhile, the exponential linear unit (ELU) nonlinear activation
function is chosen. In the subsequent stage of feature extraction, we employ the
average pooling operation along the time dimension. Finally, the feature maps
of the convolution module are rearranged, and each sample point is input as a
token to the self-attention module.

3.2 Self-Attention Module

In this module, we use self-attention mechanisms to capture the global time
dependence of EEG features in depression. The process starts by creating query
vectors (Q), key vectors (K), and value vectors (V) using three linear layers. The
dot product of the Q and K vectors is used to compute the pairwise similarities
between each query and all the keys. To prevent the gradient from vanishing,
we normalize these similarities by dividing by the scaling factor. Next, we apply
the softmax function to obtain the weight matrix. Finally, the weight matrix
is multiplied with the values (V) by a dot product operation[15]. This entire
attention computation is repeated N times in the self-attention module. The
process can be expressed as follows:

Attention (Q,K,V) = softmax

(
QKT

√
d

)
V (1)

In order to enable the model to perceive the global dependence of depressed EEG
signals from different locations, we used a multi-head strategy. This requires
dividing the feature map token of the previous module into H segments and
then merging the output of each head to form the final output of the module.
This process can be described as follows:

MultiHead (Q,K,V) = Concat (head0; · · · ;headH−1) ∈ RN×d

headh = Attention (Qh,Kh,Vh) ∈ RN× d
H

(2)

where the dimension of the input feature map is N×d, headh denotes the output
of the hth head after the attention mechanism, Concat denotes the operation
used to splice all headh.

3.3 Classification Module

In this module, the output of the self-attention module is employed as the input
of the fully connected layer. Subsequently, the category with the greatest prob-
ability value is regarded as the final classification result through the softmax
function. The loss function of the entire framework is based on cross entropy,
which is calculated as follows:

Loss = − 1

Nc

Nc∑
i=1

n∑
j=1

yij log (ŷij) (3)

where Nc denotes the number of samples in the current batch and n denotes the
number of categories. In addition, yij and ŷij are the true and predicted labels,
respectively.
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3.4 Transfer Learning Strategy

CNN-based classification algorithms generally require a significant amount of
training data, which can lead to longer computation times. To address this is-
sue, transfer learning is commonly used to obtain pre-trained models. Due to the
differences in data distribution between the source and target domains, the ap-
plication of transfer learning to the EEG classification task for depression faces
certain challenges. In this study, the source domain consists of data from non
target subject, while the target domain consists of data from target subject. To
achieve domain adaptation, this study employs a fine-tuning strategy so that the
model trained using the source domain can be better adapted to the properties
of the target domain. Hence, the adaptation scheme focuses on fine-tuning the
model parameters using a part of target subject data to optimize the model’s
performance in the EEG depression classification task in the target subject. This
study considered two different classification strategies: subject-independent and
subject-adaptive. In the subject-independent classification, all data except for
the target subject were used for training. For each target subject, we performed
a 2-fold cross validation on the data from remaining subjects for model selection.
Since the model never observes any data from the target subjects during train-
ing, this is prone to inter-subject variation. Therefore, in the subject-adaptive
classification method, different proportions of target subject data (see Section
4.2 for dataset partitioning) are used to fine-tune the pre-trained model in order
to investigate the effect of different degrees of adaptive α on classifier accuracy.
In this study, three different adaptation schemes AS-1 , AS-2 and AS-3 were
employed. Each scheme fine-tunes different parts of the pre-trained model to
improve the classification performance on the target subject. In the first adap-
tation scheme AS-1, the fully connected (FC) layer has been optimized while
the rest of the network parameters remain unchanged. In the second adaptation
scheme AS-2, the transformer module and the fully connected layer have been
retrained using adaptation data, while the rest of the network parameters remain
unchanged. In the third adaptation scheme AS-3, the entire network model has
been retrained using adaptation data. The framework of the scheme is illustrated
in Fig. 2.
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Fig. 2. Illustrations of (a) Network architecture and (b) three different adaptation
schemes AS-1, AS-2 and AS-3.

4 Experiments and Results

This section presents the dataset preprocessing, experimental setup, and results
for various schemes, which are then compared with state-of-the-art algorithms
to validate the superiority of our approach.

4.1 Dataset Preprocessing

In this paper, we use the MODMA dataset [1] and the EDRA dataset [18].
For the MODMA dataset, the dataset consists of 53 subjects, of which 24 are
diagnosed depression patients and 29 are healthy individuals. The device sam-
pling frequency was 250 Hz and the reference electrode was a Cz electrode. The
data recording time for each subject was approximately 5 minutes. The raw
EEG data signals from all 128 channels were filtered using a band-pass filter
from 0.5 Hz to 50 Hz, and then re-referenced using the common average ref-
erence (CAR) method. To reduce computational resources, we chose to study
64 of the 128 electrodes in this paper [20]. For uniform processing, we divided
each participant’s data into 150 segments of 2 seconds each, for a total of 7950
segments. For the EDRA dataset, which consisted of 50 subjects, 26 were cate-
gorized as being at high risk for depression, while 24 were considered to be at low
risk. The EEG signal acquisition device was an EEG cap with 64 electrodes, in
accordance with international standards. Following the final screening, 62 valid
electrodes were selected for further experimental studies. The reference electrode
for the online recordings was the FCz electrode, while the offline recordings used
a global average reference. The EEG signals were filtered using a 0.05-100 Hz
online bandpass filter. The sampling frequency was 500 Hz. Independent com-
ponent analysis (ICA) was used to correct for ocular artifacts. Each subject
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intercepted a 1-minute continuous EEG recording and divided it into 60 equal-
length segments of one second in length. Finally, a total of 3000 samples were
obtained.

4.2 The setting of Experiment

Subject-independent and subject-adaptive experiments were conducted sepa-
rately in the current study. (1) In subject-independent classification, all data
except for the target subjects were used for training. For each target subject, we
performed a two-fold cross-validation of the remaining subjects’ data for model
selection. (2) In subject-adaptive classification, the model with minimum vali-
dation loss across cross-validation folds in the subject-independent classification
is used as the base model. We used only the first 60% of the target subjects’
data to fine-tune the network, ranging from 10% to 100% in steps of 30%. The
model was implemented in the PyTorch framework and deployed on a GeForce
RTX 3090. The Adam optimizer [5] is employed to minimize the loss function,
with a learning rate of 0.00008, and the batch size to 50. We set the number of
filters in the convolution module to 32, the number of self-attention executions
N to 6, and the number of heads h to 10.

4.3 Experimental Results and Analysis

This section presents a discussion of the accuracy of subject-independent and
subject-adaptive classification models. In subject-independent experiments, the
average accuracy among all subjects on the MODMA dataset was 51.36%. The
experimental results reflect that the generalization ability of the model varies
due to differences in the distribution of the collected EEG signal data among
subjects. In order to reduce the individual differences among subjects and en-
hance the model’s generalization performance, the method of fine-tuning was
employed. Table 1 provides the average results for all subjects in the subject
adaptive experiment for the MODMA dataset. For the MODMA dataset, the
accuracy of scheme AS-1 can exceed 97% at an adaptation rate of 10%, and can
reach 100% at an adaptation rate of 40%. The remaining schemes achieve 100%
accuracy. To further validate the effectiveness of the model, we conducted fur-
ther experiments on the EDRA dataset according to scheme AS-3, which showed
an average accuracy of 98.61% among all subjects, which is better than some of
the state-of-the-art depression recognition methods. Experimental results show
that the model has a certain generalization ability. A comparison was made
between our method and other state-of-the-art depression identification meth-
ods to demonstrate the superiority of our work. Table 2 and Table 3 list the
state-of-the-art studies and their corresponding performances in recent years for
the MODMA dataset and EDRA dataset, respectively. The following methods
have achieved impressive results on the MODMA dataset or EDRA dataset. For
example, the study [2] fully considered all channel information in EEG-based
major depressive disorder recognition and designed a random search algorithm
to select the best discriminative features describing each channel. The study [8]
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transformed EEG signals into brain maps containing temporal, frequency and
spatial information, and utilized CNNs and GRUs to achieve classification of de-
pressed and healthy individuals. The study [21] presents a hybrid neural network
based on CNN and LSTM for the automatic detection of depression. In study
[13], a novel Twin Pascal’s Triangles Lattice Pattern (TPTLP) was employed to
extract local texture features from raw depression EEG signals and subbands.
The study [22] proposed a new model for learning depression detection from
EEG signals by adaptive channel optimization (MGCL-ACO) multi-view con-
trast. Research [18] proposed a graph-based adaptive least absolute shrinkage
and selection operator model (GA-LASSO) to learn the discriminant features
of FC matrices.

Table 1. The average accuracy (%) of the fine-tuned pre-trained model among all
subjects on the MODMA dataset, where AS denotes the adaptation scheme and α
denotes the proportion of adapted data.

Scheme Adaptation Rate

α=10% α=40% α=70% α=100%

AS-1 97.70 100 100 100

AS-2 100 100 100 100

AS-3 100 100 100 100

Table 2. Results of our model compared to state-of-the-art models of depression di-
agnosis using the MODMA dataset.

Method Accuracy (%)

BrainMap + CNN + GRU [8] 89.63

CNN-LSTM [21] 95.10

GA-LASSO [18] 97.43

MGCL-ACO [22] 99.19

BLDA-RSSA [2] 99.32

TPTLP+Greedy algorithm [13] 100
Proposed model 100

* GRU: Gate Recurrent Unit; LSTM: Long Short-Term Memory; GA-LASSO:
Graph-based Adaptive Least Absolute Shrinkage and Selection Operator; MGCL-
ACO: Multi-view Graph Contrastive Learning via Adaptive Channel Optimization;
TPTLP: Twin Pascal’s Triangles Lattice Pattern.
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Table 3. Results of our model compared to state-of-the-art models of depression di-
agnosis using the EDRA dataset.

Method Accuracy (%)

ShallowConvNet [11] 84.69

EEGNet [7] 94.67

DeepConvNet [11] 95.94

GA-LASSO [18] 97.33

MGCL-ACO [22] 98.38

Proposed model 98.61

5 Conclusion

In this study, we introduce an adaptive transfer learning method based on a
convolutional transformer model for depression detection. By studying the effects
of different adaptation ratios on different adaptation schemes, we determine the
optimal adaptation strategy. Experiments on the MODMA dataset and EDRA
dataset show that when the AS-3 scheme is fine-tuned using an adaptive rate
of 10%, the accuracies are up to 100% and 98.61%, respectively, which suggests
that the model still has a strong generalization ability with a small number of
data samples.
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