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Abstract—This paper addresses the listening head generation
(LHG), i.e., an avatar head motion in dialogue systems. In face-
to-face conversations, head motion is a modality frequently used
by both listeners and speakers. Listeners, in particular, tend to
leverage head motion along with other backchanneling cues to
react to the speaker and regulate the flow of the conversation.
The type of head motion during dialogues varies between cultures
and individuals, which implies that head motion generation for
natural communication requires considering them. Additionally,
existing works for head motion generation have primarily tackled
speaker head generation, with limited work on listeners. In this
study, we have created a multimodal dataset of casual Japanese
conversation and a scalable, real-time LHG model that adapts
to individual differences in head motion. We also developed
the LHG that reflects individual tendencies via fine-tuning the
model. The proposed models were evaluated through subjective
experiments rated by four testers. The results showed that the
proposed models successfully generated natural head motion and
improved the appropriateness of head motion by focusing on
individual tendencies. Further analysis was conducted to compare
the differences between our method and actual human motion.

Index Terms—Listening Head Generation, Dialogue System,
Japanese Casual Dialogue Dataset, Motion Synthesis

I. INTRODUCTION

In recent years, with the advancement of artificial intelligence
technology, dialog systems are improving and are increasingly
being used for various applications. A dialog system is an
automated system designed to perform specific tasks, such as
providing customer service, visitor information, companion-
ship, etc., through communication with humans. Realization of
these systems requires the development of natural and advanced
dialog capabilities close to those of humans. During face-to-
face dialogs between humans, not only linguistic information
is exchanged, but also non-linguistic information such as gaze,
gestures, and prosody (e.g., intonation, stress, rhythm) are
frequently used. Humans can communicate complex informa-
tion to each other quickly and smoothly by simultaneously
and integratively understanding and generating these varoius
modalities. To implement these functions in a dialog system,
it is necessary to use a computer-generated (CG) avatar as the

system interface, and to present modalities other than language
to the user.

Among the modalities other than language which are used by
humans during interpersonal communication, head movements
in particular are frequently used to convey important infor-
mation. Munhall et al. [1] reported that head movements and
facial expressions are strongly correlated with the amplitude
and pitch of the speaker’s voice, and assist in the transmission
of linguistic information. Otsuka et al. [2] analyzed the com-
municative functions of head movements of both listeners and
speakers, and reported on the functions of each head movement
and the frequency of their appearance. They determined, for
example, that listeners’ head movements were often used to
show attentive listening and agreement, and that multiple head
movements functions can be employed simultaneously. They
also identified the functions of speakers’ head movements, such
as emphasis, confirmation of understanding, and promotion of
listener involvement in the dialog, and reported the possibility
that a speaker’s head movement can influence the head move-
ment of listeners.

As these previous studies have shown, head motion plays a
crucial role in dialog, and its use by CG avatars is expected
to significantly contribute to the realization of more natural
and human-like dialog systems. However, it has also been
reported that there are cultural and language-related differences
in the use of head motion during dialogs. For example, Koda
et al. [3] reported differences in the timing and frequency of
backchannels, including head motion, between native speakers
of Japanese and English. Furthermore, they found that using
a dialog system that provides backchannels tailored to the
user’s cultural background can create a sense of familiarity
and increase user speaking time, emphasizing the importance
of culturally adapting dialog systems for users.

Our research is currently focused on realizing a dialog system
that can communicate smoothly with users in Japanese, while
providing them with an atmosphere of cultural familiarity.
Compared to conversations among English speakers, Japanese
dialog features more backchannels, including more head move-



ments, such as nodding [3], therefore the ability to precisely
model these head movements is crucial for realizing a natural,
multimodal Japanese dialog system.

The goal of this study is to construct a deep learning-based,
listening head motion generation model. To achieve this, we
first collect one-on-one multimodal dialog data from Japanese
speakers. We then propose a novel model that generates real-
time head response movements, based on the multimodal cues
obtained from users’ speech and head movements during the
recorded conversations.

II. RELATED WORK

Early studies on generating head motion and gestures [4, 5]
focused on rule-based approaches. Maatman et al. [5] orga-
nized the behavior of listeners during conversations based on
psycholinguistic factors, and proposed a system that generates
listener body movement in real-time based on the correlation
between non-semantic features of the speaker’s voice and body
movements, and the listener’s intended response. They reported
that their proposed system made users feel they were being
“listened to” by the nodding and shaking of the avatar’s head
while it listened to the user’s utterances. Huang et al. [6] con-
structed a backchannel generation model for rapport formation
using a Conditional Random Field (CRF), and obtained higher
ratings in a subject experiment compared to a rule-based model.
Since the advent of deep learning, it has become possible to
generate more natural head movement during dialog compared
to previous rule-based methods. Ding et al. [7, 8] proposed a
method to generate speaker head motion during speech based
on the speaker’s voice. They compared the performance of
deep learning models with different architectures, and found
that the Bidirectional Long Short-Term Memory (BLSTM)
model demonstrated superior results. They also investigated
using audio features for head motion generation and found
that using a log Mel-scale filter-bank (FBank) yielded the best
performance. Alexanderson et al. [9] used a diffusion model
to generate more natural gestures during avatar speech by
synchronizing motion generation with audio of its speech.

More recently, research on Talking Head Generation (THG)
[10, 11, 12], which generates sequences of head motions and
facial landmarks synchronized with speech, has garnered signif-
icant attention. Wang et al. [13] proposed a method for gener-
ating facial expressions synchronized with speech, realizing the
generation of rich expressions through THG. Greenwood et al.
[14] succeeded in synthesizing more dynamic head motion by
generating multiple consecutive frames in a single step during
the staged generation of head motion from speech. On the other
hand, researchers have also focused on generating head motion
and facial expressions during listening, known as Listening
Head Generation (LHG) [15]. Liu et al. [16] proposed Cus-
tomListener, a framework that enables control of the listener’s
behavior through text prompts, however they did not address
real-time head motion generation in response to speech, or inte-
gration of their framework into a dialog system. Zhou et al. [17]
constructed the ViCo dataset, which is specifically designed to
generate listener head motion. They proposed a baseline model

Fig. 1: Example of data from our Japanese dialog dataset.

that uses the speaker’s speech and visual cues about the speaker
as input, and then generates listener head motion and facial
expressions in real-time using an LSTM-based model. In fact,
many of the studies cited here utilize LSTM-based models,
which have also demonstrated high performance in many other
motion generation tasks [18]. However, as reported by Ding et
al., there are limits when scaling up LSTM-based models for
motion generation. Therefore, based on the findings of Yu et al.
[19], we propose a model that replaces the masked multi-
head attention module of the Transformer [20] with a Uni-
Directional LSTM, and incorporates an attention module for
integrating multiple modalities with different frame rates. Our
proposed model has the same basic structure as Transformer
and our modifications deepen the model. The parameter size of
the proposed model is about 0.5B, which is significantly larger
than the 248K of Zhou’s model [17], thus it possesses higher
expressive ability.

III. DATASET CONSTRUCTION

To realize smoother and more natural automated dialog, we
created a multimodal dataset of casual Japanese conversations
for generating and analyzing the head motion tendencies of
Japanese listeners, in order to build a dialog system adapted to
Japanese users. The video and audio data was collected from
one-on-one, casual conversations between Japanese speakers
recorded on Zoom, obtained via crowdsourcing. Figure 1 shows
a screenshot from one of the Zoom videos and a sample of
the collected audio data. The participants wore headsets to
better hear their partner’s voice, and engaged in one-on-one
dialog while looking at their conversation partner’s face on the
screen. By having each speaker use a microphone and recording
each speaker’s voice separately, without their dialog partner’s
voice, we were able to collect high quality recordings of each
individual’s voice with little distortion.

In this research and in future studies, we plan to focus on the
head movements of dialog participants, therefore it was impor-
tant to capture their head movement as accurately as possible in
order to clarify the relationship between physical head move-
ment patterns and the content of the dialog. To achieve this,
we filmed the participants as they faced their monitor screen
during the dialogs, with the area from their shoulders to the
top of their head visible in the videos. Furthermore, to achieve
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Fig. 2: Architecture of our proposed LSTM-Transformer model.

more accurate analysis of ‘pure’ dialog activity, we prohibited
behaviors such as eating or drinking, looking away from the
screen, leaving one’s seat, and any other actions involving large
body movements. During recording, the dialog participants
freely conversed about one, pre-specified topic during each
session. The 15 topics were “eating and food,” “fashion,”
“travel,” “sports,” “manga and games,” “housework,” “school,”
“smartphones,” “part-time jobs,” “animals,” “weather,” “goals
and future plans,” “manners,” “living environment their homes,”
and “the future of Japan.”

The data collected from each dialog session consists of each
participant’s voice, frontal head shot video of each participant,
and monaural audio of both dialog participants as recorded by
Zoom. Each dialog session was approximately 10 minutes long.
The dataset contains 478 dialog sessions featuring 25 different
speakers, with a total duration of about 90 hours. The audio data
recorded separately by each participant’s microphone was saved
in a 16-bit, PCM format with 16 kHz sampling. The Zoom
video data of each participant was saved in MPEG4 format with
a resolution of 720 × 1280 and a frame rate of 25 fps. The
individually recorded audio and Zoom audio were synchronized
using autocorrelation of audio power.

Human annotators also performed speaker annotation of the
synchronized video and audio data, identifying which partici-
pant was speaking and which was listening at any point during
the dialog. The annotators referred to the casual conversation
data and annotated the time intervals during which each dialog
participant was considered to be ‘holding the floor’. However,
we assumed that the floor was not always held exclusively,
and that both dialog participants might speak simultaneously,
especially before and after speaker changes. In other words, we
allowed for intervals of overlapping speech.

IV. PROPOSED METHOD

In this study, our goal is to generate avatar head response
motion during listening, in real-time, using multimodal cues
obtained from the user’s speech and head movement while
speaking. Therefore, we constructed a deep learning model that
autoregressively generates the agent’s (listener’s) head motion
in future frames based on the user’s (speaker’s) speech and head
motion up to a certain point (frame). To investigate which type
of model is more suitable for generating the listener’s head
motion, we constructed and compared two models.

A. Motion and Acoustic Feature

Regarding the features we used to train our model, for
acoustic features we used log Mel-scale filterbank (FBank). The
sampling frequency of the speech data used in the experiments
was 16 kHz, and short-time Fourier transform was performed
by dividing the data samples into 25 ms frames using a Ham-
ming window with a 10 ms overlap for each frame, similar
to previous research [8]. The FBank was initially set to 26
dimensions, then the logarithmic power of speech was added to
make it 27 dimensions. First- and second-order time differences
of these 27-dimensional features were also used, resulting in
81-dimensional features per frame. Here, the calculation of the
time-difference features is different from the ∆ features often
used in speech research, since our features do not refer to
information in future feature frames; instead, they are calculated
as the simple difference between the current frame and the
previous frame, as shown in the following equation:

dft = ft − ft−1 (1)

where dft represents the difference features at time t, and ft
denotes the feature frame at time t.

To extract the features of head motions, we used Mediapipe
[21] to detect facial landmarks and calculate the rotation angles
(Euler angles) of three degrees of freedom: pitch, yaw, and roll,
from the coordinates of each landmark. In addition, the centroid
coordinates of the facial landmarks were used as the three
degrees of freedom for the face position coordinates. By adding
the first- and second-dynamic features to these six degrees of
freedom, as in the calculation of the acoustic features, we finally
obtained 18-dimensional features for each frame.

B. Model Architecture

The listener head movement generation model used in this
study has a structure similar to Transformer, as shown in
Figure 2. Features of the user’s speech, user’s head motion, and
agent’s head motion at aligned time points of each frame are
used as inputs, and the model then autoregressively generates
the agent’s head motion for the following frame, by producing
a head motion sequence. Although the frame rates of the speech
features and head motion features differ, the use of Cross-
Attention allows the integration of data with different sequence
lengths. During model training, three frames (equivalent to
0.24 s) of head motion features are output in a single inference
step, and the loss is calculated. This is done because there is



little variation in the head motion features between frames. If
the model were to infer one frame at one step, it might learn to
simply output the actions from the immediately preceding step
without much change. The method described above forces the
model to consider variations in the head motion sequence when
generating future motions. In our experiments, the number
of stacked blocks J, Q, and R, shown in Figure 2, was set
to 12, and the number of units in each layer was set to
1,024 dimensions. The Feed Forward Layer has a bottleneck
structure with 256 units at the bottleneck, and uses ReLU as
the activation function. Our proposed model will hereafter be
referred to as “LSTM-Transformer”.

V. EXPERIMENTS

We trained the LSTM-Transformer model described in Sec-
tion IV to generate the head motion of a virtual agent when
participating in the dialog as a listener, in real-time, based on
the speech and head motion of the human speaker. The model
was trained using our multimodal dataset of casual, Japanese
conversation, which is described in Section III. We then eval-
uated the model experimentally and analyzed its performance.
When we identify the virtual agent as the listener here, it
means that they do not ‘hold the floor’. The avatar’s status
as the listener was determined using the dataset’s annotation
information, described in Section III, which identifies each
participant as either the speaker or the listener at any given
point in the dialog. We extracted 45 dialog sessions from the
casual conversation dataset for use as the evaluation dataset, and
the remaining data was divided into training and validation sets
at a ratio of 9:1, respectively.

First, the features described in Section IV were extracted
from the same dialog dataset used in the experiment, in order to
obtain user motion, user speech, agent motion, and future agent
motion. The future agent motion is the teacher data used during
model training, while the other features are the data input to
the model. Since the LSTM-Transformer generates head motion
in real-time, the targeted agent head motion consists of feature
sequences that are one frame ahead of the current agent motion
feature sequence. This data is divided into segments with a
duration of at least 6 seconds and up to 11 seconds, for use
in model training and inference. After extracting these data
segments from our dialog dataset, we obtained 21,536 segments
for use as the training set.

During model training, agent motion features extracted from
dialog dataset were input to the model, while during evaluation,
agent head motion was generated autoregressively. Addition-
ally, since contextual information about head motion prior to
the inference starting point is necessary for generating agent
head motion, the first 1 second of the feature sequence in each
segment was used to warm up the model. During warm up,
head motion was not generated, and during training, loss was
not calculated.

We employed AdamW as the optimizer in our experiment,
with a learning rate of 5× 10−6 and a weight decay of 10−2.
Cosine Annealing was utilized for learning rate scheduling, and

Huber Loss was used as the loss function. We set the number
of epochs to 100 and the batch size to 32 during training.

Two models were used in our subjective evaluation experi-
ments: a pre-trained model constructed as described above, and
the same model fine-tuned with data from a specific listener,
which was obtained from the dataset using the pre-trained
model. Our motivation for using the second model was to test
the hypothesis that by learning listener-specific idiosyncrasies
in head motion, which vary from person to person, the model
would be able to generate more accurate listener head motion.
For this listener-specific fine-tuning, we obtained 3,792 data
segments for model training from one, frequently appearing,
dialog participant.

During our evaluation experiments, four human raters evalu-
ated 20 listener head motions generated by each model and
oracle motions (ground truth), respectively, resulting in 80
evaluation samples per model in total. The evaluation was
performed by displaying video and audio of a human speaker,
alongside video of the head motion of a human listener repli-
cated by CG avatars, as well as the head motions of the CG
avatars generated by each of the two models. Evaluators were
asked to assess the naturalness and appropriateness of each
listener, as well as signifying which listener’s head motion they
preferred. Since the proposed method does not generate body
movement, the visualizations using CG avatars did not reflect
head location information during the evaluation experiments,
so only information regarding head angle was incorporated.
The evaluations were conducted using the raters’ mean opinion
scores (MOS), as well as their overall preferences between the
listener head motion responses of the human and those of head
motions generated by each model. In the MOS evaluation, the
naturalness of the head motion itself, and the appropriateness
of the reaction to the speaker’s behavior and speech, were
evaluated using a 5-point scale (1 being the worst and 5 the
best) for each of the two evaluation criteria. The average of the
scores of the four evaluators was then computed to obtain the
mean opinion score. In the overall preference evaluation, the
evaluators select which of the listener head motions (human,
pre-trained model, or pre-trained model with listener-adapted
fine tuning) they thought was best.

VI. RESULT

Figure 3 shows 1.5 s of a human listener’s head motion
during casual conversation, and the listener head motion of an
avatar generated using the proposed method without fine tuning.
The gray waveform shown at the bottom of the figure is the
speaker’s corresponding speech waveform. While the human
listener repeatedly performs an upward head motion (jerk) in
response to the speaker’s utterance, the head motion generated
by the model results in a downward head motion (nod) during
the time interval indicated by the blue box, which is slightly
after the speech audio is input, confirming that the head motion
was generated in response to the user’s speech.

Table I shows the results of the MOS and overall prefer-
ence evaluations by the four evaluators. First, in the MOS
evaluation of naturalness and appropriateness, there was no



Fig. 3: Comparison of 1.5 s of human listening (top) and of motion
generated using the proposed model without fine-tuning. The
red lines represent the orientation of the faces. The blue
box shows the time interval when avatar nodding occurred.
Waveform at bottom represents speaker’s voice.

TABLE I: Results of subjective evaluation using 5-point mean opin-
ion scores and overall evaluator preference.

Model Naturalness Appropriateness Preference [%]
Ground Truth 3.53 3.90 70.00
Proposed w/o FT 3.23 2.74 11.25
Proposed w/ FT 3.10 2.88 18.75

significant difference between the evaluations of the proposed
model and those of the proposed model fine-tuned using
listener adaptation. In the naturalness evaluation, the ground
truth (human listener) achieved the best results, but both of
the proposed methods achieved similar scores. On the other
hand, in the appropriateness evaluation there was a significant
difference of more than 1 point between the ground truth and
the proposed methods. In the preference evaluation, a large
difference was observed between preference for the ground
truth head movement (70 %) and for the movement generated
using the proposed methods. These results suggest that while
the proposed method can generate head movements with nat-
uralness characteristics close to those of humans, there is still
significant room for improvement in appropriateness in terms
of timing, since the generated head movement was sometimes
perceived as being inappropriate by humans.

We also investigated differences between the human and
synthesized head motion. Figure 4 shows cross-correlations
of the listener head motion generated by the human, the
pre-trained model, and listener-adapted (fine-tuned) model, in
relation to the speaker’s corresponding head motion. We ex-
amined the temporal cross-correlation coefficient for the norm
of head motion angular velocity to determine the extent of
the speaker’s influence on each of the listener’s head motions.
We investigated 25 data points, with each line in the graphs
corresponding to one data point. For the human listener, no
relationship was observed with respect to the speaker’s head
motion. On the other hand, in the head motion generated using
the pre-trained and listener-adapted models, there is a pattern of
positive correlation at around 0 s, confirming that head motion
generated using the proposed methods is influenced by the
speaker’s head motion. It is likely that the large difference
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Fig. 4: Cross-correlation between listening heads and talking heads.

observed between the scores of the proposed methods and the
ground truth in the appropriateness evaluation (Table I) was
due to the generated head motion being needlessly influenced
by the speaker’s head movements, resulting in head motion that
occurs at times that do not align with human expectations.

VII. CONCLUSION

In this study, we created a multimodal dataset of casual di-
alogs, consisting of one-to-one conversations between Japanese
speakers. This data was then used to generate multimodal
listener head motion based on both the speaker’s speech and
head motion during their utterances. We generated this simu-
lated listener head motion using a proposed LSTM-Transformer
head motion generation model based on the Transformer ar-
chitecture. Our experimental evaluation of two variants of the
proposed model demonstrated that the proposed method can
generate human-like listener head motion, however modeling
the timing of these head motions remains a challenge. Previous
research [3] has shown that backchannels such as head move-
ment occur at linguistic boundaries. In future research, we are
considering improving the appropriateness of head movements
timing by leveraging linguistic modalities through real-time
speech recognition technologies. In our preference evaluation,
the head movements generated using the listener-adapted (fine-
tuned) version of the proposed model were preferred over those
generated using regular model. In future research, we will



explore latent representations that can express individual head
motion characteristics, for more controllable motion generation.

Finally, the type of subjective evaluation conducted in this
study is costly in terms of time and money, which is a serious
obstacle to research on head motion generation. Unfortunately,
as Mittal et al. [22] have pointed out, low-cost evaluation
metrics commonly used in motion generation, such as mean
squared error (MSE), have low correlations with subjective
human evaluations, and there are currently no other evaluation
metrics which can replace human evaluation. However, in the
field of speech synthesis, researchers have constructed deep
learning models to predict human perceptual evaluations, and
have used them to train speech synthesis models [23], thereby
improving the perceived quality of synthesized speech. There-
fore, as a future research goal, we are considering developing
a method of automated evaluation that is capable of modeling
human perception of the quality of synthesized head motion.
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