
EasyChair Preprint
№ 11034

A Discrete and Bounded Locally Envy-Free Cake
Cutting Protocol on Trees

Ganesh Ghalme, Xin Huang, Yuka Machino and Nidhi Rathi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 6, 2023

A Discrete and Bounded Locally Envy-Free Cake
Cutting Protocol on Trees

Ganesh Ghalme1, Xin Huang2, Yuka Machino3, and Nidhi Rathi4⋆

1 Indian Institute of Technology Hyderabad, India.
ganeshghalme@ai.iith.ac.in

2 Technion Israel Institute of Technology, Haifa, Israel.
xinhuang@campus.technion.ac.il

3 Massachusetts Institute of Technology, USA.
yukam997@mit.edu

4 Max Planck Institute for Informatics, University of Saarland, Germany.
nrathi@mpi-inf.mpg.de

Abstract. We study the classic problem of fairly allocating a divisible
resource modeled as a unit interval [0, 1] and referred to as a cake. In
a landmark result, Aziz and Mackenzie [4] gave the first discrete and
bounded protocol for computing an envy-free cake division, but with a
huge query complexity consisting of six towers of exponent in the number
of agents, n. However, the best-known lower bound for the same is Ω(n2),
leaving a massive gap in our understanding of the complexity of the
problem.
In this work, we study an important variant of the problem where agents
are embedded on a graph whose edges determine agent relations. Given
a graph, the goal is to find a locally envy-free allocation where every
agent values her share of the cake at least as much as that of any of her
neighbors’ share. We identify a non-trivial graph structure, namely a tree
having depth at most 2 (Depth2Tree), that admits a query efficient
protocol to find locally envy-free allocations using O(n4 logn) queries
under the standard Robertson-Webb (RW) query model. To the best
of our knowledge, this is the first such non-trivial graph structure. In
our second result, we develop a novel cake-division protocol that finds
a locally envy-free allocation among n agents on any Tree graph using
O(n2n) RW queries. Though exponential, our protocol for Tree graphs
achieves a significant improvement over the best-known query complexity
of six-towers-of-n for complete graphs.

1 Introduction

The problem of fairly dividing a set of resources among a set of participating
agents is one of the most fundamental problems in distributive justice, with roots
dating back to biblical time. However, arguably the first formal mathematical
approach towards this problem was initiated by Steinhaus [24] (see also [14]). Over

⋆ A part of this work was done when N. Rathi was at Aarhus University, Denmark

2 GHMR 2023

time, this problem has not only found interest in the academic communities of
various disciplines such as social sciences, economics, mathematics, and computer
science (see [9,10,23] for excellent expositions) but has also found relevance in
a wide-range of real-world applications [12,16,21]. The problem of cake division
provides an elegant abstraction to several situations where a divisible resource is
to be allocated among agents with heterogeneous preferences such as division of
land, allocation of radio and television spectrum, rent division, to name a few
(see [19] for implementations of cake-cutting methods).

Formally, a cake-division instance consists of n agents, each having a cardinal
preference over the cake that is modeled as a unit interval [0, 1]. These preferences
are specified by a valuation function vi’s, and we write vi(I) to denote agent i’s
value for the piece I ⊆ [0, 1]. The goal is to partition the cake into n bundles
(may consist of finitely many intervals) and assign them to the n agents such that
this assignment is consider fair. A central notion of fairness in resource-allocation
settings is envy-freeness that deems an allocation fair if every agent prefers her
allocated share over that of any other agent [17]. The appeal of envy-freeness
can be rightfully perceived from its strong existential result: under very mild
assumptions, an envy-free cake division is guaranteed to always exist [15,25].

The algorithmic results for the problem, however, remain elusive. In fact,
Stromquist [26] proved that there does not exist a finite protocol5 for computing
an envy-free cake division (with contiguous pieces) in an adversarial model.
Furthermore, Deng et al. [13] showed that this problem is PPAD-hard when
agents have ordinal valuations. The best-known protocol of Aziz and Mackenzie
[4] for finding envy-free cake divisions with non-contiguous pieces has a super-

exponential query complexity bound of O(nnnnnn

). In contrast, the best known
lower bound for the problem is Ω(n2) leaving a massive gap in our understanding
of the query complexity of the problem [22] .

Current techniques do not seem well suited to yield an immediate answer to
developing better protocols for finding envy-free cake divisions. Hence, one of the
promising approach is to find efficient protocols for instances satisfying certain
properties. In this work, we study one such interesting variant where we assume
that envy comparisons between agents are dictated by an underlying graph over
agents. The goal here is to find a locally envy-free allocation of the cake such
that no agent envies her neighbor(s) in the given graph G. Note that when G is
a complete graph, we retrieve the classical setting of envy-free cake division.

The above-described graphical framework opens various interesting directions
for understanding the problem of fairness in cake division (see [1,7,8,11,27]). From
a practical point of view, it captures many situations in which global knowledge
is unavailable or unrealistic. For instance, when the graph represents social
connections between a group of people, it is reasonable to assume that agents
only envy the agents whom they know (i.e., friends or friends of friends). Similarly,
when a graph represents rank hierarchy in an organization, it is reasonable to
assume that agents only envy their immediate neighbors (i.e. colleagues).

5 We consider the protocol under the standard Robertson-Webb query model.

A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees 3

The primary objective of this paper, however, is to study local envy-freeness
from a theoretical standpoint. Given that the state-of-the-art protocol for finding
envy-free allocation for a complete graph requires super-exponential queries, a
natural line of research—and the focus of this work—is to identify interesting
graph structures that admit faster protocols for computing locally envy-free
allocations.
Our Results and Techniques: Our work focuses on cake-division instances
where the underlying graph over the agents is either a Tree or a Depth2Tree.
A Tree graph represents a setting where agents are embedded on a rooted tree
(see Figure 1), while a Depth2Tree graph is a special case of tree graph with a
depth at most two. Our protocols operate under the standard Robertson-Webb
query model [23] (defined in Section 2), and hence are discrete in nature.

We begin in Section 3 by addressing an open problem listed in [1] and [7] that
asks for identifying interesting classes of graph structures that admit polynomial-
query algorithms for local envy-freeness. Our result identifies the first non-trivial
graph structure over n agents, namely a Depth2Tree, for which we develop
an efficient protocol for computing locally envy-free allocations. As a warm-up
example, a simpler protocol for 4-agents-on-a-line graph and 5-agents-on-a-line
graph can be found in the full version of the paper [18].

Theorem 1. For cake-division instances with n agents on a Depth2Tree,
there exists a discrete protocol that finds a locally envy-free allocation using at
most O(n3 log(n)) cut and O(n4 log(n)) eval queries under RW model.

Interestingly, the techniques developed for Depth2Tree graph do not extend
trivially to the Tree graphs. Nonetheless, inspired by its main ideas, in Section 4,
we develop a recursive protocol that computes a locally envy-free allocation
among n agents on any Tree graph with a query complexity of O(n2n). The idea
of recursion imparts notable simplicity to our protocol, even though the analysis
is somewhat intricate. Our next result addresses the open problem of designing a
discrete and bounded protocol for local envy-freeness on trees mentioned in [1].

Theorem 2. For cake-division instances with n agents on a Tree, there exists
a discrete protocol that computes a locally envy-free allocation using at most
O(n2n) Robertson-Webb queries.

1.1 Related Literature

The celebrated Selfridge-Conway protocol [23] finds an envy-free allocation among
three agents using 5 queries. Aziz and Mackenzie [5] proposed a cake-cutting
protocol that finds an envy-free allocation among four agents in (close to) 600
queries. This bound was then improved by Amanatidis et al. [2] to 171 queries.
As discussed above, despite significant efforts, the problem of developing efficient
envy-free cake-cutting (discrete) protocols for n ≥ 5 agents remains largely
open. Additionally, multiple hardness results have motivated various interesting
settings. For example, efficient fair cake-cutting protocols for interesting classes
of valuations have been developed in [6,20]. The work of Arunachaleswaran et al.

4 GHMR 2023

[3] developed an approximation algorithm that efficiently finds a cake division
with contiguous pieces wherein the envy is multiplicatively bounded within a
factor of 2 +O(1/n).

The problem of fair cake division with graphical (envy) constraints was first
introduced by Abebe et al. [1]. They characterize the set of directed graphs for
which an oblivious single-cutter protocol—a protocol that uses a single agent to
cut the cake into pieces—admits a bounded query complexity for locally envy-free
allocations in the Robertson-Webb query model. In contrast, our work studies a
class of undirected graphs that are significantly harder to analyze, and surprisingly
develop comparable upper bounds. In another closely related paper, Bei et al.
[7] develops a moving-knife protocol6 that outputs an envy-free allocation on
tree graphs. In more recent work, Bei et al. [8] develop a discrete and bounded
locally proportional protocol for any given graph. Tucker [27] compliments this
result by providing a lower bound of Ω(n2) on the query complexity of obtaining
locally proportional allocation in the Robertson-Webb model. In contrast, our
work addresses a stronger guarantee of local envy-freeness. We address the open
questions raised in [1,8] by (a) developing a discrete and bounded protocol for
Tree graphs with single-exponential query complexity, and (b) constructing a
query-efficient discrete protocol that finds locally envy-free allocations among
n agents on Depth2Tree.

2 The Setting

We write [k] to denote the set {1, 2, . . . , k} for a positive integer k.
This work considers the problem of fairly allocating a divisible resource—

modeled as a unit interval [0, 1] and referred to as a cake—among n agents
denoted by (a1, a2, . . . , an). For an agent ai for i ∈ [n], we write vi to specify her
cardinal valuations over the intervals in [0, 1]. In particular, vi(I) ∈ R+ ∪ {0}
represents the valuation of agent ai for the interval I ⊆ [0, 1]. For brevity, we
will write vi(x, y) instead of vi([x, y]) to denote agent ai’s value for an interval
[x, y] ⊆ [0, 1]. Following the standard convention, we assume that vis are non-
negative, additive,7 and non-atomic.8 Additionally, without loss of generality, we
assume that the valuations are normalized i.e., vi(0, 1) = 1 for all i ∈ [n].

We write G to denote the underlying graph structure over the agents, often
written as agents are on G. Here, the nodes of G represent agents and the
edges among them correspond to envy constraints. We will write I to refer to a
cake-division instance with graph constraints.

2.1 Preliminaries

For cake-division instance with n agents we define an allocation A = (A1, A2, . . . , An)
of the cake [0, 1] to be a collection of n pair-wise disjoint pieces such that

6 A moving-knife protocol may not be implementable in discrete steps under standard
RW query model, and hence our result for Tree graphs is stronger than that of [7].

7 For any two disjoint intervals I1, I2 ⊆ [0, 1], we have vi(I1 ∪ I2) = vi(I1) + vi(I2).
8 For any interval [x, y] and any λ ∈ [0, 1], ∃y′ ∈ [x, y] such that vi(x, y

′) = λ · vi(x, y).

A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees 5

∪i∈[n]Ai = [0, 1]. Here, a piece or a bundle Ai (a finite union of intervals of the
cake [0, 1]) is assigned to agent ai for i ∈ [n]. We say A is a partial allocation if
the union of Ais forms a strict subset of [0, 1]. In this work, we study the fairness
notion of local envy-freeness defined below.

Definition 1 (Local Envy-freeness). Given a cake-division instance with a
graph G, an allocation A = (A1, A2, · · · , An) is said to be locally envy-free (on
G) if for any agent ai for i ∈ [n] and any piece Aj ∈ A such that ai and aj have
an edge in G, we have vi(Ai) ≥ vi(Aj). When G is a complete graph, a locally
envy-free allocation is called as an envy-free allocation.

Definition 2 (Robertson-Webb (RW) query model). Our protocols operate
under the standard Robertson-Webb query model [23] that allows access agents’
valuations via the following two types of queries:9

1. Cut query: Given a point x ∈ [0, 1] and a target value τ ∈ [0, 1], cuti(x, τ)
asks agent ai to report the smallest y ∈ [x, 1] such that vi(x, y) = τ . If such a
y does not exist, then the response is some arbitrary number, say −1.

2. Evaluation query: Given 0 ≤ x < y ≤ 1, evali(x, y) asks agent ai to report
her value vi(x, y) for the interval [x, y] of the cake.

Our protocols use the following three standard procedures (formal descriptions
are deferred to the full version of the paper [18]).
Select:Given a collection of pieces X ,m ≤ |X |, and an agent ai, Select(X , ai,m)
returns the m highest-valued pieces in X according to vi. It is easy to see that
Select requires zero cut queries and at most |X | eval queries.
Trim: Given a collection of pieces X and an agent ai, Trim(X , ai) returns a
collection of |X |-many piece, each of value equal to her smallest-valued piece in
X along with some residue R. It first finds the lowest valued piece according to vi
and makes the remaining pieces of value equal to it by trimming. The residue is
the collection of all the trimmings formed in the procedure. The Trim procedure
requires |X | − 1 cut queries and |X | eval queries.
Equal: Given a collection of pieces X and an agent ai, Equal(X , ai) redistributes
among the pieces in X (creating no residue) such that each piece is equally valued
by ai. It also identifies a bundle in the original collection that has a value larger
than the average value of the bundles (according to vi). Note that while both
Equal and Trim procedures return an allocation where all the pieces are equally
valued by ai, Trim may generate a residue whereas Equal redistributes the
pieces of the cake without leaving any residue. The Equal procedure requires
|X | − 1 cut queries and |X | eval queries.

3 Depth2Tree: A Tractable Instance

In this section, we consider cake-division instances where the underlying graph
over the agents is a Depth2Tree and develop a novel protocol to compute

9 See a remark in the full version of the paper [18].

6 GHMR 2023

locally envy-free allocations among n agents using poynomially-many queries
(Theorem 1). We assume that the graph is rooted at agent ar and we write D to
denote the set of neighbours/children of agent ar. Each agent ai ∈ D has ℓi + 1
neighbours, i.e., she is connected to ℓi ≥ 0 leaf agents. In addition, we write L(i)
to denote the set of children of agent ai ∈ D.

Overview of the D2Tree protocol: For cake-division instances with n agents
on a Depth2Tree, we develop a protocol D2Tree that progressively builds
an allocation A = (A1, . . . , An) among n agents. D2Tree primarily consists of
a while-loop that has three phases: Selection, Trimming, and Equaling. The
protocol maintains a set Tr ⊆ D of agents who perform the Trim operation
during the execution of our protocol.

We initialize the set Tr = D to contain all the neighbour agents of ar. The
key goal of the while-loop is to create domination (see Defn. 3) for agent ar over
her each neighbour in D one by one. An agent ai ∈ Tr gets removed from this set
as soon as ar dominates her; we show that the set Tr shrinks as the algorithm
progresses (Lemma 1). And finally, the while-loop terminates when Tr = ∅.

We will call the unallocated part of the cake obtained at the end of each round
of the while-loop as residue, denoted by R. In the beginning, the residue R = [0, 1]
and it keeps decreasing with subsequent rounds of the while-loop. Throughout

the algorithm, each agent ai ∈ D maintains a set A(i) = (A
(i)
0 , . . . , A

(i)
ℓi
) of ℓi + 1

bundles of equal value to her. Note that the leaf agents do not perform any
operation throughout the entire execution of the while-loop.

Definition 3 (D2Tree Domination Condition). At any round of the while-
loop with residue R, we say that agent ar with bundle Ar dominates her neighbour

agent ai ∈ D with a collection A(i) = (A
(i)
0 , . . . , A

(i)
ℓi
) of ℓi + 1 bundles if

1. For bundle A
(i)
0 ∈ A(i), we have vr(Ar) = vr(A

(i)
0)

2. For all the remaining bundles in the set A(i), we have vr(Ar)− vr(A
(i)
k) ≥

vr(R) for all k ∈ [ℓi]

The domination condition says that bundle Ar has become sufficiently more

valuable than the bundles A
(i)
k ∈ A(i) for k ∈ [ℓi] according to agent ar such that

even after the whole of residue (of that round) is added to any bundle in A(i), ar
will not envy the recipient of that bundle.

Any round t of the while-loop with residue R = Rt and the current set Tr of
the trimmer agents consists of the following three phases:

Selection Phase: In the beginning, agent ar divides the residue Rt into
n equal pieces, each of value vr(R

t)/n to her; we denote this set by X (in
Step 3). Then, one by one, each agent ai ∈ D selects her ℓi + 1 most favorite
(available) pieces from X (see Step 5). We denote the set of these selected pieces

by X (i) = {X(i)
0 , . . . , X

(i)
ℓi

} ⊆ X , where X
(i)
0 is ai’s least valued piece in X (i).

Note that, we have vr(X (i)) = (ℓi + 1) · vr(Rt)/n.
After every neighbour agent of ar in D has made her selection, the remaining

single piece (of value vr(R
t)/n) from X is added to the bundle Ar (in Step 6).

A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees 7

Trimming Phase: This phase begins with every agent ai ∈ Tr adding her

least-valued piece, X
(i)
0 ∈ X (i) to bundle A

(i)
0 (in Step 12). This implies that

vr(Ar) = vr(A
(i)
0) (1)

and hence the first condition of domination will be satisfied. This is due to the
fact that both the bundles Ar and A

(i)
0 get a piece of value vr(R

t)/n in each
round t. For the remaining ℓi bundles, agent ai ∈ Tr performs a Trim procedure,

making these ℓi bundles of value equal to vi(X
(i)
0), and forming the set Y(i) (see

Step 10). The residue due to this operation is added to the residue Rt+1 for the
next round t+ 1 (Step 11). All the bundles in Y(i) obtained from the Trimming
phase are added one to each bundle in A(i) in a way that helps us achieve the
desired dominance (see Steps 12-14). Due to the Trim operation, we have

vr(Ar) ≥ vr(A
(i)
k) for all k ∈ [ℓi] (2)

We show that after repeated applications of the Trim operation, agent ar
achieves domination over agent ai. In particular, we prove (in Lemma 1) that
after every O(n log n) rounds of the while-loop, there exists some agent ai ∈ Tr
over whom dominance is achieved.

Equaling Phase: Let agent ar achieves dominance over some agent ai ∈ D
in round t − 1, after which she is removed from the set Tr. That is, we have

vr(Ar)− vr(A
(i)
k) ≥ vr(R

t) for all k ∈ [ℓi], where
10 Rt is the residue formed at

the end of round t− 1, and hence is the residue at the beginning of round t.

In round t, agent ai still begins with the Selection phase as before. Her bundle

A
(i)
0 receives a trimmed piece from her set Y(i); see Steps 18-19. Therefore, for

all the subsequent rounds, we obtain

vr(Ar) ≥ vr(A
(i)
0) (3)

She next performs the Equal operation (in Step 17) which does not produce
any residue. We will show that due to the second condition of the dominance
(Definition 3), no matter how the residue of future rounds is distributed among
the bundles of A(i), agent ar will have no envy towards any of the bundles formed
during this procedure.

Termination of the while-loop: Once the set Tr becomes empty and agent
ar dominates every agent ai ∈ D, the while-loop terminates. The final allocation
is formed in Steps 24-27: agent ar receives bundle Ar, each leaf agent a ∈ Li

corresponding to agent ai ∈ D chooses her favorite bundle from the set A(i)

formed by her parent agent ai, while ai receives the last remaining bundle in the
above set. This creates a complete allocation A of the cake that we will show is
locally envy-free on Depth2Tree.

10 Here, the bundles Ar and A
(i)
k for k ∈ [ℓi] are the ones that were formed till the end

of round t− 1. For brevity, we do not add the notation t− 1 in these bundles.

8 GHMR 2023

D2Tree: Local Envy-freeness for n agents on Depth2Tree

Input: A cake-division instance I on Depth2Tree =(n, ar, D, {ℓi}ai∈D)
Output: A locally envy-free allocation.

1 Initialize R← [0, 1], set of trimmer agents Tr← D, bundles A
(i)
0 , . . . , A

(i)
ℓi
← ∅

for each ai ∈ D and a bundle Ar ← ∅ for the root agent.
2 while Tr ̸= ∅ do
3 Agent ar divides R into n equally-valued pieces that are kept in the set X

——– Selection——–
4 for ai ∈ D do

5 X (i) ← Select(ai,X , ℓi + 1)

6 Set Ar ← Ar ∪ (X \ ∪ai∈D(X (i))) /* The remaining single piece from

X */

——–Trimming———
7 Set R← ∅
8 for ai ∈ Tr do

9 Let X
(i)
0 = argminX∈X (i) vi(X)/* This piece won’t be trimmed */

10 (Y(i), R′)← Trim(ai,X (i))
11 Set R← R ∪R′

12 A
(i)
0 ← A

(i)
0 ∪X

(i)
0 and Y(i) ← Y(i) \X(i)

0

13 Let A
(i)
w = argmax1≤k≤ℓi

vr(A
(i)
k) and Y

(i)
g = argmin1≤k≤ℓi

vr(Y
(i)
k)

14 A
(i)
w ← A

(i)
w ∪ Y

(i)
g and Y(i) ← Y(i) \ Y (i)

g /* Trying to achieve

domination on A
(i)
w for the root agent */

15 For each k ̸= 0, w, add one arbitrary piece from Y(i) to A
(i)
k

——–Equaling———
16 for ai ∈ D \ Tr do
17 (Y(i), Y∗)← Equal(ai,X (i))

18 Let Y
(i)
k ∈ Y(i) be the piece such that Y

(i)
k ⊆ Y∗ /* There is only

one piece satisfying this condition. */

19 Ai
0 ← Ai

0 ∪ Y
(i)
k /* This ensures that root will not envy the

bundle Ai
0 */

20 For each k ̸= 0, add one arbitrary piece from Y(i) to the bundle A
(i)
k

——–Checking Domination——–
21 for ai ∈ Tr do
22 if agent ar dominates agent ai (see Definition 3)
23 Tr← Tr \ {i}

——–Choose after while loop——–
24 for ai ∈ D do
25 for aj ∈ L(i) do

26 aj is allocated her favorite (available) bundle from (A
(i)
k)k∈[ℓi]

27 ai is allocated the remaining bundle

28 return The allocation Ar ∪ (A
(i)
k)k∈[ℓi],ai∈D

Theorem 1. For cake-division instances with n agents on a Depth2Tree,
there exists a discrete protocol that finds a locally envy-free allocation using at
most O(n3 log(n)) cut and O(n4 log(n)) eval queries under RW model.

A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees 9

Proof We begin by establishing three important properties of D2Tree (in
Lemma 1) that are crucial in establishing the desired polynomial upper bound
on its query complexity. Their proofs appear in the full version of the paper [18].

Lemma 1. The following properties hold true for D2Tree protocol:

1. In every round of the while-loop, D2Tree protocol makes O(n) cuts on the
cake using O(n) cut and O(n2) eval queries.

2. Agent ar’s valuation for the residues in two consecutive rounds t and t+ 1 of
the while-loop in D2Tree satisfies vr(R

t+1) ≤ (1− (|D|+ 1)/n)vr(R
t).

3. Agent ar starts dominating at least one agent from the set Tr in every
O(n log n) rounds of the while-loop in D2Tree, after which it is removed
from the set Tr. That is, the size of the set |Tr| decreases by one in every
O(n log n) rounds of the while-loop.

For a given cake-division instance, we will prove that the output allocation
A = (A1, . . . , An) of D2Tree is locally envy-free by splitting the analysis into
three following cases.

(a) Root agent: Consider an arbitrary agent ai ∈ D and the set A(i) of
ℓi many bundles formed after the termination of the while-loop in D2Tree.
Note that, agent ai is assigned one bundle from the set A(i). Therefore, to prove
local envy-freeness for agent ar, it suffices to show that agent ar prefers her own
bundle Ar over any bundle in the set A(i). Note that, equations (1) and (2) imply

vr(Ar) ≥ vr(A
(i)
k) for all k ∈ {0} ∪ [ℓi] throughout the trimming phase of agent

ai. Once agent ar dominates agent ai, say with respect to residue Rt of round t,

we must have vr(Ar) ≥ vr(A
(i)
k) + vr(R

t) for all k ∈ [ℓi]. Therefore, agent ar will
not envy any of the bundles in the set A(i) in future rounds t′ ≥ t+1 irrespective
of how residue Rt′ is divided into these bundles in the equaling phase of agent ai.
Furthermore, recall that equation (3) ensures that agent ar does not envy the

bundle A
(i)
0 as well. Overall, agent ar has no local envy in the final allocation.

(b) Neighbour agents: Consider an arbitrary agent ai ∈ D. Throughout the

execution of our algorithm, every bundle A
(i)
k ∈ A(i) is of equal value to agent ai.

This follows due to the properties of Trim and Equal operations. Therefore,
when the leaf agents of agent ai (in the set Li) selects her bundle from A(i) in
Step 25, agent ai will have no envy towards them.

Next, we will show that ai has no envy towards the root agent as well. Recall
that in the selection phase, ai chooses her favourite ℓi +1 pieces from X (in Step
5). The remaining single piece is added to agent ar’s bundle Ar. Therefore, in

each round of the while-loop, the increment for each bundle A
(i)
k for k ≥ 0 is as

large as the increment in bundle Ar in the view of agent ai. That is, we have

vi(A
(i)
k) ≥ vi(Ar) for all k ∈ {0} ∪ [ℓi], and hence no local envy for agent ai.

(c) Leaf agents: It is trivial to observe that any leaf agent will have no local
envy since she chooses her favourite bundle before her neighbour agent.

Overall, D2Tree outputs a locally envy-free allocation among n agents on a
Depth2Tree.

10 GHMR 2023

Counting Queries: Lemma 1 ensures that after O(n log n) rounds, the
number of agents ai ∈ D who are in the set Tr decreases at least by one. Hence,
the while-loop terminates (i.e. when Tr = ∅) after at most O(n2 log n) many
rounds. By Lemma 1, we know that each round of the while-loop requires O(n)
cut and O(n2) eval queries. Hence, D2Tree requires O(n3 log n) cut queries
and O(n4 log n) eval queries. This completes our proof. ⊓⊔

4 Local Envy-freeness on a Tree

In this section, we develop a recursive protocol Domination(R, k) that finds a
locally envy-free allocation for n agents on a Tree graph using at most O(n2n)
RW queries (Theorem 2). Without loss of generality, we always assume that
the agents a1, a2, . . . , an are indexed according to some arbitrary topological
ordering; making agent an as the root node and a1 a leaf node in the graph. The
topological order over the agents ensures that any descendant of agent aj for
j ∈ [n] must have an index smaller than j.
Terminology: For a given cake-division instance with n agents on a Tree, we
define the following sets for any j ∈ [n].

1. Dj := {j} ∪ {i ∈ [j − 1] : ai is a descendant of aj} is the set containing index
j and the indices of descendants of aj in the underlying Tree. We write
dj = |Dj | to denote the size of the set Dj .

2. Cj denotes the set of indices of the immediate descendants (or children) of aj
in the underlying Tree. Furthermore, we write pj to denote the index of the
parent of agent aj .

For a given fixed index k ∈ [n], we say an agent aj is active if j ≥ k+1, otherwise
she is inactive. Next we define important sets used in the analysis of the protocol.

1. For an active agent aj , Inchild(k, aj) := {i | i ≤ k and i ∈ Cj} is the set
consisting the indices of all her inactive children. This set is empty for inactive
agents.

2. For an active agent aj , Inact(k, aj) := {j} ∪ {t ∈ Di | i ∈ Inchild(k, aj)} is
the set consisting of the indices of all the descendants of her inactive children.
This set is empty for inactive agents.

3. For an allocation B = (B1, . . . , Bn), we define Storage(k, aj) := {Bi | i ∈
Inact(k, aj)} as the set that stores the bundles assigned to agents whose
indices are in Inact(k, aj).

For an allocation B, the collection of storage sets {Storage(k, aj) for j ∈ [n]}
creates a partition of its bundles. When the value of k is obvious from the context,
we will use the phrase storage of aj to refer to her Storage(k, aj) set.

Definition 4 (k-Fair allocation for Trees). Consider a cake-division instance
with n agents on a Tree. For a given piece R ⊆ [0, 1], we say an allocation
B = (B1, . . . , Bn) (of R) is k-Fair if for each agent aj with j ≥ k the following
conditions hold.

A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees 11

a12

a11

a10

a9 a8

a7 a6 a5

a4

a3

a2 a1

a13

{B11}

{B12}

{B13, B4, B3, B2, B1}

∅

∅

∅∅∅∅∅

{B10}

{B9}
{B8, B7, B6, B5}

Inchild(7, aj) Inact(7, aj) Storage(7, aj)

j ≤ 7 ∅ ∅ ∅
j = 8 {5, 6, 7} {5, 6, 7, 8} {B5, B6, B7, B8}

9 ≤ j ≤ 12 ∅ {j} {Bj}
j = 13 {4} {1, 2, 3, 4, 13} {B1, B2, B3, B4, B13}

Fig. 1: The left figure depicts a representative example with 13 agents on a Tree.
The agent corresponding to every node is written inside the circle. For a fixed
index k = 8, the red dashed nodes and the black nodes represent the active and
inactive agents respectively. The adjoining table details the sets Inchild(k−1, aj),
Inact(k− 1, aj), and Storage(k− 1, aj) for an allocation B = (B1, . . . , Bn) with
respect to k = 8. The set written next to aj in the figure is her Storage(k−1, aj).

C1. Agent aj does not envy her neighbours.
C2. vj(Bj) = vj(B) for all B ∈ Storage(k − 1, aj), and
C3. vj(Bj) ≥ vj(B) for all B ∈ Storage(k− 1, aℓ) such that aℓ is an active child

of aj (with respect to index k − 1).

The above-defined notion of k-Fairness forms the crux of our technical ideas.
We explain this notion with the following example (Example 1).

Example 1. Consider an instance of a Tree graph with 13 agents depicted in
Figure 1.

An 8-Fair allocation B = {B1, . . . , B13} of some R ⊆ [0, 1] satisfies the
following conditions.

– C1: Agents a8, a9, . . . , a13 do not envy their neighbors.
– C2: We have v8(B8) = v8(B) for all B ∈ {B5, B6, B7, B8} and v13(B13) =

v13(B) for all B ∈ {B1, B2, B3, B4, B13}.
– C3: We detail the condition for j = 10, and other cases can be dealt similarly.

Agent a10 has two active children (with respect to index k − 1 = 7): a9 and
a8 with storage sets {B9} and {B5, B6, B7, B8} respectively. Hence, for j = 10
we have v10(B10) ≥ v10(B) for B ∈ {B5, B6, B7, B8, B9}.

Note that any 1-Fair allocation is locally envy-free for agents on a Tree.
For any piece R ⊆ [0, 1] and index k ≥ 1, we will develop a recursive protocol
Domination(R, k) that is always k-Fair (see Lemma 2). Hence,Domination([0, 1], 1)
will output the desired locally envy-free allocation among n agents on a Tree.

Overview of Domination(R, k): For k = n and any piece R ⊆ [0, 1],
protocol Domination(R,n) is defined in a straight-forward manner: agent an
cuts R into n equal pieces according to her. It is easy to see that this allocation is
indeed n-Fair. For k ≥ 1, our protocolDomination(R, k) successively constructs
a k-Fair allocation A = (A1, . . . , An) of R among n agents in multiple rounds. It

12 GHMR 2023

does so by repeatedly invoking Domination(R, k+1) and using its (k+1)-Fair
output allocations. We will refer to R as residue and it keeps on shrinking as
the algorithm proceeds. Domination(R, k) primarily consists of a while-loop
that terminates when the residue reduces so much that the parent agent apk

(of agent ak) satisfies a certain domination condition (as stated in Step 8 of
Domination(R, k)) over the bundles of agents in Dk with respect to the current
residue. This domination serves as a crucial property for creating the desired
k-Fair allocation (without creating any envy for agent apk

). We prove that
the domination is achieved in polynomial many rounds of the while-loop (see
Lemma 2) that becomes the backbone argument to establish the desired query
complexity of our protocol Domination([0, 1], 2).

Let us consider an arbitrary round t of the while-loop (Step 3-17) during
the execution of Domination(R, k), and denote the residue at its beginning
as Rt; where R1 = R. The round begins with invoking Domination(Rt, k + 1)
to obtain a (k + 1)-Fair allocation Bt = (Bt

1, B
t
2, . . . , B

t
n) of Rt. Throughout

round t, we focus (and modify some of) the bundles in the Storage(k, apk
) set

corresponding to Bt. Recall that, due to (k + 1)-Fairness of Bt, agent apk
values

each bundle in her Storage(k, apk
) set equally. Also, note that Storage(k, ak)

corresponding to Bt is empty and that is exactly what agent ak is trying to
build during this recursive step. The challenge is to form the Storage(k − 1, ak)
set corresponding to the output allocation A while ensuring its k-Fairness.
Observe that, this allocation A (and its Storage(k − 1, ak) set) is then used by
Domination(R, k − 1) in the next recursive step.

The while-loop of our protocol consists of three phases: Selection, Trimming,
and Equaling where only the agent ak performs the associated operations.

- In the first phase of Selection, as the name suggests, agent ak selects her
|Dk| = dk-many favorite pieces from the Storage(k, apk

) set (see Step 4), denoted
by the set X t.11 Since agent apk

values each bundle in her storage set equally,
we can re-index all the selected bundles in X t to match the indices in the set Dk

(and accordingly re-index the remaining non-selected bundles as well). Now, for
every j /∈ Dk, the intact12 bundle Bj is added to the bundle Aj of agent aj . We
use this fact to establish Condition C1 of k-Fairness for output allocation A (in
Lemma 2).

- If agent apk
has not yet achieved the domination (as stated in Step 8), then

agent ak enters into the Trimming phase and performs a Trim operation (Step 11)
on the set X t of bundles chosen in Step 5 to obtain a trimmed set Yt of dk-
many bundles. The residue obtained due to this trimming process becomes the
residue Rt+1 for the next round. The bundles in Yt are allocated (in Steps 11-14)
among agents in Dk in a way that expedites the desired domination and ensures
Condition C3 of k-Fairness for allocation A.

11 Recall that the set Dk consists of the indices of the descendants of agent ak and her
own index. Since the indices of the agents follow topological ordering, dk ≤ k for any
k ∈ [n]. Moreover, since pk > k, the set Storage(k, apk) set cannot be empty.

12 A bundle is said to be intact if it is in the form as present in Bt obtained from
Domination(Rt, k + 1) and has not been modified.

A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees 13

- The key observation here is that the value of the residue according to agent apk

decreases exponentially fast. This ensures that the said domination for agent apk
is

achieved in at most dk+dk log dk iterations of the while-loop (Lemma 2). As soon
as the domination condition is satisfied, agent ak performs an Equal operation
(instead of Trim) on the output allocation of Domination(Rdk+dklogdk , k + 1).
This process produces no residue and the while-loop terminates. Towards this
end, agent ak produces dk-many equally valued bundles due to Trim and Equal

operations that forms her Storage(k − 1, ak) set. This helps in establishing
Condition C2 of k-Fairness for allocation A.

Finally, the count of dk+dk log dk on the number of rounds of while-loop leads
to the desired runtime for our protocol. We will prove that Domination(R, k)
outputs a k-Fair allocation, by showing that all three conditions (in Definition 4)
are satisfied (see Lemma 2).

Overall, the final output of Domination([0, 1], 1) is a 1-Fair allocation of
the cake [0, 1]. The run-time of Domination(R, k) and its recursive nature leads
to the query complexity n2n for the Domination([0, 1], 2).

Notation Guide for Domination(R, k): We say any round t of the while-loop
has residueRt at its beginning. We write Bt to be the output ofDomination(Rt, k+
1) in Step 3. Furthermore, X t denotes the output of the Select procedure (Step 4)
and Yt denotes the output of the Trim and Equal procedures performed by
agent ak (Steps 10 and 16). We will drop the superscript t whenever it is clear
from the context. Finally, we write A = (A1, . . . , An) to be the output allocation
of Domination(R, k).

Theorem 2. For cake-division instances with n agents on a Tree, there exists
a discrete protocol that computes a locally envy-free allocation using at most
O(n2n) Robertson-Webb queries.

We begin with a crucial lemma (Lemma 2) which proves thatDomination(R, k)
returns a k-Fair allocation after at most dk + dk log(dk) many runs of the while
loop. This property forms the crux of our recursive protocol Domination(R, k).

Lemma 2. Consider any cake-division instance with n agents on a Tree graph.
For any R ⊆ [0, 1] and k ∈ [n], Domination(R, k) computes a k-Fair allocation
in dk + dk log dk rounds of the while-loop.

Next, we state three properties in Lemma 3 that are instrumental in proving
the above lemma. Its proof is deferred to the full version of the paper [18].

Lemma 3. Domination(R, k) has following three properties:

1. For any j /∈ D(k) ∪ pk, Storage(k, aj) = Storage(k − 1, aj). Furthermore,
this set remains intact during the entire execution of Domination(R, k).
Moreover, for j = pk we have Storage(k − 1, apk

) ⊆ Storage(k, apk
).

2. For any round t of the while-loop during the protocol Domination(R, k).
Then, after t+dk log dk rounds of the while-loop, we obtain vpk

(Rt+dk log dk) ≤
ct. Here, ct := maxℓ∈Dk

{vpk
(Bt

pk
)− vpk

(Y t
ℓ)} and bundles Y t

k for k ∈ [ℓi] are

14 GHMR 2023

Recursion step: Domination(R, k) for Trees

Input: A cake-division instance I on a Tree, a piece R ⊆ [0, 1], and an index
k ∈ {1, . . . , n− 1}.

Output: A k-Fair allocation of R.
1 Initialize bundles Ai ← ∅ for i ∈ [n] and set a counter c← 0
2 while R ̸= ∅ do
3 B ← Domination(R, k + 1)

——– Selection——–
4 X ← Select(ak, Storage(k, apk), dk) /* Storage set for B */
5 Re-index the bundles in X and Storage(k, apk) \ X so that they bear the

indices in Dk and Inact(k, apk) \Dk respectively
/* We can do this because Step 3 ensures that agent apk is

indifferent towards the bundles in Storage(k, apk) */

6 for j /∈ Dk do
7 Aj ← Aj ∪Bj if ∃ ℓ ∈ Dk such that vpk (Apk)− vpk (Aℓ) ≤ vpk (R)

/* Checking the domination condition for agent apk */

8
——–Trimming———
Set R← ∅

9 (Y, R)← Trim(ak,X)
10 Let Yg = argminℓ∈D(k) vpk (Yℓ) and w = c mod dk + 1

11 Aw ← Aw ∪ Yg and Y ← Y \ Yg

/* Trying to achieve domination on Aw for the agent apk */

12 For each ℓ ∈ Dk \ {w}, add one arbitrary piece from Y to Aℓ

13 c→ c+ 1
14 else

——–Equaling———
15 Y ← Equal(ak,X)
16 For each i ∈ Dk, add one arbitrary piece from Y to Ai

17 return Allocation A = (A1, . . . , An)

obtained after the Trim procedure in Step 10 of Domination(R, k) protocol
performed by agent ak in round t.

3. During the execution of Domination(R, k), the difference between the value
of agent apk

for her bundle and for the bundle of any agent in the set D(k)
increases with each round of the while-loop i.e., for any round t, we have

vpk
(At

pk
)− vpk

(At
ℓ) ≤ vpk

(At+1
pk

)− vpk
(At+1

ℓ) for all ℓ ∈ Dk

where At and At+1 are the allocations at the end of rounds t and t+ 1.

Proof of Lemma 2: Given any piece R ⊆ [0, 1] and k ∈ [n], we begin by proving
that the output allocation, A = (A1, A2, . . . , An) of the Domination(R, k) is
k-Fair. Towards the end, we will prove the desired count on the number of
while-loops that suffices to achieve so.

We will proceed via recursion on k ∈ [n]. Recall that Domination(R,n)
asks agent an to simply divide R into n equal pieces, making it n-Fair trivially.

A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees 15

Now, let us assume that the claim holds true for k + 1, and we will prove it
for k. That is, in every round of the while-loop, the output allocation B of
Domination(R, k + 1) is (k + 1)-Fair. We will show that Domination(R, k) is
k-Fair by proving that its output allocation A satisfies Conditions C2 and C3
and then finally Condition C1 will follow.
- Condition C2: For each round of the while-loop, since B is (k + 1)-Fair,
we have vj(Bj) = vj(B) for all B ∈ Storage(k, aj) for all j ≥ k + 1 from
Condition C2. For j ≥ k + 1 and j ̸= pk, note that Lemma 3 implies that
the bundles in the Storage(k, aj) set remains intact during Domination(R, k).
Since Storage(k, aj) = Storage(k − 1, aj), the desired condition is satisfied for
these agents.

Now, for j = pk, the induction hypothesis implies that vpk
(Bpk

) = vpk
(B)

for all B ∈ Storage(k, apk
). And Lemma 3 implies that Storage(k − 1, apk

) ⊆
Storage(k, apk

). Hence, we obtain the desired relation.
Finally, let us consider agent ak. We know that agent ak selects dk many

bundles from Storage(k, apk
) in each round of the while-loop and performs a

Trim procedure on this set to make them all of equal value to her. The equaling
phase maintains this property, hence establishing Condition C2 of k-Fairness.
- Condition C3: Let us consider agents ak and apk

. We show that vpk
(Apk

) ≥
vpk

(A) for allA ∈ Storage(k−1, ak). Towards the end of the protocolDomination(R, k),
we know that agent ak creates her Storage(k − 1, ak) set containing dk many
equally-valued bundles. In each round of the while-loop, ak selects her dk-many
favorite pieces from the set Storage(k, apk

) (of (k + 1)-Fair allocation of that
round) in Step 4 and performs Trim until apk

starts dominating her.
At the termination round, say T , of the while-loop, we have (by the domination

condition stated in Step 8)

vpk
(AT

pk
)− vpk

(AT
ℓ) ≥ vk+1(R

T) for all ℓ ∈ D(k),

where AT
ℓ denotes the bundle of agent aℓ formed at the end of round T of the

while-loop. The domination condition implies that the residue RT is small enough
that it does not induce any envy for apk

even if RT is fully allocated to any
bundle AT

ℓ for ℓ ∈ D(k). The Equaling phase maintains the similar relation, and
hence we obtain vpk

(Apk
) ≥ vpk

(Aj) for all j ∈ Dk. Since, these Aj ’s form the
Storage(k − 1, ak) set, we obtain the desired relation.

Finally, for any other active child aℓ of apk
, note that Lemma 3 says that the

Storage(k, aℓ) remains intact, i.e., we have Storage(k − 1, aℓ) = Storage(k, aℓ).
Since bundle Bpk

∈ Storage(k, apk
) is present in Storage(k− 1, apk

), Condition
C3 follows from the induction hypothesis.
- Condition C1: Let us first consider agent ak. In any round t of the while-loop,
she selects her dk most preferred pieces from Storage(k, apk

) set (corresponding
to B). We re-index the bundles such that Bpk

is one of the remaining pieces,
and that is allocated to agent apk

. The Trimming and Equaling phases ensure
that we maintain vk(Ak) ≥ vk(Apk

). The fact that ak does not envy any of her
children follows from Condition C2, proved above. Condition C3 can be used to
prove that apk

does not envy non-children agent ak as well.

16 GHMR 2023

Consider an agent aj such that j /∈ (Dk ∪ pk). All that is left is to prove that
agent aj does not envy her neighbours in the output allocation A. This is true
since the topological ordering ensures that any agent in the set D(k) has an index
that is less than k. Since agent aj is allocated an intact piece from B in Steps 6-7,
using the induction hypothesis, we obtain that she does not envy her neighbours
in the allocation A. This proves that A satisfies Condition C1 of k-Fairness.
Runtime Analysis: To establish the runtime of Domination(R, k), we will
consider the first dk rounds of the while-loop during its execution. If our protocol
terminates before dk rounds, we are done. If not, observe that Steps 11-12
allocate the smallest piece after trimming (i.e. argminℓ∈D(k) vpk

(Yℓ)) to different
bundles in the first dk rounds. Assume, without loss of generality, bundle Ah

is allocated the smallest trimmed piece in round h ∈ [dk]. Recall the definition
of the maximum trimmed value ch := maxℓ∈Dk

{vpk
(Bh

pk
)− vpk

(Xh
ℓ)} for round

h. Since agent apk
gets bundle Bh

pk
(which is not trimmed) in this round, we

know that vpk
(Ah

pk
)− vpk

(Ah
ℓ) ≥ ch for all ℓ ∈ D(k). Using this inequality for all

h ≤ dk we have,

vpk
(Adk+dk log dk

pk
)− vpk

(Adk+dk log dk

ℓ) ≥ vpk
(Ah

pk
)− vpk

(Ah
h) (by Lemma 3)

≥ cm (by Step 12)

≥ vpk
(Rdk+dk log dk) (by Lemma 3)

Therefore, after at most dk + dk log dk rounds, the agent ak enters the Equaling
phase and the while-loop terminates to output the final k-Fair allocation. ⊓⊔
Proof of Theorem 2: Note that the k-Fairness of Domination(R, k) ensures
that the final output allocation A∗ of Domination([0, 1], 2) is locally envy-free.

We denote the query complexity of Domination(R, k) by Tk for k ∈ [n];
we will prove T1 = O(n2n). Note that, each round of the while-loop during the
execution of the protocol Domination(R, k) requires dk eval queries and dk − 1
cut queries. Lemma 2 proves that Domination(R, k) outputs a k-Fair allocation
in dk+dk log dk rounds of the while-loop. Now, let us first observe the execution of
Domination(R, 1) protocol. It invokes Domination(R, 2) which makes T2 many
queries to output C. The corresponding set (in C) Storage(1, ai) = {Ci} for every
agent ai, except the parent agent of a1. We have Storage(1, ap1

) = {C1, Cp1
},

out of which agent a1 selects her favorite bundle (by making two eval queries)
and the remaining bundle. That is, we can write T1 = T2 + 2.

Since the agents are indexed according to the topological order, we have
dk ≤ k for all k ∈ [n]. Hence, we will derive the query complexity in terms of k

instead of dk. We prove that Tk ≤
∑n

j=k j
∏j

i=k(3i log i) using induction on k.

For the base case k = n, we know that Tn = n ≤ 3n2 log(n). Assuming that the
bound holds for Tk+1 and writing Tk in terms of Tk+1 we have,

Tk ≤ (dk + dk log dk)Tk+1 + dk(dk + dk log dk) ≤ (k + k log k)Tk+1 + 2k2 log k

≤ 3k log k

n∑
j=k+1

j

j∏
i=k+1

(3i log i) + 2k2 log k =

n∑
j=k+1

j

j∏
i=k

(3i log i) + 2k2 log k

A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees 17

<

n∑
j=k+1

j

j∏
i=k

(3i log i) + k(3k log k) ≤
n∑

j=k

j

j∏
i=k

(3i log i). (4)

Let us now finally bound T2 using the bound described in equation 4). We

obtain T2 ≤
∑n

j= j
∏j

i=2(3i log i). Let us now denote hj = j
∏j

i=2(3i log(i)) =

j · 3j · j!
∏j

i=2 log i. Note that, for all 2 ≤ j < n we have 2hj < hj+1, and

hence,
∑n−1

j=2 hj < hn. We have T2 ≤
∑n

j=2 j
∏j

i=2(3i log i) =
∑n

j=2 hj ≤ 2hn =

2n · 3n · n!(log n)n. Using Stirling’s approximation, we obtain T2 = O(n2n). ⊓⊔

5 Discussion and Future Directions

In this paper, we studied the open problems stated in [1,7] by (a) developing
a discrete and bounded protocol for local envy-freeness for n agents on Tree
graphs with a single-exponential query complexity, and (b) constructing a query-
efficient protocol for computing locally envy-free allocations among n agents on
Depth2Tree. We believe that exploring the complexity of envy-free cake division
with graphical constraints will give us novel insights and help us understand the
hidden bottlenecks in the query complexity of the general problem.

Our work raises an interesting question of developing query efficient algorithms
for finding locally envy-free allocations for fixed parameters such as arboricity or
the tree-width of the graph. A second interesting research direction is to study
trees with a constant depth and check if can we develop query-efficient protocols
for these graphs. Developing efficient protocols for graphs such as a cycle or a
bipartite graph is also an interesting future direction.

Acknowledgments: Xin was supported in part at the Technion Israel Institute of
Technology by an Aly Kaufman Fellowship. Ganesh was supported by Department
of Science and Technology, India under grant CRG/2022/007927. The authors
thank Siddharth Barman, Ioannis Caragiannis, and Amik Raj Behera for their
helpful comments.

References

1. Abebe, R., Kleinberg, J., Parkes, D.C.: Fair division via social comparison. In:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). p. 281–289 (2017)

2. Amanatidis, G., Christodoulou, G., Fearnley, J., Markakis, E., Psomas, C., Vakaliou,
E.: An improved envy-free cake cutting protocol for four agents. In: Proceedings
of the 11th International Symposium on Algorithmic Game Theory (SAGT). pp.
87–99 (2018)

3. Arunachaleswaran, E.R., Barman, S., Kumar, R., Rathi, N.: Fair and efficient cake
division with connected pieces. In: Proceedings of the International Conference on
Web and Internet Economics (WINE). pp. 57–70 (2019)

4. Aziz, H., Mackenzie, S.: A discrete and bounded envy-free cake cutting protocol
for any number of agents. In: Proceedings of the 57th Annual Symposium on
Foundations of Computer Science (FOCS). pp. 416–427 (2016)

18 GHMR 2023

5. Aziz, H., Mackenzie, S.: A discrete and bounded envy-free cake cutting protocol for
four agents. In: Proceedings of the 48th Annual ACM Symposium on Theory of
Computing. p. 454–464. (STOC) (2016)

6. Barman, S., Rathi, N.: Fair cake division under monotone likelihood ratios. Mathe-
matics of Operations Research pp. 1875–1903 (2022)

7. Bei, X., Qiao, Y., Zhang, S.: Networked fairness in cake cutting. In: Proceedings
of the 26th International Joint Conference on Artificial Intelligence, (IJCAI). pp.
3632–3638 (2017)

8. Bei, X., Sun, X., Wu, H., Zhang, J., Zhang, Z., Zi, W.: Cake cutting on graphs:
a discrete and bounded proportional protocol. In: Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 2114–2123
(2020)

9. Brams, S.J., Taylor, A.D.: Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press (1996)

10. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D.: Handbook of
computational social choice. Cambridge University Press (2016)

11. Bredereck, R., Kaczmarczyk, A., Niedermeier, R.: Envy-free allocations respecting
social networks. Artificial Intelligence 305, 103664 (2022)

12. Budish, E.: The combinatorial assignment problem: Approximate competitive
equilibrium from equal incomes. Journal of Political Economy pp. 1061–1103 (2011)

13. Deng, X., Qi, Q., Saberi, A.: Algorithmic solutions for envy-free cake cutting.
Operations Research 60(6), 1461–1476 (2012)

14. Dubins, L.E., Spanier, E.H.: How to cut a cake fairly. The American Mathematical
Monthly 68(1P1), 1–17 (1961)

15. Edward Su, F.: Rental harmony: Sperner’s lemma in fair division. The American
mathematical monthly 106(10), 930–942 (1999)

16. Etkin, R., Parekh, A., Tse, D.: Spectrum sharing for unlicensed bands. IEEE
Journal on selected areas in communications 25(3), 517–528 (2007)

17. Foley, D.K.: Resource Allocation and the Public Sector, vol. 7:45-98. Yale Economic
Essays (1966)

18. Ghalme, G., Huang, X., Machino, Y., Rathi, N.: A discrete and bounded locally
envy-free cake cutting protocol on trees. arXiv preprint arXiv:2211.06458 (2022)

19. Goldman, J., Procaccia, A.D.: Spliddit: Unleashing fair division algorithms. ACM
SIGecom Exchanges 13(2), 41–46 (2015)

20. Kurokawa, D., Lai, J., Procaccia, A.: How to cut a cake before the party ends. In:
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). pp. 555–561
(2013)

21. Moulin, H.: Fair division and collective welfare. MIT press (2004)
22. Procaccia, A.D.: Thou shalt covet thy neighbor’s cake. In: Proceedings of the 21st

International Joint Conference on Artificial Intelligence (IJCAI). p. 239–244 (2009)
23. Robertson, J., Webb, W.: Cake-cutting algorithms: Be fair if you can. AK Pe-

ters/CRC Press (1998)
24. Steinhaus, H.: The problem of fair division. Econometrica 16, 101–104 (1948)
25. Stromquist, W.: How to cut a cake fairly. The American Mathematical Monthly

87(8), 640–644 (1980)
26. Stromquist, W.: Envy-free cake divisions cannot be found by finite protocols.

Electronic Journal of Combinatorics 15(1) (2008)
27. Tucker-Foltz, J.: Thou shalt covet the average of thy neighbors’ cakes. Information

Processing Letters 180, 106341 (2023)

	A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees

