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Abstract. This paper presents an efficient, writer-based logging scheme for recoverable distributed shared
memory systems, in which logging of a data item is performed by its writer process, instead of every process
that accesses the item logging it. Since the writer process maintains the log of data items, volatile storage can
be used for logging. Only the readers’ access information needs to be logged into the stable storage of the
writer process to tolerate multiple failures. Moreover, to reduce the frequency of stable logging, only the data
items accessed by multiple processes are logged with their access information when the items are invalidated,
and also semantic-based optimization in logging is considered. Compared with the earlier schemes in which
stable logging was performed whenever a new data item was accessed or written by a process, the size of the

log and the logging frequency can be significantly reduced in the proposed scheme.
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1. Introduction

Distributed shared memory DSM
systems 15 transform an existing
network ofZ . w x workstations into a
powerful  shared-memory  parallel
computer which could deliver superior
pricerperformance ratio. However, with
more workstations engaged in the
system and longer execution time, the
probability of failures increases, which
could render the system useless. For the
DSM system to be of any practical use,
it is important for the system to be
recoverable so that the processes do not
have to restart from the beginning when
there is a failure 25 . An approach to
providingw x fault-tolerance to the
DSM systems is to use checkpointing
and rollback-recovery. Checkpointing is
an operation to save intermediate

checkpointing, distributed shared memory system, fault tolerant system, message

system states into stable storage which
is not affected by system failures. With
periodic checkpointing, the system can
recover to one of the saved states, called
a checkpoint, when a failure occurs in
the system. The activity to resume the
computation from one of the previous
checkpoints is called rollback.

An earlier version of this work has appeared in
the proceedings of the 17th International
Conference on Distributed Computing Systems,
1997.

In DSM systems, the computational
state of a process becomes dependent
on the state of another process by
reading a data item produced by that
process. Because of such dependency
relations, a process recovering from a
failure has to force its dependent
processes to roll back together, if it
cannot reproduce the same sequence of
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data items. While the rollback is being
propagated to the dependent processes,
the processes may have to roll back
recursively to reach a consistent
recovery line, if the checkpoints for
those processes are not taken carefully.
Such recursive rollback is called the
domino effect wl7x, and in the worst
case, the consistent recovery line
consists of a set of the initial points; i.e.,
the total loss of the computation in spite
of the checkpointing efforts.

One solution to cope with the domino
effect is coordinated checkpointing, in
which each time a process takes a
checkpoint, it coordinates the related
processes to take consistent checkpoints
together 3, 4, 5, 8, 10, 13 . Since each
checkpointingw x coordination under
this approach produces a consistent
recovery line, the processes cannot be
involved in the domino effect. One
possible drawback of this approach is
that the processes need to be blocked
from their normal computation during
the checkpointing coordination. The
communication-induced checkpointing
is another form of coordinated
checkpointing, in which a process takes
a checkpoint whenever it notices a new
dependency relation created from
another process w9, 22, 24, 25 . This
checkpointing coordination approach
also ensures no dominox effect since
there is a checkpoint for each
communication point. However, the
overhead caused by too frequent
checkpointing may severely degrade the
system performance.

Another solution to the domino effect
problem is to use message logging in
addition to independent checkpointing
w19x. If every data item accessed by a
process is logged in the stable storage,
the process can regenerate the same
computation after a rollback by

reprocessing the logged data items. As a
result, the failure of one process does
not affect other processes, which means
that there is no rollback propagation and
also no domino effect. The only
possible drawback of this approach is
the nonnegligible logging overhead.

To reduce the logging overhead, the
scheme proposed in 23 avoids
repeatedw x logging of the same data
item accessed repeatedly. For correct
recomputation, each data item is logged
once when it is first accessed, and the
count of repeated access is logged for
the item, when the data item is
invalidated. As a result, the size of the
log can be reduced compared to the
scheme in 19 . The scheme proposed in
11w x w x suggests that a data item
should be logged when it is produced by
a write operation. Hence, a data item
accessed by multiple processes need not
be logged at multiple sites and the size
of the log can be reduced. However, for
a data item written but accessed by no
other processes, the logging becomes
useless. Moreover, for the correct
recomputation, a process accessing a
data item has to log the location where
the item is logged and the access count
of the item. As a result, there cannot be
much reduction in the frequency of
logging compared to the scheme in 23
W X

To further reduce the logging
overhead, the scheme proposed in w x7
suggests volatile logging. When a
process produces a new data item by a
write operation, the value is logged into
the volatile storage of the writer
process. When the written value is
requested by other processes, the writer
process logs the operation number of
the requesting process. Hence, when the
requesting process fails, the data value



A LOW OVERHEAD LOGGING SCHEME
and the proper operation number can be
retrieved from the writer process.
Compared with the overhead of logging
into stable storage, volatile logging
incurs much less overhead. However,
when there are concurrent failures at the
requesting process and the writer
process, the system cannot be fully
recovered.

In this paper, we present a new
logging scheme for a recoverable DSM
system, which tolerates multiple
failures. In the proposed scheme, a two-
level log structure is used in which both
the volatile and the stable storages are
utilized for efficient logging. To speed
up the logging and the recovery
procedures, a data item and its readers’
access information are logged into the
volatile storage of the writer process.
And, to tolerate multiple failures, only
the log of access information for the
data items is saved into the stable
storage. For volatile logging, the limited
space can be one possible problem and
for stable logging, the access frequency
of the stable storage can be the critical
issue. To solve these problems, logging
of a data item is performed only when
the data becomes invalidated by a new
write operation, and the writer process
takes the whole responsibility for
logging, instead of every process
accessing the data concurrently logging
it. Also, to eliminate unnecessary
logging of data items, semantic-based
optimization is considered for logging.
As a result, the size of the log and the
frequency of stable storage accesses can
substantially be reduced.

The rest of this paper is organized as
follows: Section 2 presents the DSM
system model and the definition of the
consistent recovery line is presented in
Section 3. In Section 4 and Section 5,
the proposed logging and rollback
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recovery protocols are presented,
respectively, and Section 6 proves the
correctness of the proposed protocols.
To evaluate the performance of the
proposed scheme, we have
implemented the proposed logging
scheme on top of CVM Coherent
Virtual MachineZ . wi12x. The
experimental results are discussed in
Section 7, and Section 8 concludes the

paper.

2. The system model

A DSM system considered in this paper
consists of a number of nodes
connected through a communication
network. Each node consists of a
processor, a volatile main memory and
a nonvolatile secondary storage. The
processors in the system do not share
any physical memory or global clock,
and they communicate by message
passing. However, the system provides
a shared memory space and the unit of
the shared data is a fixed-size page.

The system can logically be viewed as
a set of processes running on the nodes
and communicating by accessing a
shared data page. Each of the processes
can be considered as a sequence of state
transitions from the initial state to the
final state. An event is an atomic action
that causes a state transition within a
process, and a sequence of events is
called a computation. In a DSM system,
the computation of a process can be
characterized as a sequence of
readrwrite operations to access the
shared data pages. The computation
performed by each process is assumed
to be
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Figure 1.  Remote readrwrite procedures

piece-wise deterministic; that is, the
computational states generated by a
process is fully determined by a
sequence of data pages provided for a
sequence of read operations.

For the DSM model, we assume the
read-replication model 21 , in which
thew x system maintains a single
writable copy or multiple read-only
copies for each data page. The memory
consistency model we assume is the
sequential consistency model, in which
the version of a data page a process
reads should be the latest version that
was written for that data page 14 . A
number of different memoryw x
semantics for the DSM systems have
been proposed including processor,
weak, and release consistency 16 , as
well as causal coherence 1 . However,
in this paper, wew x w x focus on the
sequential consistency model, and the
write-in“alidation protocol 15w x is
assumed to implement the sequential
consistency.

Figure 1 depicts the read and the write
procedures under the write-invalidation
protocol. For each data page, there is
one owner process which has the
writable copy in its local memory.
When a process reads a data page which
is not in the local memory, it has to ask
for the transfer of a read-only copy from
the owner. A set of processes having the

b Remsote Write Opermin

read-only copies of a data page is called
a copy-set of the page. For a process to
perform a write operation on a data
page, it has to be the owner of the page
and the copy-set of the page must be
empty. Hence, the writer process first
sends the write request to the owner
process, if it is not the owner. The
owner process then sends the
in-alidation message to the processes in
the copy-set to make them invalidate
the read-only copies of the page. After
collecting the invalidation
acknowledgements from the processes
in the copy-set, the owner transfers the
data page with the ownership to the new
writer process. If the writer process is
the owner but the copy-set is not empty,
then it performs the invalidation
procedure before overwriting the page.

For each system component, we make
the following failure assumptions: The
processors are fail-stop 20 . When a
processor fails, it simply stops and does
notw x perform any malicious actions.
The failures considered are transient
and independent. When a node recovers
from a failure and re-executes the
computation, the same failure is not
likely to occur again. Also, the failure
of one node does not affect other nodes.
We do not make any assumption on the
number of simultaneous node failures.
When a node falls, the register contents
and the main memory contents are lost.
However, the contents of the secondary
storage are preserved and the secondary
storage is used as a stable storage. The
communication subsystem is reliable;
that is, the message delivery can be
handled in an error-free and virtually
lossless manner by the underlying
communication subsystem. However,
no assumption is made on the message
delivery order.
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3. The consistent recovery line

A state of a process is naturally
dependent on its previous states. In the
DSM system, the dependency relation
between the states of different processes
can also be created by reading and
writing the same data item. If a process
pi reads a data item written by another
process p;j, then pi’s states after the read
event become dependent on p;’s states
before the write event. More formally,
the dependency relation can be defined
as follows: Let R? denote the a-th read
event happening at process p; and I
denote the state interval triggered by R?;
and ended right before R? %, where aG 0
and R% denotes the p;’s initial state. Let
W;® denote the set of write events
happening in I2. Also, R xZ s u. Zor W
xZ s u.. denotes the read orZ the write
event on a data item. x with the
returning or written valueZ . u.

Definition 1 An interval I;?is said to be
dependent on another interval I if one
of the following conditions is satisfied,
and such a dependency relation is
denoted by ljs2 lia:

Cl.isjand asbq 1, or

C2.R%sRxZsu.and W xZ s u. g W;*and
there is no other W xZ s uX. in-
between W xZ s u. and R xZ s u., or

C3. There exists an interval I8, such
that |jbg Igand 182 I;2. |

Figure 2 shows an example of the
computational dependency among the
state intervals for a DSM system
consisting of three processes p;, p;, and
pk. The horizontal arrow in Figure 2 a
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represents the progress of the
computation at eachZ . process and the
arrow from one process to another
represents the data page transfer
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between the processes. A data page X
Zor Y . containing the data item x Zor .
is denoted by X xZ . Zor Y yZ ... Figure 2
b depicts the dependency relationZ .
created in Figure 2 a as a directed graph,
in which each node represents a stateZ .
interval and an edge or a path from a
nodeZ . n.to another node nyindicates a
direct Zor a transitive. dependency
relation from a state interval na to
another state interval np.

Figure 2. An example of dependency relations

Note that in Figure 2 a , there is no
dependency relation fromZ . li*to
1! according to the definition given
before. However, in the DSM system, it
is not easy to recognize which part of a
data page has been accessed by a
process. Hence, the computation in
Figure 2 a may not be differentiated
from the one in whichZ . p¢’s read
operation is R yZ X.. In such a case, there
must be a dependency relation, Ij*2 It
The dotted arrow in Figure 2 bZ .
denotes such a possible dependency
relation and the logging scheme must be
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carefully designed to take care of such a
possible dependency for consistent
recovery.

The dependency relations between the
state intervals may cause possible
inconsistency problems when a process
rolls back and performs the
recomputation. Figure 3 shows two
typical examples of inconsistent
rollback recovery cases, discussed in
message-passing  based  distributed
computing systems 6 . First, sup-w x

O Wl Fabme Ry Wi
Y -

Bi 4

18] Oyl Moo Cae (1) Lot Message Caie
pose the process piin Figure 3 a should
roll back to its latest checkpointZ . C;
due to a failure but it cannot retrieve the
same data item for R yZ .. Then, the
result of W xZ . may be different from
the one computed before the failure and
hence, the consistency between p;and p;
becomes violated since p;’s computation
after the event R xZ . depends on the
invalidated computation. Such a case is
called an orphan message case.

Figure 3. Possible inconsistent recovery lines.

On the other hand, suppose the
process p;in Figure 3 b should roll back
to itsZ . latest checkpoint C;j due to a
failure. For pj to regenerate the exact
same computation, it has to retrieve the
same data item x from pi. But, pi does
not roll back to resend the data page X
XZ .. Such a case is called a lost message
case. However, in the DSM system, the
lost message case itself does not cause

any inconsistency problem. If there has
been no other write operation since W
xZ . of pi, then pj can retrieve the same
contents of the page from the current
owner, at any time. Even though there
has been another write operation and
the contents of the page has been
changed, p; can still retrieve the data
page X xZ . Zeven with different
contents. and the different
recomputation of p; does not affect other
processes unless pj had any dependent
processes before the failure.

Hence, in the DSM system, the only
rollback recovery case which causes an
inconsistency problem is the orphan
message case.

Definition 2 A process is said to recover
to a consistent reco“ery line, if and only
if it is not involved in any orphan
message case after the rollback
recovery.

4. The logging protocol

For efficient logging, three principles
are adopted. One is writer-based
logging. Instead of multiple readers
logging the same data page, one writer
process takes the responsibility for
logging of the page. Also, invalidation-
triggered logging is used, in which
logging of a data page is delayed until
the page is invalidated. Finally,
semantic-based logging optimization is
considered. To avoid unnecessary
logging activities, the access pattern of
the data by related processes is
considered in the logging strategy.
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4.1. Writer-based, in“alidation-
triggered logging

For consistent regeneration of the
computation, a process is required to
log the sequence of data pages it has
accessed. If the same contents of a data
page have been accessed more than
once, the process should log the page
once and log its access duration, instead
of logging the same page contents,
repeatedly. The access duration is
denoted by the first and the last
computational points at which the page
has been accessed. The logging of a
data page can be performed either at the
process which accessed it Zthe reader.
or at the process which produced it Zthe
writer.. Since a data page produced by a
writer is usually accessed by multiple
readers, it is more efficient for one
writer to log the page rather than for
multiple readers to log the same page.
Moreover, the writer can utilize the
volatile storage for the logging of the
data page, since the logged pages are
required for the reader’s failure, not for
the writer’s own failure. Even if the
writer loses the page log due to its own
failure, it can regenerate the contents of
the page, under the consistent recovery
assumption.

To uniquely identify each version of
data pages and its access duration, each
process pi in the system maintains the
following data structures in its local
memory:

v pidi: A unique identifier assigned to

process pi.

v opnum;: A variable that counts the
number of read and write operations
performed by process pi. Using
opnumj, a unique sequence number is
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assigned to each of the read and write

operations performed by p.
For each version of the data page X
produced by pi, a unique version
identifier is assigned.

vversion x: A unique identifier assigned
to each version of data page X.
version x s pid :opnum; i, where
opnum; is the opnum value at the
time when p; produced the current
version of X.

When pj produces a new version of X
by a write operation, version  is
assigned to the page. When the current
version of X is invalidated, pi logs the
current version of X with its version x
into pi’s volatile log space, and it also
has to log the access duration for the
current readers of page X. To report the
access duration of a page, each reader p;
maintains the following data structure
associated with page X, in its local
memory.

~duration j: A record variable with four
fields, which denote the access
information of page X at p;.

1 pid: pid ;.

.2 version: version y.

.3 first: The value of opnum;at the
time when page X is first accessed at p;.
Z.4 last: The value of opnum;at the
time when page X is invalidated at p;.

N N N¢

When the new version of page X is
transferred from the current owner, p;
creates duration j and fills out the
entries pid, version, and first. The
entry last is completed when pjreceives
an invalidation message for X from the
current owner, pi. Process p; then
piggybacks the complete duration x
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into its invalidation acknowledgement
sent to pi. The owner p;, after collecting
the durationi x from every reader py,
logs the collected access information
into its volatile log space. The owner p;
may also have duration;y, if it has read
the page X after writing on it. Another
process which implicitly accesses the
current version of X is the next owner.
Since the next owner usually makes
partial updates on the current version of
the page, the current version has to be
retrieved in the event of the next
owner’s failure. Hence, when a process
px sends a write request to the current
owner pj, it should attach its opnumy
value, and p;, on receipt of the request,
create durationgy, in which first s last s
opnumgq 1.

We here have to notice that the
volatile logging of access information
by the writer provides fast retrieval in
case of a reader’s failure. However, the
information can totally be lost in the
event of the writer’s failure since unlike
the data page contents, the access
information cannot be reconstructed
after the writer’s failure. Hence, to cope
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with the concurrent failures which
might occur at the writer and

Figure 4. An example of writer-based,
invalidation-triggered logging.

the readers, stable logging of the access
information is required. When the
writer pi makes the volatile log of access
information, it should also save the
same information into its stable log
space, so that the readers’ access
information can be reconstructed after
the writer fails.

Figure 4 shows how the writer-based,
invalidation-triggered logging protocol
is executed incorporated with the
sequential consistency protocol, for a
system consisting of three processes pi,
pj, and px. The symbol R.Z X. Zor W.Z
X.. in the figure denotes the read or the
write operation to data pageZ . X with
the opnum value a, and INV XZ .
denotes the invalidation of page X. In
the figure, it is assumed that the data
page X is initially owned by process p;.
As is evident from the figure, the
proposed logging scheme requires a
small amount of extra information
piggybacked on the write request
message and invalidation
acknowledgements. Also, the volatile
and the stable logging is performed only
by the writer process and only at the
invalidation time. Figure 4 also shows
the contents of volatile and stable log
storages at process pj. Note that the
stable log of pjincludes only the access
information, while the volatile log
includes the contents of page X in
addition to the access information.

By delaying the page logging until the
invalidation time, the readers’ access
information can be collected without
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any extra communication. Moreover,
the logging of access duration for
multiple readers can be performed with
one stable storage access. Though the
amount of access information is small,
frequent accesses to the stable storage
may severely degrade the system
performance. Hence, it is very
important to reduce the logging
frequency with the invalidationtriggered
logging. However, the invalidation-
triggered logging may cause some data

When p, reads a data page X:

If (Page-Fault(X)) {
Send Reud-Request(X) (0 Owner(X);
Wait for Page(X).

}

If (Not-Exist(duration,)) {
duration, . .pid=pid,;
duration..versioneversion., ;
duration,, firstsopnum,+1;
duration,, Jast=0;

}
opnumi++:

Read(X);

When p, receives Read-Request(X) from p;:

Copy-Set(X =Copy-Set{X)+pid;
Send Page(X) to p,.

Figure 5. Writer-based, invalidation-triggered
logging protocol.

pages accessed by readers but not yet
invalidated to have no log entries. For
those pages, a reader process cannot
retrieve the log entries when it re-
executes the computation due to a
failure. Such a data page, however, can
be safely refetched from the current
owner even after the reader’s failure,
since a data page accessed by multiple
readers cannot be invalidated unless
every reader sends the invalidation
acknowledgement back. That is, the
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data pages currently valid in the system
do not necessarily have to be logged.

The sequential consistency protocol
incorporated with the writer-based,
invalidation-triggered logging is
formally presented in Figure 5 and
Figure 6, in which the bold faced codes
are the ones added for the logging
protocol.

4.2. Semantic-based optimization

Every invalidated data page and its
access information, however, do not
necessarily have to be logged,
considering the semantics of the data
page access. Some data pages accessed

When p; writes on a data page X:

I Omwer(X)# pyd {

Send (Write-Reguesat X and opnum,) to Ownen X,

Wit for PageiX),
'
Else If (Copy-SeiX) = 0) {
Send InvalidationdX) to Evesy pi € Copy-Set(Xx;

Wt foe Invalidation- ACK(X) from Every py £ Copy-Sea(X}

duration.=J,, ;. - sex) durationg

Save (version,, PagecX), duration, ) into Volatile-Log;

Flush (version,, duration, ) into Stable-Log:
!
oprumi+e;
Write Page(X),
version, spid, opaum,;
Copy-Seti X)=ér

When p, receives (Write-Reguest{ X} and opnum ) from p;:

Send Invalidaion X) to Every py € Copy-Set(X)

Wit for Invabidastion- ACK(X) from Every py & Copy-Set(X);

duration, =\ . sy, duration,,;
duration ;. pidepid, ;

duration , yersian=version, ;

duration . first=duration , last=opaum, +1;
duration, sduration, | duration |

Save (versiom,, Page(X), duration, ) into Yolathe-Log:

Flush (version,., duration. ) into Stable-Log;
Send Page(X) and Ownership(X) to p;;

When p; receives Imulidation(X):

duratbon,, last=opaum,
lowalidaiet X}

Send (tmalidanon-ACK(X) and duration.. ) to Ownen( X);



304

can be reproduced during the recovery
and some access duration can implicitly
be estimated from other logged access
information. In the semantic-

Figure 6. Writer-based, invalidation-triggered
logging protocol continued .Z

based logging  strategy, some
unnecessary logging points are detected
based on the data page access pattern,
and the logging at such points is
avoided or delayed. This logging
strategy can further reduce the
frequency of the stable logging activity
and also reduce the number of data
pages logged in the volatile storage.

First of all, the data pages with no
remote access need not be logged. A
data page with no remote access means
that the page is read and invalidated
locally,  without  creating  any
dependency relation. For example, in
Figure 7, process pi first fetches the data
page X from p; and creates a new
version of X with an identifier Zi:1 .
This version of the page is locally read
for. R:z X. and RsZ X., and
invalidated for W,sZ X.. However, when
the version Zi:1. of X is invalidated due
to the operation W,4Z X., pi need not log
the contents of page X and the access
duration Zi, i:1, 2, 4 . The reason is that
during the recovery of.  pi, the
version i:1 ofZ . X can be regenerated by
the operation W;iZ X. and the access
duration i, i:1, 2, 4 can beZ . estimated
as the duration between W1Z X. and W,Z
X.. The next version Zi:4. of page X,
however, needs to be logged when it is
invalidated due to the operation W,Z X.
of pj, since the operation W>Z X. of p;
implicitly requires the remote access of
the version i:4 .Z.

By eliminating the logging of local
data pages, the number of logged data

pages in the volatile log space and also
the access frequency to the stable log
space can significantly be reduced.
However, such elimination may cause
some inconsistency problems as shown
in Figure 8, if it is integrated with the
invalidation-triggered logging. Suppose
that process piin the figure should roll
back after its failure. For consistent
recovery, pi has to perform the
recomputation up to W4Z X.. Otherwise,

WiiX)

Figure 7. An example of local data accesses.

M ) ‘I I /
= Loy X
| ' \ Ricxy ‘ | w
P |— — —
Figure 8. An example of operation counter
vectors.

an orphan message case occurs between
piand p;. However, p; performed its last
logging operation before W,Z X. and
there is no log entry up to WaZ X.. If p;
has no dependency on p;j, then it does
not matter whether p;rolls back to W,Z
X. or to WaZ X.. However, due to the
dependency on p;j, process p;i has to
perform the recomputation at least up to
the point at which the dependency has
been formed.

To record the opnum value up to

which a process has to recover, each
process piin the system maintains an n-
integer array, called an operation
counter “ector ZOCV ., where n is the
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number of processes in the system
70CVisZViwxl, ..., Viiwx,

..., Vnw x... The i-th entry, V ijw x,
denotes the current opnum value of p;,
and V jiw x Zi / j. denotes the last
opnum value of pjon which pi’s current
computation is dependent. This notation
is similar to the causal vector proposed
in 18 . Hence,w x when a process pj
transfers a data page to another process
pi, it sends its current OCV; value with
the page. The receiver p;then updates its
OCV; by taking the entry-wise
maximum value of the received vector
and its own vector, as follows:

OCVis Zmax VZ w x1 , Vjw x1

o, maxV nZiwx, V nw X...

For example, in Figure 8, when p;
sends the data page X and its version
identifier i;4 toZ . pj, it sends its OCV;s
74, 0, 0 with the page and then. p;
updates its OCV;jas 4, 2, 0 . WhenZ . p;
sends the data page Y and its version
identifier j:37 . to px, OCVjs 74, 3, 0. is
also sent with the page, and OCVy is
updated as OCVis 74, 3, 1 . As a result,
each. V jiw x in OCV; indicates the last
operation of process p;on which process
pi’s current computation is directly or
transitively dependent. Hence, when p;
performs a rollback recovery, it has to
complete the recomputation at least up
to the point V jiw x to yield consistent
states between p;jand p;.

Another data access pattern to be
considered for the logging optimization
is a sequence of write operations
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performed on a data page, as shown in
Figure 9. Processes pi, pj, Pk, and p, in
the figure, sequentially write on a data
page X, although, the written data is
read only by R.Z X. of pi. This access
pattern means that the only explicit
dependency relation which occurred in
the system is W1Z X. 2 RoZ X. of pi. Even
though there is no explicit dependency
between any of the write operations
shown in the figure, the write
precedence order between those

Widkak
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Figure 9. An example of write precedence order.
operations is very important, since the
order indicates the possible dependency
relation explained in Section 3 and it
also indicates which process should
become the current owner of the page
after the recovery. To reduce the
frequency of stable logging without
violating the write precedence order, we
suggest the delayed stable logging of
some write precedence orders.

In delayed stable logging, the volatile
logging of a data page and its access
duration is performed as described
before, but, the stable logging is not
performed when a data page having no
copy-set is invalidated. Instead, the
information regarding the precedence
order between the current owner of the
page and its next owner is attached into
the data page transferred to the next
owner. Since the new owner maintains
the unlogged precedence  order
information, the correct recomputation
of its precedent can be performed as
long as the new owner survives. Now,
suppose that the new owner and its

R

X
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precedent fail concurrently. If the new
owner fails without making any new
dependent after the write, arbitrary
recomputation may not cause any
inconsistency problem between the new
owner and its precedent. However, if it
fails making new dependents after the
write, correct recovery may not be
possible. Hence, a process maintaining
the unlogged precedence  order
information should perform the stable
logging before it creates any dependent
process.

For example, in Figure 9, pi does not
perform stable logging when it
invalidates page X. Instead, p; maintains
the precedence information, such as
Zi:1.27j:1 ,. and performs stable logging
when it transfers page X to px. At this
time, the precedence order between pj
and px, Zj:1.2Zk:1 , can also be stably
logged. together. Hence, the page X
transferred from p;to px need not carry
the precedence relation between p; and
px. As a result, the computation shown
in Figure 9 requires at most two stable
logging activities, instead of four stable

logging activities.

5. The recovery protocol

For consistent recovery, two log
structures are used. The volatile log is
mainly used for the recovery process to
perform consistent recomputation, and
the stable log is used to reconstruct the
volatile log to tolerate multiple failures.
In addition to the data logging,
independent checkpointing is
periodically performed by each process
to reduce the recomputation time.

5.1. Checkpointing and garbage
collection

To reduce the amount of recomputation
in case of a failure, each process in the
system periodically takes a checkpoint.
A checkpoint of a process pi includes
the intermediate state of the process, the
current value of opnum; and OCV;, and
the data pages which p; currently
maintains. When a process takes a new
checkpoint, it can safely discard its
previous checkpoint. The checkpointing
activities among the related processes
need not be performed in a coordinated
manner.

A process, however, has to be careful
in discarding the stable log contents
saved before the new checkpoint, since
any of those log entries may still be
requested by other dependent processes.
Hence, for each checkpoint, Ca, of a
process pi, pi maintains a logging “ector,
say LVi a. The j" entry of the vector,
denoted by LV o[ ]j , indicates the
largest opnum; value in duration i
logged before the corresponding
checkpoint. When a process p;j takes a
new checkpoint and the recomputation
before that checkpoint is no longer
required, it sends its current opnum;
value to the other processes. Each
process pi periodically compares the
received opnum; value with the LV; of
1j value of each checkpoint C.. When
for every pjin the system, the received
opnum; becomes larger than LV; o[ 1j ,
process pi can safely discard the log
information saved before the
checkpoint, C..
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5.2. Rollback-reco ery

The case of recovery of a single failure
is discussed first. For a process pito be
recovered from a failure, a recovery
process for pi, say p%, is first created
and it sets pi’s status as reco“ering.
Process p% then broadcasts the log
collection message to all the other
processes in the system. On the receipt
of the log collection message, each
process p; replies with the i-th entry of
its OCV;, V ijw x. Also, for any data
page X which is logged at p; and
accessed by pi, the logged entry of
duration; x and the contents of page X
are attached to the reply message. When
p*i collects the reply messages from all
the processes in the system, it creates its
recoery _ log by arranging the
received duration; x in the order of
duration; x.first and also arranging the
received data pages in  the
corresponding order. Process p% then
selects the maximum value among the
collected V ijw x entries, where js 1, ...
, N, and sets the value as pi’s recoery
point.

Since all the other processes in the
system, except pi, are in the normal
computational status, p*ican collect the
reply messages from all of them, and
the selected recovery point of p;
indicates the last computational state of
pion which any process in the system is
dependent. Also, the constructed
reco’ery — log for pi includes every
remote data page that pi has accessed
before the failure. The recovery process
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p¥ithen restores the computational state
from the last checkpoint of piand from
the restored state, process pi begins the
recomputation. The restored state
includes the same set of active data
pages which were_residing in the main
memory when the checkpoint was
taken. The value of opnum; is also set
as at the checkpointing time. During the
recomputation, process p; maintains a
variable, called Next;, which is the value
of duration; «first for the first entry of
the reco erylog, and Next; indicates the
time to fetch the next data page from the

recoery_ log.

The read and write operations for pi’s
recomputation are performed as
follows: For each read or write
operation, p;first increments its opnum;
value by one, and then compares
opnum; with Next. If they match, the
first entry of the recoery _ log
including the contents of the
corresponding page and its duration;is
moved to the acti“e data page space.
Then, the operation is performed on the
new page and any previous version of
the page is removed from the active
data page space. The new version of the
page is used for the read and write
operations until opnum; reaches the
value of duration;.last. For some read
and write operations, data pages created
during the recomputation need to be
used because of the logging
optimization. Hence, if a new version of
a data page X is created by a write
operation and the corresponding log
entry is not found in the reco“ery_ log,
the page must be kept in the active data
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page space and the duration;y.last is set

as infinity. This version of page X can
be used until the next write operation on
X is performed or a new version of X is
retrieved from the reco“ery_ log.

Sometimes, when pireads a data page
X, it may face the situation that a valid
version of X is not found in the active
data page space and it is not yet the time
to fetch the next log entry Zopnum; -
Nexti.. This situation occurs for a data
page which has been accessed by pi
before its failure, but, has not been
invalidated. Note that such a page has
not been logged since the current
version is still valid. In this case, the
current version of page X must be
refetched from the current owner.
Hence, when p;i reads a data page X, it
has to request the page X from the
current owner, if it does not have any
version of X in the active data page
space, or, the duration; x.last value for
page X in the active data page space is
less than opnumi. In both cases,
opnum; must be less than Nexti. Any
previous version of page X has to be
invalidated after receiving a new
version. The retrieval and the
invalidation activities of data pages
during  the  recomputation  are
summarized in Table 1. The active data
page space is abbreviated to ADPS in
the table.

During the recomputation, process pi
also has to reconstruct the volatile log
contents which were maintained before
the failure, for the recovery of other
dependent processes. The access
information of pi’s volatile log can be
retrieved from its stable log contents
while p* is waiting for the reply
messages after sending out the log _
collection requests. However, the data

pages which were saved in the volatile
log must be created during the
recomputation. Hence, for each write
operation, pi logs the contents of the
page with its version identifier if the
corresponding access information entry
is found in the volatile log. In any case,
the write operation may cause the
invalidation of the previous version of
the page in the active data page space,
however, it does not issue any
invalidation messages to the other
processes during the recomputation.
When opnum; reaches the selected

Table 1. Retrieval of data pages during the
recomputation

Condition

opnum;- X g ADPS and

Next oonum F duration y.last
X g ADPS and
opnum; ) duration; y.last
X f ADPS

opnum; G

Next;

recovery point, pi changes its status from
reco“ering to normal and resumes the
normal computation.

Now, we extend the protocol to

handle concurrent recoveries from
multiple failures. While a process pi Zor
p%. performs the recovery procedure,
another process pjin the system can be
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in the failed state or can also be in the

recoering status. If pjis in the failed
state, it cannot reply back to the log_
collection message of p¥, and hence p*;
has to wait until pjwakes up. However,
if pjis in the reco~ering status, it should
not make p; wait for its reply since, in
such a case, both piand p; must end up
with a deadlocked situation. Hence, any
message sent out during the reco“ering
status must carry the reco“ery mark to
be differentiated from the normal ones,
and such a reco“ery message must be
taken care of without blocking, whether
the message is for its own recovery or
related to the recovery of another
process. However, any normal message,
such as a readrwrite request or an
invalidation message, need not be
delivered to a process in the reco ering
status, since the processing of such a
message during the recovery may
violate the integrity of the system.
When pi Zor p%. in the reco“ering
status receives a log _ collection
message from another process p%, it
reconstructs the access information part
of pi’s volatile log from the stable log
contents, if it has not yet done so. It then
replies to p;with the duration jy entries
logged at pi. Even though the access
information can be restored from the
stable log contents, the data pages
which were contained in the volatile log
may have not yet been reproduced.
Hence, for each duration jsent to pj, pi
Zor p%. records the value of duration
ix-version and the corresponding data
page should be sent to p; later as p;

creates the page during the
recomputation. Process p; begins the
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recomputation as the access information
is collected from every process in the
system.

As a result, for every data page
logged before the failure, the
corresponding log entry, duration; y,
can be retrieved from the recovery log,
however, the corresponding data page X
may not exist in the recovery log when
the process pi begins the recomputation.
Note that in this case, the writer of the
corresponding page may also be in the
recovery procedure. Hence, pi has to
wait until the writer process sends the
page X during the recomputation or it
may send the request for the page X
using the duration; x.version. In the
worst case, if two processes pi and pj
concurrently execute the recomputation,
the data pages must be retransferred
between two processes as they have
done before the failure. However, there
cannot occur any deadlocked situation,
since the data transfer exactly follows
the scenario described by the access
information in the recovery log and the
scenario must follow a sequentially
consistent memory model.

Before the recovery process pi begins
its normal computation, it has to
reconstruct two more items of
information: One is the current
operation counter vector and the other is
the data page directory. The operation
counter vector can be reconstructed
from the vector values received from
other processes in the system. For each
V jiw x value, pican use the value V ijw x
retrieved from process p;, and for the V
iiw x value, it can use its current opnum;
value. The directory includes the
ownership and the copy-set information
for each data page it owns. The
checkpoint of p; contains the ownership
information of the data pages it has
owned at the time of checkpointing.
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Hence, during the recomputation, pican
reconstruct its current  ownership
information as follows: When pi
performs a write operation on a data
page, it records the ownership of the
page on the directory. When p; reads a
new data page from the log, it
invalidates the ownership of that page
since the logging means invalidation.
However, the copy-set of the data pages
the process owns can not be obtained.
Since the copy-set information is for
future invalidation of the page, the
process can put all the processes into
the copy-set.

6. The correctness

Now, we prove the correctness of the
proposed logging and  recovery
protocols.

Lemma 1: The reco”ery point selected
under the proposed reco“ery protocol
is consistent.

Proof: We prove the lemma by a
contradiction. Suppose that a process pi
recovering from a failure selects an
inconsistent recovery point, say R
Then, pimust have produced a data page
X with version s i:k, where k ) Rj, and
there must be another process pjalive in
the system, which has read that page.
This means that V ijw x of pj must be
larger than or equal to k. Since R is
selected as the maximum value among
the Viw xi values collected, Ri G V ijw x
and V ijw x G k. A contradiction occurs.
I

Lemma 2: Under the proposed logging
protocol, a log exists for e“ery data
access point prior to the selected
recoery point.

Proof: For any data access point, if the
page used has been transferred from
another process, either it was logged
before it was transferred Zthe remote
write case or it is logged when the page
is invalidated the remote read case . If a
data. 7 . page locally generated is
used for a data access point, either a log
is created for the page when the page is
invalidated Zthe remote invalidation
case. or the log contents can be
calculated from the next write point the
local invalidation case .Z . In any case,
the page which has not been invalidated
before the failure can be retrieved from
the current owner. Therefore, for any
data access point, the log of the data
page can either be found in the recovery
log or calculated from other log
contents. |

Theorem 1: A process recoers to a
consistent reco ery line under the
proposed logging and reco ery
protocols.

Proof: Under the proposed recovery
protocol, a recovering process selects a
consistent recovery point ZLemma 1 ,
and the logging protocol ensures that
for. every data access point prior to the
selected recovery point, a data log exists
ZLemma 2 . Therefore, the process
recovers to a consistent recovery line..
|
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7. The performance study

To evaluate the performance of the
proposed scheme, two sets of
experiments have been performed. A
simple trace-driven simulator has been
built to examine the logging behavior of
various parallel programs running on
the DSM system, then the logging
protocols implemented on top of the
CVM system to measure the effects of
logging under the actual system
environments.

7.1. Simulation results

A trace-driven simulator has been built
and the following logging protocols
have been simulated:

Shared-access tracking (SAT) [23 :]
Each process logs the data pages
transferred for read and write
operations, and also logs the access
information of the pages.

Read-write logging (RWL) [11 :] Each

process logs the data pages produced by

itself, and also, for the data pages
accessed, it logs the access information
of the pages. In both of the SAT and the

RWL schemes, the data pages and the

related information are first saved in the

volatile storage and then logged into the
stable storage when a process creates
new dependency by transferring a data
page. Write-triggered logging WTL :(
) This is what we propose in this paper.

The simulation has been run with two
different sets of traces: One is the traces
synthetically generated using random
numbers and the other is the execution
traces of some parallel programs.

First, for the simulation, a model with
10 processes is used and the workload is
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randomly generated by using three
random numbers for the process
number, the readrwrite ratio, and the
page number. One simulation run
consists of 100,000 workload records
and the simulation was repeated with
various readrwrite ratios and locality
values. The readrwrite ratio indicates
the proportion of read operations to the
total number of operations. A readrwrite
ratio of 0.9 means that 90% of
operations are reads and 10% are writes.
The locality is the ratio of memory
accesses which are satisfied locally. A
locality of 0.9 means that 90% of the
data accesses are for the local pages.

The simulation results with the
synthetic traces are the ones which best
show the effects of logging for the
various application program types.
Figure 10 and Figure 11 show the
effects of the readrwrite ratio and the
locality of the application program on
the number of logged data pages and the
frequency of stable logging,
respectively. The number in the
parenthesis of the legend indicates the
locality. In the SAT scheme, after each
data page miss, logging of the newly
transferred page is required. Hence, as
the write ratio increases, a large number
of data pages

Figure 10. Comparison of the amount of logging
synthetic traces .Z
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become invalidated and a large number
of page misses can occur. As a result,
the number of logged pages and also the
logging frequency are increased.
However, as the locality increases, a
higher proportion of the page accesses
can be satisfied locally, and hence the
number of data pages to be logged and
the logging frequency can be decreased.

requency

OoogIng !

Figure 11. Comparison of the logging frequency
synthetic traces .Z .

In the RWL scheme, the number of
logged data pages is directly
proportional to the write ratio and this
number is not affected by the locality,
since each write operation requires
logging. However, the stable logging
under this scheme is performed when
the process creates a new dependent as
in the SAT scheme, and hence, the
logging frequency of the RWL scheme
shows a performance which is similar to
that one of the SAT scheme. Comparing
the SAT scheme with the RWL scheme,
the performance of the SAT scheme is
better when both the write ratio and the
locality are high, since in such
environments, there has to be a lot of
logging for the local writes in the RWL
scheme.

As for the WTL scheme, only the
pages being updated are logged and the
logging is performed only at the owners
of the data pages. Compared with the
SAT scheme in which every process in
the copy-set performs the logging, the

number of logged data pages is much
smaller and the logging frequency is
much lower in the WTL scheme. Also,
in the WTL scheme, there is no logging
for data pages with no remote access
and some logging of the write-write
precedence order can be delayed.
Hence, the WTL scheme shows a much
smaller number of logged data pages
and a much lower logging frequency
compared with the RWL scheme, in
which the logging is performed for
every write operation. Furthermore, the
logging of data pages for the SAT
scheme and the RWL scheme require
stable storage, while for the WTL
scheme, volatile storage can be used for
the logging.

To further validate our claim, we have
also used real multiprocessor traces for
the simulation. The traces contain
references produced by a 64-processor
MP, running the following four
programs: FFT, SPEECH, SIMPLE and
WEATHER. Figure 12 and Figure 13
show the simulation results using the
parallel program traces. In Figure 12,
for the programs, FFT, SIMPLE, and
WEATHER, the SAT scheme shows
the worst performance, because those
programs may contain a large

| om

FET SPEECH  WEATHE

Figure 12.  Comparison of the logging amount
parallel program traces .Z

A

BRWL
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Figure 13. Comparison of the logging frequency
parallel program traces .Z

number of read operations and the
locality of those reads must be low.
However, for the program, SPEECH,
the RWL scheme shows the worst
performance, because the program
contains a lot of local write operations.
In all cases, the WTL scheme
consistently shows the best performance
for the log size. Also, considering the
logging frequency shown in Figure 13,
for all programs, the WTL scheme
shows the lowest frequency.

From the simulation results, we can
conclude that our new scheme ZWTL.
consistently reduces the number of data
pages that have to be logged and also
the frequency of the stable storage
accesses, compared with the other
schemes ZSAT,RWL . The reduction is
more than 50% in most of the cases and
it is shown.
in both synthetic and parallel program
traces.

SIMPLE
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7.2. Experimental results

To examine the performance of the
proposed logging protocol under the
actual  system environments, the
proposed logging protocol ZWTL. and
the protocol proposed in 23w x ZSAT
have been implemented on top of a
DSM system. In order. to implement a
sequentially consistent DSM system,
we use the CVM CoherentZ Virtual
Machine package 12 , which supports
the sequential consistency memory. w x
model, as well as the lazy release
consistency memory models. CVM is
written using Cqq and well modularized
and it was pretty straightforward to add
the logging scheme. The basic high
level classes are the CommManager
class and the Msg class which handle
the network operation, the
MemoryManager class which handles
the memory management, and the Page
class and the DiffDesc class handling
the page management. The protocol
classes such as LMW, LSW, and SEQ
inherit the high level classes and
support operations according to each
protocol. We have modified the
subclasses in SEQ to implement the
logging protocols. We ran our
experiments using four SPARCsystem-
5 workstations connected through a 10
Mbps ethernet. For the experiments,
four application programs, FFT, SOR,
TSP, and WATER have been run. Table
2 summarizes the experimental results.
The amount of logged information in
Table 2 denotes the number of data
pages and the amount of access
information which should be logged in
the stable storage. For the SAT scheme,
data pages with a size of 4K bytes and
the access information should be
logged, whereas for the WTL scheme,
only the access information is logged.
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Hence, the amount of information
logged in the WTL scheme is only
0.01%]0.5% of that logged in the SAT
scheme. The amount of stable logging
in the table indicates the frequency of
disk access for logging. The
experimental results show that the
logging frequency in the WTL scheme
is only 57%]66% of that in the SAT
scheme. In addition to the amount of
logged information and the logging
frequency, we have also measured the
total execution times of the parallel
programs under each logging scheme
and without logging to compare the
logging overhead.

The logging overhead in Table 2
indicates the increases in the execution
time under each protocol compared to
the execution time under no logging
environment, and the comparison of the
logging overhead is also depicted in
Figure 14. As shown in the table, the
SAT scheme requires 20%]189%
logging overhead, whereas the WTL
scheme requires 5%]85% logging
overhead. Comparing these two
schemes, the WTL scheme achieves
55%]75% reduction in the logging
overhead compared to the SAT scheme.
One reason for such a reduction is the
low logging frequency imposed by the
WTL scheme; the small amount of log
information written under the WTL
scheme is another possible reason.
However, considering the fact that the
increases in the number of data pages
written per disk access do not cause
much increase in the disk access time,
the 75% reduction in the logging
overhead may require  another
explanation. One possible explanation
is the cascading delay due to the disk
access time; that is, the stable logging
delays the progress of not only the
process which performs the logging, but

also the one waiting for the data transfer
from the process.

Table 2. Eperimental results

Application Logging Execution Logging

program schemes  time sec.Z. overhead %Z .

TSP SAT 645.92 117
WTL 407.29 37

SOR SAT 419.11 152
WTL 259.01 56

FFT SAT 424.47 189
WTL 272.64 85

WATER SAT 247.52 20
WTL 215.15 5

rsp S0R FFT WATEF

Figure 14. Comparison of the logging overhead.

Overall, the experimental results
show that the WTL scheme reduces the
amount of logged information and the
logging frequency compared to the SAT
scheme, and they also show that, in the
actual system environment, more
reductions in the total execution time
can be achieved.

8. Conclusions

In this paper, we have presented a new
message logging scheme for DSM
systems. The message logging has
usually been performed when a data
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page is transferred for a read operation
so that the process does not have to
affect other processes in case of failure
recovery. However, the logging to the
stable storage always incurs some
overhead. To reduce such overhead, the
logging protocol proposed in this paper
utilizes a two-level log structure; the
data pages and their access information
are logged into the volatile storage of
the writer process and only the access
information is duplicated into the stable
storage to tolerate multiple failures. The
usage of a two-level log structure can
speed up the logging and also the
recovery procedures with higher
reliability.

The proposed logging protocol also
utilizes two characteristics of the DSM
system. One is that not all the data
pages read and written have to be
logged. A data page needs to be logged
only when it is invalidated by
overwriting. The other is that a data
page accessed by multiple processes
need not be logged at every process site.
By one responsible process logging the
data page and the related information,
the amount of the logging overhead can
be substantially reduced.

Through extensive experiments, we
have compared the proposed scheme
with other existing schemes and
concluded that the proposed scheme
always enforces much lower logging
overhead and the reduction in the
logging overhead is more profound
when the processes have more reads
than writes. Since disk logging slows
down the normal operation of the
processes, we believe that parallel
applications would greatly benefit from
our new logging scheme.
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