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Abstract—Accurate turn-taking prediction is essential in spo-
ken dialog systems, in order to determine whether the system
or the user should make the next utterance. Previous research
has significantly improved the accuracy of turn-taking predic-
tion, allowing dialog systems to avoid unnatural pauses before
responding. However, in human-to-human dialogs, responses do
not always occur immediately after a speaker’s utterance ends;
sometimes there are deliberate pauses or responses made with
overlap. Therefore, this study proposes a method to estimate in
advance when the interlocutor’s utterances will end, allowing the
system to respond with more natural timing, including occasional
overlaps. We utilized wav2vec 2.0, fine-tuned for automatic speech
recognition, to estimate utterance end times by considering
linguistic features, and compared these methods with prediction
methods that use only acoustic features. The results of our
comparison showed that considering linguistic features allows
more accurate prediction of utterance-final timing. Additionally,
we observed that when using the proposed method, the estimated
time until the end of the utterance decreases as the utterance
approaches its end.

Index Terms—spoken dialog system, turn-taking, utterance-
final timing prediction, wav2vec 2.0

I. INTRODUCTION

Current spoken dialog systems are no longer simply task-
oriented systems that answer user’s questions, but there are
also systems that perform non-task-oriented functions, such as
chatting with users. As a result, rapid changes in dialog content
have made it more difficult for these systems to determine turn-
taking timing by identifying the end user utterances. Therefore,
it has become necessary for dialog systems to make better
turn-taking decisions in order to achieve smooth conversation.

A naive approach to turn-taking is for the system to assume
that the conversation has been handed over only when the
speaker stops talking and the duration of their silence ex-
ceeds a set threshold. The naturalness of conversations when
using this approach depends on the selected threshold. For
example, when using a small value, the system will interrupt
the speaker’s utterances more frequently, while larger values
result in awkwardly long pauses. Therefore, to achieve natural
conversations similar to those between people, a different
approach for predicting turn-taking is necessary.

Recent research has focused on using machine learning
to predict turn-taking, by determining whether the user has

completed an utterance, or if the user intends to continue
speaking. Many turn-taking prediction methods which use
acoustic features are based on Inter-Pausal Units (IPUs), which
are delimited by fixed lengths of silence. Annotations are made
on these IPUs and on subsequent intervals of silence to predict
turn-taking using acoustic features [1]. Jiudong et al. [2] have
proposed using not only acoustic features, but also linguistic
features, IPU length, and speaking rates.

Hara et al. [3] proposed using Transition Relevance Places
(TRPs), intervals during which speaker changes would not
seem unnatural, for turn-taking predictions apart from methods
using IPUs. Other studies have proposed predicting whether
a pause by the speaker in natural, non-fluent conversations is
merely a pause or an indication that they have finished speak-
ing [4]. More recently, methods leveraging self-supervised
learning models (SSLs) such as wav2vec 2.0 [5] and Hu-
BERT [6], as well as Large Language Models (LLMs) such
as GPT2 [7], have also been proposed. SSLs are used in
various tasks such as automatic speech recognition (ASR)
and speaker classification, and have achieved accuracy rates
comparable to or exceeding existing high-precision ASR
models by performing fine-tuning (FT) with only a small
amount of data. SSLs have been used for turn-taking pre-
diction and have achieved higher accuracy than traditional
acoustic feature-based methods, such as using Mel-Frequency
Cepstrum Coefficients (MFCC) [8]. LLMs are considered to
capture linguistic semantic relationships better. Research has
been conducted using LLMs to predict turn-taking using only
textual information [9]. When combined with acoustic models,
these systems not only predict turn-taking but can also identify
occurrences of backchannels, achieving higher accuracy than
the use of textual information alone [10]. Researchers have
also proposed using multimodal features to predict turn-taking,
by combining acoustic, linguistic, and other feature [11]. All
of these recently developed approaches can more accurately
determine the end of utterances and turn-taking, allowing more
natural system responses without unnatural pauses.

However, in human conversations, responses do not always
occur immediately after the end of a conversation partner’s
utterance, because sometimes humans intentionally pause be-
fore responding, or their response may slightly overlap the



end of the previous speaker’s utterance [12]. Achieving such
complex, human-like interactions in dialogs with systems
would be very challenging using existing methods, which
predict turn-taking at the moment an utterance-final occurs.
Therefore, we believe that in order to achieve more human-
like interactions, it is necessary to know in advance when the
other speaker’s utterance will end. So in this study, rather
than estimating whether the system can acquire the right to
speak at the end of a user’s utterance, as in conventional
methods, we propose a method that estimates in advance
when a speaker’s utterance will end, enabling the system to
achieve more natural timing, including overlaps. The most
important key point of this study is the approach of how
many seconds later the current speaker “will” finish speaking,
which is essentially different from conventional methods of
turn-taking estimation and methods like [11] that predict who
the next speaker will be after an arbitrary period of time has
elapsed. Furthermore, given the success of SSL models in
turn-taking prediction tasks, we use wav2vec 2.0 for feature
extraction and apply it to utterance end-time estimation. While
some existing turn-taking prediction methods utilize linguistic
information, most use pre-given texts, or transcripts obtained
from separate ASR models. However, in actual systems, pre-
given texts obviously do not exist, and transcripts obtained
from ASR models may contain errors, which can significantly
impact the accuracy of predictions. Therefore, we propose a
method that leverages the hidden representations of wav2vec
2.0 with FT for ASR, utilizing linguistic features without the
use of transcripts. This approach takes advantage of the ease
with which representations obtained from a once-trained SSL
model can be applied to different tasks.

II. PROPOSED METHOD

The objective of this study is to achieve natural interactions
between users and spoken dialog systems by controlling the
timing of the system’s initiation of utterances. To achieve this,
we propose a method for sequentially estimating the time
at which the user’s utterance, currently being input into the
system, will end, in real time. Specifically, we construct a
deep learning model capable of estimating the time remaining
until the user’s current utterance input ends, using acoustic
information previously input into the system. An overview of
our proposed method is shown in Fig. 1.

A. Wav2vec 2.0 for linguistic features utilization

Many previously proposed methods of turn-taking pre-
diction have utilized linguistic information, suggesting that
linguistic features such as contextual and semantic information
are effective [2], [8], [11]. In this experiment, we use features
obtained from wav2vec 2.0 with FT for ASR to consider
linguistic features. First, we construct a wav2vec 2.0 for
ASR using dialog speech. This model employs wav2vec 2.0,
fine-tuned with dialog speech using end-to-end learning, as
the encoder, and a fully-connected layer and Connectionist
Temporal Classification (CTC) [14] as the decoder. Details
of this method are provided in Section IV. This approach
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Fig. 1: Overview of the proposed method.
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Fig. 2: Linguistic features obtained from wav2vec 2.0.

allows wav2vec 2.0 to be tuned into a model that can capture
linguistic features, such as contextual information, so it can be
utilized for predicting time when the speaker’s utterance will
end.

B. Linguistic features from wav2vec 2.0

In this experiment, we use wav2vec 2.0 with FT for ASR.
To investigate if there are differences in prediction accuracy
between features obtained from wav2vec 2.0, we use features
from the final layer of the wav2vec 2.0 (hidden states), the
probability state of each word token (logits), and the state in
which a single token is determined with a mixture of blanks
(symbol sequence). Additionally, to verify the effectiveness of
considering linguistic features, we compare prediction accu-
racy using these features with that of using features obtained
from the final layer of wav2vec 2.0 without FT for ASR
(hidden states w/o FT). A graphical representation of the
features actually used is shown in Fig. 2.

III. DATASET

The dataset used in this experiment is the Corpus of Every-
day Japanese Conversation (CEJC) [13], which is composed of
conversations which occur naturally in everyday life, such as
conversations of families while dining at a restaurant, casual
chats with acquaintances, etc. It includes 200 hours of audio,
577 conversations, and 461 recording sessions featuring the
voices of 1,675 speakers. The corpus features audio and video
recordings of natural conversations set in everyday situations,
as well as transcripts with the start and end times of each
utterance in each session. Verbal/non-verbal tags are also
available.



IV. TRAINING ASR MODEL

It is necessary to fine-tune wav2vec 2.0 for ASR of the
dialog system user’s speech, in order to predict when their
utterances will end considering the linguistic features. Here,
we describe how wav2vec 2.0 was fine-tuned for ASR, and
then present the results. The ASR model used wav2vec 2.0 as
the encoder, a fully-connected layer as the decoder, and CTC
as the loss function. The dataset used for fine-tuning the model
was the CEJC, which will also be used in the subsequent
utterance end-time prediction experiment. The verbal/non-
verbal tags included in the CEJC transcripts were removed
before training, and the experimental data was divided into
training, validation, and test sets, which consisted of 138, 1,
and 1 hours of data, respectively.

Performance of the fine-tuned ASR model was measured
using the Character Error Rate (CER), and our experimental
results revealed a CER of 27.6%. These results were inferior
compared to ASR performance when using a normal speech
corpus, which was likely because the CEJC is a casual
conversation corpus with spontaneous speech, so it includes
fillers, backchannels, and overlaps, which make ASR more
challenging. But when compared with the recognition results
for other ASR models when processing CEJC speech [15],
the error rate of our model was inferior by only 4.1 points,
therefore we determined that recognition performance of our
proposed model for CEJC speech was generally satisfactory,
so it was selected for use.

V. EXPERIMENT SETUP

A. Feature extraction

MFCC, Convolutional Neural Network (CNN), and
wav2vec 2.0 were each used as feature extractors. MFCC was
a 40-dimensional feature obtained under the following condi-
tions: sampling rate = 16 kHz, frame size = 32 ms, frame
shift size = 10 ms, and Mel-filter bank = 80-dimensionals.
The CNN used a model in which speech is convolved four
times in the following order; 1D convolution, 1D max pooling,
and layer norm. A kernel size of 2 and stride of 1 were
used. It should be noted here that, unlike the other feature
extractors, the CNN was trained end-to-end simultaneously
with the classifier, which will be described at the end of the
following subsection. As mentioned in Section II, the wav2vec
2.0 was fine-tuned for ASR. The four types of features used
from the wav2vec 2.0 are: features obtained from the final
layer of wav2vec 2.0 (hidden states), the probability state of
each word token (logits), the state in which a single token is
determined with a mixture of blanks (symbol sequence), and
features obtained from the final layer of wav2vec 2.0 without
FT for ASR (hidden states w/o FT).

B. Experiment Detail

In this experiment, the task is to estimate the remaining
time until the end of the current utterance from a fixed-length
voice segment. We remade a new dataset from an existing
one for this task. Figure 3 illustrates a concept of a sample
in the dataset. The CEJC dataset was used as the existing
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Fig. 3: Definition of each time point and voice segment in an
utterance.

dataset, similar to the FT of ASR. The CEJC dataset includes
tagging the start and end times of each utterance, making
it easy to obtain a single utterance. We obtained a single
utterance using these start and end times, excluding utterances
with only backchannels or fillers. Concretely, we regarded
utterances longer than 2 seconds as available ones. The length
corresponds to the length of “Utterance” in Fig. 3. Then, we
extracted a fixed-length voice segment obtained before the end
of the utterance from one utterance, which is shown as “Voice
segment” in Fig. 3. In this experiment, the length of the voice
segment was set to 3 seconds. Subsequently, the differential
time between the end of the voice segment and the end of
the utterance was calculated, and this is shown as “Differen-
tial time” in Fig. 3. We repeated this process by randomly
changing the differential time within 1 second and obtained
various combinations of voice segments and the differential
time. Through such repeated manipulations, we built a dataset
that includes voice segments and the corresponding remaining
time until the end of an utterance. We built a model to estimate
the differential time from a voice segment by training it with
this dataset.

We used five-class classification in our experiment (which
is easier to analyze than regression) to confirm trends in the
estimation of time until the end of utterance. The classification
model uses three types of feature extractors as the encoder,
five-class classifiers with two layers of long short-term mem-
ory (LSTM) [16], [17], and three layers of fully-connected
layers as the decoder. The differential time classes to be esti-
mated were as follows: 0.0–0.2 seconds, 0.2–0.4 seconds, 0.4–
0.6 seconds, 0.6–0.8 seconds, and 0.8–1.0 seconds. Finally,
Adam [18] was used as the optimization algorithm, and Cross
Entropy Loss was used as the loss function.

C. Evaluation Method

To evaluate the results of this experiment, we utilized
overall estimation accuracy, as well as the macro-averages of
precision, recall, and F1 score for each class. In addition, the
classification results for the input feature with the highest accu-
racy were summarized in a confusion matrix, and classification
accuracy for each differential time class was analyzed.



TABLE I: Experimental results of utterance end-time prediction.

Feature Accuracy (%) Precision (%) Recall (%) F1 (%)
MFCC 29.1 28.0 29.1 28.0
CNN 31.2 29.8 31.2 29.8

wav2vec 2.0 w/ FT
hidden states 37.0 35.8 37.0 36.1
logits 36.9 35.6 36.9 36.0
symbol sequence 27.4 25.8 27.4 23.4

wav2vec 2.0 w/o FT hidden states 35.1 33.8 35.1 34.0

TABLE II: Confusion matrix of the classification results using “hidden states”. Values in the table show the number of
samples classified in each class. Correctly estimated samples are shown in bold type.

Estimated class
0.0–0.2 sec 0.2–0.4 sec 0.4–0.6 sec 0.6–0.8 sec 0.8–1.0 sec

True class

0.0–0.2 sec 10,705 3,467 1,236 907 1,329
0.2–0.4 sec 4,466 5,467 3,129 2,355 2,227
0.4–0.6 sec 2,429 3,628 3,834 3,814 3,939
0.6–0.8 sec 1,816 2,207 3,033 4,480 6,109
0.8–1.0 sec 1,623 1,562 2,329 3,941 8,190

VI. EXPERIMENT RESULTS

A. Comparative Experiment

The results of the experiments conducted with different
feature extractors are shown in Table I. MFCC, CNN, and
“hidden states w/o FT” are results when using only acoustic
features, while “hidden states”, “logits”, and “symbol se-
quence” are results when considering linguistic features, using
wav2vec 2.0 with FT for ASR. It was found that using “hidden
states” as features yielded the It was found that using the
linguistic feature “hidden states” yielded the best time-to-end-
of-utterance estimation results. Results for both “hidden states”
and “logits”, which are features from wav2vec 2.0 with FT
for ASR, outperformed the acoustic-only features of MFCC,
CNN, and “hidden states w/o FT”. This suggests that consider
of linguistic features allows more accurate estimation of ut-
terance end-times compared to using only acoustic features.
Furthermore, among the features from wav2vec 2.0 with FT
for ASR, “hidden states” and “logits” achieved the highest
prediction accuracy, but the “symbol sequence” achieved the
lowest accuracy in this experiment. This indicates that using
hidden representations obtained before the final ASR output
is more effective than using the uniquely determined ASR
results.

B. Confusion matrix of classification results

A confusion matrix of the classification results when using
“hidden states”, which achieved the highest classification
accuracy in this experiment, is shown in Table II. The diagonal
classification totals shown in bold type represent correct time-
to-end-of-utterance classifications, and the farther the other
totals are from this diagonal, the greater the error. We can
see in Table II that the classification totals closer to the
diagonal are larger, indicating that approximate estimation is
possible. When allowing for one-class error, the accuracy rate
becomes 73%. This suggests that even if the predicted class
was incorrect, it was highly likely that the prediction fell into a
class close to the correct value. Furthermore, when comparing
the prediction results for the 0.0–0.2 seconds class with those

Fig. 4: Estimation results every remaining time to the end of
an utterance, where results of ten utterances are averaged.

Boxes indicate variance.

for the 0.8–1.0 seconds class, note that the classification totals
in the classes that are one class off of the correct 0.0–0.2
seconds results are less than half of the correct totals, whereas
in the 0.8–1.0 seconds class, they are three-quarters of the
correct totals. This indicates that as the distance from the end
of the utterance increases, predicting its end time becomes
more difficult.

When we listened to the voice segments that were classified
into the classes farthest from the correct 0.0–0.2 seconds
class, the voice segments had elongated endings or semantic
content that made it reasonable to predict the utterance would
continue. Additionally, the voice segments farthest from the
correct 0.8–1.0 seconds class would not be unnatural if they
ended here. As an utterance gets closer to ending and the
next utterance begins to be heard, the likelihood of significant
errors decreases. This demonstrates the difficulty of predicting
the end of an utterance in spontaneous utterance.



C. Results of utterance end time prediction using this model

The average prediction results when running this model
at 0.1 seconds intervals within 1 second of the end of the
utterance, using 10 utterances from the test data, are shown in
Fig. 4. In this case, the prediction results take the median value
of each class, e.g., 0.1 seconds for the 0.0–0.2 seconds class,
0.3 seconds for the 0.2–0.4 seconds class, etc. The line graph
shows that the estimated time-to-end decreases as the utterance
approaches its end, and that as remaining time decreases, the
variance also decreases, suggesting that estimation tends to
stabilize. Therefore, it can be concluded that utterance end-
time estimation using this model follows a valid prediction
trend.

VII. CONCLUSION

In this study, we proposed a method for estimating the
ending time of an input utterance in order to achieve more
human-like interactions in spoken dialog systems. To estimate
the ending times of utterances, we constructed a model that
outputs the time until the end of the utterance into a five-
class classification, based on a fixed duration voice segment.
For the input to the model, we tested three types of feature
extractors: MFCC, CNN, and wav2vec 2.0. Our experimental
results showed that a wav2vec 2.0 fine tuned for ASR which
considered the linguistic features achieved more accurate end-
time estimation than methods using only acoustic features. In
the future, we plan to conduct further experiments, varying the
length of the input voice segments and combining multiple
features. Additionally, as the predictions in this study were
limited to a range of 0 to 1 seconds, we plan to extend the
prediction range both forward and backward. Ultimately, we
aim to integrate the method into an actual system and evaluate
how naturally it can respond to real conversation.
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