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Abstract
Precision in controlling and ensuring efficient operation relies heavily on the precise identification

of the friction force generated within a hydraulic actuator. Nonetheless, accurately predicting this force
poses challenges due to the nonlinearities inherent in modeling friction forces and the complexities asso-
ciated with estimating diverse physical properties. Data-driven modeling and simulation methods driven
by machine learning techniques are increasingly employed to surpass the constraints of traditional ap-
proaches in the field of multibody dynamics [1]. In this study, a data-driven methodology using a deep
neural networks (DNN) to predict nonlinear friction force is introduced [2]. The capability of the trained
friction neural network model to replace the mathematical model in the numerical simulations was also
verified.

To model hydraulic actuators, various techniques can be applied. Among them, the lumped fluid
theory [3] is widely used due to its efficiency and accuracy. If the volume comprising the hydraulic
cylinder is divided into two regions based on the position of the piston, the cross-sectional areas and
pressures of each volume can be denoted as p1, p2, A1, and A2. The actuator force Fa can be expressed
as follows:

Fa = p1A1 − p2A2 −Fµ . (1)

The LuGre friction model [4] is a popular choice to describe the friction force Fµ in a hydraulic actuator.
Using the bristle deformation z on the contact surfaces, the bristle deformation rate ż, and the tangential
velocity v, the LuGre friction force can be calculated as

Fµ = σ0z+σ1ż+σ2v, ż = v− σ0|v|
g(v)

z, g(v) = Fc +(Fs −Fc)e(|v|/vs)
n
, (2)

where σ0, σ1, σ2, vs, n, Fc, and Fs are the stiffness of the bristles, the damping coefficient of the bristles,
the coefficient of viscous friction, the Stribeck velocity, the exponent of the Stribeck curve, the Coulomb
and static frictions, respectively.

To predict the friction force, a variety of measurable responses can be used in hydraulic actuators,
including pressures p, actuator length s, and velocity ṡ and acceleration s̈ at the actuator end-point. The
nonlinearity and historical dependence of the friction force was reproduced by using the structure of a
neural network containing historical information of the responses as shown in Figure 1. The selected
responses are used as input variables R for the neural network along with the responses from the K-
th previous time step from the current time instance. We employed a numerical single-axis hydraulic
actuator model manipulating an object with 200 kg mass to gather training data for 30 random spool
signal scenario.

The trained neural network for the LuGre friction force was tested in a four-bar mechanism example
[5] shown in Figure 1. The lengths of the bodies L1, L2, and L3 are 9 m,

√
2 m, and 2 m, respectively,

with corresponding masses of 225 kg, 35 kg, and 50 kg. The hydraulic actuator operated by applying the
reference spool signal Uref based on the conditions specified in Equation (1).

Uref =


0 t < 1s, 2s ≤ t < 3.5s, t ≥ 4s
10 1s ≤ t < 2s
−10 3.5s ≤ t < 4s

 . (3)



Figure 1: Four-bar mechanism with neural network friction model.

Among the combinations of responses, the four cases of input variables that achieved acceptable pre-
diction performance in the uniaxial hydraulic actuator model was used to replace the LuGre model, and
the results are shown in Figure 2. Due to the nature of the LuGre model, which is dominated by the
tangential velocity v and expressed as a function of it, good prediction performance was found in the
cases where the input to the neural network are R = [ṡ] and R = [s, ṡ, s̈]. The limitations of the surrogate
model trained by the responses of the uniaxial hydraulic actuator with no changes in mass and moment of
inertia caused relatively poor prediction performance in the four-bar mechanism example for two cases
where pressures were used as an input variable.

Figure 2: Friction force prediction in the four-bar mechanism system.

In this work, we introduced a data-driven method for predicting the friction force produced by hy-
draulic actuators during operation. By employing a DNN model trained with LuGre friction force data
obtained from a uniaxial hydraulic actuator, the DNN can estimate the current friction force from the
responses of the hydraulic actuator. In the numerical simulation of the four-bar mechanism, the well-
trained neural network demonstrated its ability to replace the mathematical friction model.
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