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Guangcan Yang • Hegen Xiong 

Abstract This paper presents a more realistic flexible job shop scheduling problem, the flexible 

job shop scheduling problem with regular machine halt time (RMHT-FJSP). Different from 

machine breakdowns and maintenances, the regular machine halt time is deterministic, regular 

and frequent. The objective is to minimize the number of tardiness jobs (JTN), total tardiness 

time (TTT) and average machine idle time (AMIT). The objective of minimizing AMIT is to 

ensure operations on a machine close to each other, and it is only used as a non-important 

selection criterion in this paper. To enhance the optimization ability of genetic algorithm, serval 

kinds of crossover operators and mutation operators are adopted simultaneously, and the buffer 

population to integrate old population and new individuals generated by these operators during 

evolution process is proposed, we called this algorithm as parallel search genetic algorithm 

(PSGA).  Further, a fitness function designed by pre-experiment is studied. A computational 

experiment is made. Comparisons between FJSP and RMHT-FJSP are also represented.  

1 Introduction 

The flexible job shop scheduling problem (FJSP), which is a kind of manufacturing system 

scheduling problem that is more practical than the job shop scheduling problem (JSP), has been 

widely studied [1-3]. Majority of related papers have been researched with machines can work 

continuously [4-6], and some have considered it with machine breakdowns and maintenances 

[7-10]. However, in the actual manufacturing system, due to rest time is required in daily 

production, sometimes even if the machines are available, the machines should stop operation 

during the rest time period. Unlike machine breakdowns and maintenances-related downtime 

[11-13], the working time with considering regular machine halt time is deterministic, regular 

and frequent. With this background, this paper presents the flexible job shop scheduling problem 

with regular machine halt time (RMHT-FJSP). In this paper, we describe the RMHT-FJSP. By 



a parallel search genetic algorithm (PSGA), experiments have been made, and the result shows 

that the problem can be effectively solved.  

The remaining sections of this paper is organized as followings: In section 2, related 

researches are represented. Section 3 describes the RMHT-FJSP. Section 4 introduces the 

parallel search genetic algorithm. In section 5, experiments are made to verify the PSGA for 

RMHT-FJSP, and we adopt dynamic due date setting method. With the experiment results, 

discussion and conclusion are made in section 6.  

2 Literature review 

For JSP or FJSP in practical, some related works has been researched with considering various 

uncertain factors, such as machine breakdowns, rush orders [14], hot orders [15], preventive 

maintenances [16-18], delay arrival of a pre-arranged orders, cancellations of already handled 

jobs and changes in lot size [19], flexible workdays [20], etc. Machine breakdowns has been 

researched in [5], [21-31], etc. In these researches, machine breakdowns are unpredictable, 

stochastic. And during this period, the machines are unavailability. And some of them have 

mentioned reschedule when machine breakdowns occur. The proposed RMHT-FJSP in this 

paper is different from thses works. For RMHT-FJSP, the machines are available all the time, 

and there is also no reschedule. The machine halt time is deterministic, regular and frequent, 

which occurs due to the required rest time for workers in a day, a week, or a month.  

The JSP, FJSP are NP hard problems, and in practice, often the close to optimization solutions 

is enough. Hence, for this kind of problem, heuristic algorithms [32-33], intelligent algorithms, 

and scheduling rules [34-35] are widely researched. Intelligent algorithms is a kind of effective 

method, they are often evolutionary algorithms, such as variable neighborhood search [36], 

NSGA-II and NRGA [37], particle swarm optimization [38-39], differential evolution [40-41], 

flower pollination algorithm [42-43], and genetic algorithm [21], [44-47]. The FJSP has two 

subproblems [42], [48], machine assignment problem and operation sequence problem. For the 

two subproblems separately, most genetic algorithms only have one crossover operator, one 

mutation operator, and a fixed scale population. In this paper, a parallel search genetic algorithm 

is proposed. Several crossover operators and mutation operators are integrated in the evolution 

process, and the children generated by these operators are inserted into the buffer population. 

The new population is selected from the buffer population. Obviously, the PSGA enriches the 

diversity of reproducing new individuals, and by alternately zooming in and out of the search 

space with certain a rule, it may have stronger optimization search ability.  

3 Problem formulation 

The FJSP can be divided into total FJSP and partial FJSP [42]. The objectives including 

minimize the maximal completion time, total cost, total tardiness, etc. [47], [49-50]. In This 

paper, the partial FJSP with regular machine halt time is studied.  

Some assumptions for the RMHT-FJSP are listed: 

1) All machines halt at the same time points and have the same halt time; 

2) A machine can only process one operation at a time; 

3) All jobs are released at time zero and independent from each other; 

4) Setting up time and transportation time between operations are ignored; 

5) Machines are available during production process; 

6) A machine should stop once it finishes all operations on it; 



7) A job is delivered once it is finished; 

8) Every job has the same operation numbers; 

9) Each job has a due date; 

10) An operation must be processed consciously on a machine; 

11) The processing time on a machine of a job are the same. 

The FJSP is generally defined as follows. There are 𝑛 jobs 𝐽 = {𝐽1, 𝐽2, … , 𝐽𝑛}, 𝑚 machines 

𝑀 = {𝑀1, 𝑀2, … , 𝑀𝑚}. Ecah job 𝐽𝑖  has a set of operations 𝑂𝑖 = {𝑂𝑖1, 𝑂𝑖2, … , 𝑂𝑖𝑗} that ordered 

by a fixed sequence. 𝑂𝑖𝑗𝑘 represents 𝑂𝑖𝑗  is processed on 𝑀𝑘. The processing time of operation 

𝑂𝑖𝑗  on machine 𝑀𝑘 is represented as 𝑃𝑖𝑗𝑘 . Let 𝑆𝑖𝑗𝑘 , 𝐹𝑖𝑗𝑘 be the start time and finish time of 𝑂𝑖𝑗 

on 𝑀𝑘 separately, and 𝐶𝑖 = 𝑀𝑎𝑥(𝐹𝑖𝑗𝑘), 𝐷𝑖 be the completion time and due date of 𝐽𝑖 separately. 

In the RMHT-FJSP, two sets with the same size 𝐻 = {𝐻1, 𝐻2, … , 𝐻𝑝}, 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑝} are 

represented as the machine halt time points and the corresponding halt time.  

As machine halt exists, i.e., the rest time which is pre-determined but also changeable exists. 

During the machine halt period (MHP), even if the machine is available, it should stop operations. 

An operation is also not allowed to start or be processed during MHP. And if an operation can 

be processed on a machine discontinuously, i.e., the operation time is separable, as the new 

completion time equals the old completion time plus the machine halt time, then the RMHT-

FJSP can be easily handled with already researches.   

But if an operation must be processed on a machine continuously, i.e., if an operation could 

start but can’t complete before machine halt time point, then the start time should be changed 

till the operation can complete continuously and it should also satisfy the fixed operation 

sequence constrain. And this kind of problem has not been researched. Hence, this paper 

considers the case that operations must be processed on a machine continuously. And the 𝑆𝑖𝑗𝑘 

may be redefined by (1).  

𝑆𝑖𝑗𝑘
′ = 𝐻𝑡 + 𝑇𝑡 , 𝑖𝑓 𝐻𝑡 ≤ 𝑆𝑖𝑗𝑘 < 𝐻𝑡 + 𝑇𝑡  𝑜𝑟 𝐻𝑡 < 𝐹𝑖𝑗𝑘 ≤ 𝐻𝑡 + 𝑇𝑡 , 𝑡 = 1, 2, … , 𝑝. (1) 

The number of tardiness jobs (JTN) is calculated by (2).  

𝐽𝑇𝑁 = ∑ {
1, 𝑖𝑓  𝐶𝑖 > 𝐷𝑖

0, 𝑖𝑓 𝐶𝑖 ≤  𝐷𝑖

𝑛
1 , 𝑖 = 1, 2, … , 𝑛. 

(2) 

The total tardiness time (TTT) is defined by (3).  

𝑇𝑇𝑇 = ∑ 𝑀𝑎𝑥{𝐶𝑖 − 𝐷𝑖 , 0}, 𝑖 = 1, 2, … , 𝑛.
𝑛

1
 

(3) 

The average machine idle time (AMIT) is represented by (4).  

𝐴𝑀𝐼𝑇 =
𝑀𝑎𝑥(𝐹𝑖𝑗𝑘)−∑ ∑ 𝑃𝑖𝑗𝑘

𝑗
1

𝑖
1

𝑚
, 𝑘 = 1, 2, … , 𝑚. 

(4) 

The objective is formulated by (5), where ∑ 𝜇𝑞 = 1, 𝑞 = 1, 2, 33
1 .  

𝑀𝑖𝑛 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝜇1 ∙ 𝐽𝑇𝑁 + 𝜇2 ∙ 𝑇𝑇𝑇 + 𝜇3 ∙ 𝐴𝑀𝐼𝑇 (5) 

4 The parallel search genetic algorithm 

The genetic algorithm has global search ability, and is widely researched for specific problem 

types. Usually it starts with a random set of solutions called population, and each individual 

called chromosome represents a feasible solution. In this study, chromosome coding methods 

for machine assignment problem (MAP) and operation sequence problem (OSP) are presented, 

crossover operators and mutation operations are introduced. The proposed buffer population is 

to integrate offspring produced by these evolution operators. Taking an example with 3 jobs, 3 

operations, and 5 machines to introduce the chromosome and evolution operators. The fixed 

operation sequences of each job are  OS𝐽1 = {2, 1, 3}, 𝑂𝑆𝐽2 = {1, 3, 2}, 𝑂𝑆𝐽3 = {3, 1, 2}. The 



machine sets for each operation are 𝑀𝑆𝑂1 = {1, 5}, 𝑀𝑆𝑂2 = {2, 3}, 𝑀𝑆𝑂3 = {4, 5} . For 

example, the 1𝑠𝑡 number in OS𝐽1 is 2, it means that 𝑂1,1 can be process on machine sets 𝑀𝑆𝑂2, 

i.e., machine 2 and machine 3.  

4.1 Chromosome representation 

Since there are two subproblems in FJSP, two chromosomes are presented. A 𝑛 × 𝑛𝑖  matrix 

called MAC for machine assignment problem is shown in Figure 1, where 𝑛𝑖 is the operation 

numbers of 𝐽𝑖. For example, row 1 and column 1 is 3, which means 𝑀3 is assigned to process 

𝑂1,1 (the 1st operation in 𝑂𝑆𝐽1), and the meaning can be represented by 𝑂1,1,3.  

MAC = [
3 5 5
1
4

4
5

2
2

] 

Figure 1 The chromosome structure for machine assignment problem 

An operation-based chromosome in [51] for operation sequence problem is also feasible for 

RMHT-FJSP. The chromosome called OSC has 𝑛 × 𝑛𝑖 genes, each gene contains information 

like job number, operation number, start processing time, etc. For example, a chromosome and 

the explanation for 3 jobs and 3 operations FJSP problem are shown in Figure 2.  

OSC 1 3 2 1 3 1 2 2 3 

Explanation 𝑂1,1 𝑂3,1 𝑂2,1 𝑂1,2 𝑂3,2 𝑂1,3 𝑂2,2 𝑂2,3 𝑂3,3 

Figure 2 The chromosome for operation sequence problem 

4.2 Fitness function 

The objective in this paper is to minimize the 𝐽𝑇𝑁, 𝑇𝑇𝑇 and 𝐴𝑀𝐼𝑇. When the 𝐽𝑇𝑁 = 0, then 

the 𝑇𝑇𝑇 = 0, too. And in practice production scheduling, usually the 𝐴𝑀𝐼𝑇 > 0 and far larger 

than 𝐽𝑇𝑁. So, the objective function needs to be modified to get better performance during 

evolution process. Hence, a fitness function designed by (6) is adopted, where 𝑂𝐵𝐽1 =
𝐽𝑇𝑁, 𝑂𝐵𝐽2 = 𝑇𝑇𝑇, 𝑂𝐵𝐽3 = 𝐴𝑀𝐼𝑇. With 𝜇3 < 0.1 and 𝐴𝑀𝐼𝑇 < 110, it can be inferred that the 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 > 0.9 when 𝐽𝑇𝑁 = 0. In this paper, three kinds of fitness functions parameters are 

considered, FP = {(0.68, 0.22, 0.10), (0.71, 0.21, 0.08), (0.74, 0.20 0.06)}. And with Objectives 

= {(0, 0, 110), (1, 10, 140), (2, 30, 170), (3, 50, 200), (4, 70, 230), (5, 100, 260)} , the fitness 

value for each FP are illustrated in Figure 3. It shows that the designed fitness function can 

performance well.   

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

1 + ∑ 𝜇𝑞
3
𝑞=1 ∙ 𝑙𝑜𝑔10(1 + 𝜇𝑞 ∙ 𝑂𝐵𝐽𝑞)

, 𝑞 = 1,2,3. (6) 

 
Figure 3 Pre-experiment of the fitness function parameters  



4.3 Selection strategies 

   For different population types named initial population (new population) and buffer population, 

two selection strategies are considered. A roulette selection strategy [52] is adopted for initial 

population or new population, which the individuals selected are for crossover operations or 

mutation operations. For buffer population, a strategy that select the best ones or randomly select 

the worst ones by keeping the best one with a fixed size as the new population is proposed.  

4.4 Crossover operators 

There are two crossover operators for MAC, matched and random points exchange (MRPE), 

matched and rearrange (MR). And three operators for OSC, POX [51], parts exchange I (PEX1), 

parts exchange II (PEX2).  

Given MAC1 and MAC2, crossover applied MRPE generates new MAC1 and new MAC2, 

by following procedures: 

1) Randomly choose an operation, i.e., the same number in 𝑂𝑆𝐽𝑖 , 𝑖 = 1,2, … , 𝑛; 

2) With 𝑂𝑖𝑗𝑘 , where the 𝑗𝑡ℎ number in 𝑂𝑆𝐽𝑖 is the column index in MAC, find the positions 

of machines in MAC1 and MAC2; 

3) Exchange some elements found by procedure 2 between MAC1 and MAC2. 

Different from MPRE, MR only needs one MAC, and just rearrange the elements found in 

procedure 2 of MRPE. Separately an example of MRPE and MR is illustrated in Figure 4 and 

Figure 5.  

3 5 5

1 4 2

4 5 2

MAC1

2 1 4

5 5 3

4 1 2

MAC2

3 5 5

5 4 3

4 1 2

New MAC1

2 1 4

1 5 2

4 5 2

New MAC2

MRPE

OSJ1,2

= OSJ2,1

= OSJ3,2  
= 1

 

3 5 5

1 4 2

4 5 2

MAC

3 5 4

1 5 2

4 5 2

New MAC MR

OSJ1,3

= OSJ2,2

= OSJ3,1  
= 3

 
Figure 4 An example of MRPE Figure 5 An example of MR 

An example of POX is shown in Figure 6.  

1 2 3 2 1 3 3 2 1 2 3 1 2 1 1 2 3 3

OSC1 OSC2

1 2 3 2 1 2 3 3 1 2 3 1 2 1 1 3 3 2

New OSC1 New OSC2

2 3 2 2 3

POX

 
Figure 6 An example of POX 

PEX1 and PEX2 has little differences. The PEX1 chooses four different points randomly in 

OSC, and exchange the genes between point 1 to point 2 and point 3 to point 4.  The PEX2 only 

choose two different points randomly in OSC, and preserves the genes from point 1 to point 2, 

then exchange the genes of the other two parts. Also, an example of PEX1 and PEX2 is 

separately represented in Figure 7 and Figure 8.  



1 2 3 2 1 3 3 2 1

OSC

1 2 1 3 2 3 2 1 3

1 2 3 4

PEX1New OSC

 

1 2 3 2 1 3 3 2 1

OSC

1 2

2 1 3 2 1 3 3 1 2

PEX2
New OSC

 
Figure 7 An example of PEX1 Figure 8 An example of PEX2 

4.5 Mutation operators  

A mutation operator for MAC, named random points replace (RPR) is similar to MRPE and 

MR. The first two procedures are the same. In procedure 3, the RPR replaces some elements 

found by procedure 2 from 𝑀𝑆𝑂𝑗. Figure 9 is an example of RPR.  

3 5 5

1 4 2

4 5 2

3 1 5

5 4 2

4 5 2

RPR

MAC New MACOSJ1,2

= OSJ2,1

= OSJ3,2  
= 1

MSO1

= { 1, 5}

 
Figure 9 An example of RPR 

Also, two mutation operators similar to [21], named parts reverse (PR) and discrete points 

reverse (DPR) are introduced. Like PEX2, PR chooses two different points randomly in OSC. 

Let the genes between the two points named part 1 and the other genes named part 2.  If the 

genes in part 1 are no less than the genes in part 2, then reverse the genes in part 1, otherwise 

reverse the genes in part 2. And different from PR, DPR compares the number of selected genes 

and left genes. An example of PR and DPR is represented separately in Figure 10 and Figure 11.   

1 2 3 2 1 3 3 2 1

OSC
1 2

1 2 3 2 1 2 3 3 1

New OSC PR

 

1 2 3 2 1 3 3 2 1

OSC
1 2

1 1 3 2 1 3 3 2 2

New OSC DPR

3 4 5

 
Figure 10 An example of PR Figure 11 An example of DPR 

Terminate condition for designed algorithm is that the 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 > 0.9 and all the objectives 

have no changes in recent 3 iterations. The flow of PSGA is shown in Figure 12.  



Initial population, named A, calculate 

fitness of A

Selection strategy 1

Copy A as C

Roulette selection, gained  B

Crossover operator 1, gained NC

Crossover operator 2，gained NB1

Mutation operator，gained NB2
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No
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End

Yes

No
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No

Yes

 
Figure 12 The flow of PSGA 

5 Computational experiment 

To verify the parallel search genetic algorithm, this part has made a computational experiment 

with 10 jobs, each job has 6 procedures, and 8 machines. Table 1 is the operation sequences. 

Table 2 is the processing time. The machine sets are 𝑀𝑆𝑂1 = {1}, 𝑀𝑆𝑂2 = {2, 7}, 𝑀𝑆𝑂3 =

{3, 8}, 𝑀𝑆𝑂4 = {4}, 𝑀𝑆𝑂5 = {5}, 𝑀𝑆𝑂6 = {6, 8}. In Table 1, e.g., row 2 column 1 is 2, it means 

that 𝑂2,1 can be processed on machine sets 𝑀𝑆𝑂2, i.e., machine 2 and machine 7. In Table 2, 

e.g., row 2 and column 1 is 3, it means that there needs 3 units time for 𝐽2 on 𝑀1.  

A due date setting method is introduced in [53], and this paper uses (7).  

𝐷𝑖 = 𝑐 × ∑ 𝑃𝑖𝑗𝑘
𝑛𝑖
𝑗=1 , 𝑘 = 1,2, … , 𝑚, where 𝑐 ∈ {2.5, 2.7, 2.8} (7) 

Specially, machine halt time points and halt time separately is 𝐻 = {30, 60, 90}, 𝑇 = {2, 2, 2}. 

For example, 𝐻1 = 30, 𝑇1 = 2 , it means that at time point 30, all machines should stop 

operations for 2 units time.  

Table 1 The operation sequences 

Job Operation sequence 

1 1 4 5 2 6 3 

2 2 3 6 1 4 5 

3 3 6 4 2 1 5 

4 6 4 3 5 1 2 

5 1 4 2 6 5 3 

6 6 4 1 5 2 3 

7 3 1 5 4 2 6 

8 6 5 4 2 1 3 

9 5 1 2 6 3 4 

10 1 5 2 6 3 4 
 

Table 2 The processing time 

Job/Machine 1 2 3 4 5 6 7 8 

1 5 11 11 4 4 10 3 7 

2 3 10 3 10 11 5 12 7 

3 9 11 3 9 11 8 10 3 

4 6 6 5 10 4 2 10 7 

5 12 10 11 11 10 2 6 10 

6 12 8 7 10 5 5 6 6 

7 3 10 7 8 2 10 10 8 

8 9 9 6 7 8 9 11 7 

9 3 4 6 12 5 9 7 5 

10 5 10 12 8 5 4 5 8 
 



Experiments with basic GA, PSGA are made. The parameters for algorithm are in Table 3. 

And this paper creates special initial population, the 𝐽𝑇𝑁 is between 20% - 80% of the total jobs. 

Programed with Python 3.7, and running 30 times on windows 10 with 1.5GHz and 4GB RAM, 

for per designed experiment, Table 4 and Table 5 show the results, where 𝑅𝑢𝑛𝑡𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the 

average runtime (seconds), Opt% is the percentage for 𝐽𝑇𝑁 = 0, bValue means best, wValue 

means worst.   

Table 3 Parameters for algorithm 

Algorithm/Parameters 
Population 

scale 

Maximal 

generation 

Crossover 

rate 1 

Crossover 

rate 2 

Mutation 

rate 

GA 80 50 0.8 - 0.15 

PSGA 40 50 0.8 0.75 0.15 

Experiments with basic GA, roulette selection, MRPE, POX, RPR and PR are adopted. The 

population scale is 80, the maximal generation is 50, crossover rate is 0.8, mutation rate is 0.15. 

The results are shown in Table 4.   

Table 4 Experiment results (GA)  

Experiment FP 𝑐 𝐽𝑇𝑁̅̅ ̅̅ ̅ 𝑇𝑇𝑇̅̅ ̅̅ ̅̅  𝐴𝑀𝐼𝑇̅̅ ̅̅ ̅̅ ̅̅  𝐹𝑖𝑡𝑛𝑒𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑅𝑢𝑛𝑡𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  Opt% 

1 1 2.5 

0.33 
b0 
w1 

0.90 
b0 
w5 

40.50 
b33.88 
w51.38 

0.8866 5610.35 66.67% 

2 2 2.5 

0.30 
b0 
w1 

0.80 
b0 
w6 

39.99 
b33.12 
w44.62 

0.9061 5611.13 70.00% 

3 3 2.5 

0.47 
b0 
w1 

2.20 
b0 

w10 

41.00 
b31.12 
w49.75 

0.8870 5608.97 53.33% 

4 1 2.7 0 0 

35.37 
b25.25 
w42.75 

0.9385 5612.30 100.00% 

5 2 2.7 0 0 

36.03 
b31.12 
w45.12 

0.9551 5604.64 100.00% 

6 3 2.7 0 0 

35.09 
b29.38 
w41.88 

0.9714 5622.56 100.00% 

7 1 2.8 0 0 

34.61 
b31.62 
w39.75 

0.9391 5612.72 100.00% 

8 2 2.8 0 0 

34.65 
b29.12 
w39.38 

0..9560 5611.92 100.00% 

9 3 2.8 0 0 

34.46 
b25.62 
w41.12 

0.9717 5614.79 100.00% 

Experiments with PSGA, the population scale is 40, the maximal generation is 50, crossover 

rate for MRPE, POX is 0.8, crossover rate for MR, PEX1 and PEX2 is 0.75, and mutation rate 

is 0.15. The results are shown in Table 5.  

 



Table 5 Experiment results (PSGA)  

Experiment FP 𝑐 𝐽𝑇𝑁̅̅ ̅̅ ̅ 𝑇𝑇𝑇̅̅ ̅̅ ̅̅  𝐴𝑀𝐼𝑇̅̅ ̅̅ ̅̅ ̅̅  𝐹𝑖𝑡𝑛𝑒𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑅𝑢𝑛𝑡𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  Opt% 

1 1 2.5 

0.10 
b0 
w1 

0.30 
b0 
w5 

41.42 
b37.12 
w50.50 

0.9191 5965.80 90.00% 

2 2 2.5 

0.07 
b0 
w1 

0.20 
b0 
w3 

41.84 
b34.25 
w54.88 

0.9411 5755.23 93.33% 

3 3 2.5 

0.27 
b0 
w1 

0.50 
b0 
w3 

42.15 
b31.25 
w51.50 

0.9254 6001.78 73.33% 

4 1 2.7 0 0 

43.02 
b36.62 
w51.00 

0.9326 2625.16 100.00% 

5 2 2.7 0 0 

44.51 
b31.50 
w55.88 

0.9501 2747.22 100.00% 

6 3 2.7 0 0 

45.43 
b36.50 
w57.88 

0.9670 2541.22 100.00% 

7 1 2.8 0 0 

47.35 
b37.88 
w57.88 

0.9297 1472.14 100.00% 

8 2 2.8 0 0 

46.46 
b36.75 
w54.62 

0.9490 2007.22 100.00% 

9 3 2.8 0 0 

42.89 
b37.38 
w51.62 

0.9679 1994.42 100.00% 

The experiments results show that both GA and PSGA can find the approximate optimization 

solutions. When 𝑐 = 2.5, PSGA is more stable than GA. And when 𝑐 = 2.7 𝑜𝑟 2.8, PSGA costs 

less time than GA. During evolution, the fitness function may not work well sometime, e.g., FP1 

= (0.68, 0.22, 0.06), when objectives are (3, 69, 54.75) and (4, 19, 56.5), where (3, 69, 54.75) is 

better, but the fitness value is smaller. But it also can find a better one. So, in practice, the larger 

𝜇1 and smaller 𝜇3 may get better performance.  

Take a solution by PSGA when 𝑐 = 2.5 and 𝐽𝑇𝑁 = 1, 𝑇𝑇𝑇 = 2, 𝐴𝑀𝐼𝑇 = 41.75, the Gannt 

Chart for RMHT-FJSP with 𝐻 = {30, 60, 90}, 𝑇 = {2, 2, 2}  is shown in Figure 13, the Gannt 

Chart for FJSP, i.e., with 𝐻 = {30, 60, 90}, 𝑇 = {0, 0, 0}  is shown in Figure 14. In Figure 13,  

𝐽9 is tardiness, but in Figure 14, 𝐶9(91) < 𝐷9 (102).  



 
Figure 13 The Gannt Chart for RMHT-FJSP 

 
Figure 14 The Gannt Chart for FJSP 

    And take a solution by PSGA when 𝑐 = 2.5  and 𝐽𝑇𝑁 = 0, 𝑇𝑇𝑇 = 0, 𝐴𝑀𝐼𝑇 = 37.12 , the 

Gannt Chart for RMHT-FJSP with 𝐻 = {30, 60, 90}, 𝑇 = {2, 2, 2}  is shown in Figure 15, the 

Gannt Chart for FJSP, i.e., with 𝐻 = {30, 60, 90}, 𝑇 = {0, 0, 0}  is shown in Figure 16. Both in 

Figure 15 and Figure 16, all jobs complete before their due date. And separately the objective 

value trace curve, fitness value trace curve is illustrated in Figure 17 and Figure 18, it shows that 

the PSGA has strong optimization ability.  



 
Figure 15 The Gannt Chart for RMHT-FJSP 

 
Figure 16 The Gannt Chart for FJSP 



 
Figure 17 Fitness value 

 
Figure 18 Objective value 

In Figure 17, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝐵 is the best fitness value till current generation, and 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝑀 is the 

mean fitness value of current generation. It shows that not only the 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝐵 gets better and better, 

but also the 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝑀 gets better and better. In figure 18, 𝐽𝑇𝑁, 𝑇𝑇𝑇, 𝐴𝑀𝐼𝑇 changings are shown. 

When 𝐽𝑇𝑁 𝑜𝑟 𝑇𝑇𝑇 gets better, the 𝐴𝑀𝐼𝑇 may get worse than before, but in the end, all objectives can 

convergent to a better value.  

 



6 Discussion and conclusion 

In this paper, the flexible job shop scheduling problem with regular machine halt time has 

been researched. The objective is to minimize the 𝐽𝑇𝑁, 𝑇𝑇𝑇 and  𝐴𝑀𝐼𝑇. The PSGA, with buffer 

population that integrates serval kinds of crossover operators and mutation operators is 

introduced. A computational experiment has been made. The experiments results show that the 

RMHT-FJSP can be effectively solved in polynomials time by PSGA. Comparison between GA 

and PSGA shows PSGA is more stable and has stronger optimization ability. Further, by 

comparing the Gannt Chart in Figure 13 and Figure 14 or in Figure 15 and Figure 16, it can be 

seen that the RMHT-FJSP may be more reasonable in practice production.  
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