
EasyChair Preprint
№ 3232

Dynamic Pricing and Placement for Distributed
Machine Learning Jobs

Xueying Zhang, Ruiting Zhou, John C.S. Lui and Zongpeng Li

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 22, 2020

Dynamic Pricing and Placement for Distributed

Machine Learning Jobs

1
st

Xueying Zhang

School of Cyber Science and Engineering
Wuhan University

snowyzhang@whu.edu.cn

2
nd

Ruiting Zhou

Wuhan University
�e Chinese University of Hong Kong

ruitingzhou@whu.edu.cn

3
rd

John C.S. Lui

Department of Computer Science and Engineering
�e Chinese University of Hong Kong

cslui@cse.cuhk.edu.hk

4
th

Zongpeng Li

School of Computer Science
Wuhan University

zongpeng@whu.edu.cn

Abstract—Nowadays distributed machine learning (ML)
jobs usually adopt a parameter server (PS) framework to train
models over large-scale datasets. Such ML job deploys hun-
dreds of concurrent workers, and model parameter updates
are exchanged frequently between workers and PSs. Current
practice is that workers and PSs may be placed on di�erent
physical servers, bringing uncertainty in jobs’ runtime. Also,
existing cloud pricing policy o�en charges a �xed price
according to the job’s runtime. Although this pricing strategy
is simple to implement, such pricing mechanism is not
suitable for distributed ML jobs whose runtime is stochastic
and can only be estimated according to its placement a�er job
admission. To supplement existing cloud pricing schemes, we
design a dynamic pricing and placement algorithm, DPS, for
distributed ML jobs. DPS aims to maximize cloud provider’s
pro�t, which dynamically calculates unit resource price upon
a job’s arrival, and determines job’s placement to minimize
its runtime if o�ered price is accepted to users. Our design
exploits the multi-armed bandit (MAB) technique to learn
unknown information based on past sales. DPS balances
the exploration and exploitation stage, and selects the best
price based on the reward which is related to job runtime.
Our learning-based algorithm increases the provider’s pro�t,
and achieves a sub-linear regret with both the time horizon
and the total job number, compared to benchmark pricing
schemes. Extensive evaluations also validates the e�cacy of
DPS.

I. introduction

Nowadays, machine learning (ML) has become an indis-

pensable framework which trains models over large-scale

datasets. To train a large model, hundreds of concurrent

workers (typically implemented on virtual machines (VMs)

or containers) are deployed in parallel to update shared

model parameters, in particular, using the popular parameter
server (PS) architecture [1][2]. In the PS framework, one or

multiple PSs store and maintain global model parameters.

In each training iteration, the PSs pull computed gradients

1. Corresponding author: Ruiting Zhou.

2. �is work was supported by the Fundamental Research Funds for the

Central Universities (2042019kf0016) and the GRF 14201819. Part of this work

by Ruiting Zhou was done while she was visiting CUHK.

from workers and update their maintained parameters re-

spectively; and then PSs push updated parameters back to the

workers. Workers and PSs of a ML job can be distributed on

di�erent physical servers, when they cannot be completely

placed on the same server, or to maximize the utilization of

expensive cloud resources on servers [3].

Di�erent from general cloud computing jobs, distributed

ML jobs have their distinct features. First, due to the frequent

exchange of parameter updates between workers and PSs, the

parameter transmission time accounts for a large proportion

of job runtime, and if workers and PSs are deployed on

di�erent servers, then it will consume signi�cant amount

of inter-server bandwidth [4]. Furthermore, it is typically

di�cult for the job owner to estimate how long a job

may take, before the placement of the job is determined.

Second, running ML jobs that are o�en deployed on GPU

servers is time-consuming and costly. For example, training

a GoogLeNet model over the ImageNet-1k dataset takes 23.4

hours on a Titan supercomputer server with 32 NVIDIA

K20 GPUs [5], and would cost more than $172 by renting

p2.8xlarge instances from Amazon EC2 [6]. For such jobs,

preemption is not acceptable since it may further delay their

job completion time. It is also common that job owners prefer

to know the price before job admission, such that the cost is

within their budget.

In today’s cloud market, service providers o�en adopt the

pay-as-you-go pricing policy, where users pay a �xed unit

price for resource demand according to the job runtime.

Amazon EC2 [6], Google Cloud [7] and Microso� Azure

[8] all adopt the per-hour charging model for on-demand

or preemptible VM instances (e.g., spot instances). Another

preferred pricing option is an advanced purchase of VMs for

one to three years in a speci�ed region. For example, Amazon

EC2 provides signi�cant discount (up to 75%) with savings

plans and reserved instances [6]. However, existing pricing

mechanism is not suitable for distributed ML jobs, due to

following reasons. First, di�erent users have di�erent budgets

with heterogeneous demands. Fixed pricing fails to a�ract

many customers and cannot capture the changing supply

and demand in the market. As a result, either overpricing

or underpricing would happen and this jeopardizes users’

experience as well as the provider’s pro�t. Although dynamic

pricing is o�ered by Amazon EC2 spot instances, they are

only recommended for jobs that can tolerate preemption.

Second, existing providers require job owners to estimate

job runtime, and pay in advance before the job admission.

�e job owners will be further charged if they underestimate

the runtime. However, as mentioned before, the runtime

of a distributed ML job is uncertain and depends on job

placement.

Hence, a fundamental problem for ML service providers is:

Given limited resources, how to dynamically charge and place
distributed ML jobs, such that the job runtime is minimized
and the provider’s pro�t is maximized, without knowing users’
budgets?

To supplement existing cloud pricing models, we propose

a novel dynamic pricing and placement mechanism, DPS, for

distributed ML jobs. To the best of our knowledge, this paper

is the �rst formal study that combines dynamic pricing and

placement design in a dynamic online se�ing for ML jobs.

As shown in Fig. 1, our online algorithm involves two stage

decisions: (i) A user arrives and informs the cloud service

provider of its job con�guration. It speci�es the type and

the number of workers and PSs needed, parameter size and

the number of required training epoch, but the user doesn’t

need to submit any information about the job’s runtime and

budget. �e cloud service provider posts unit resource prices

upon its arrival, and calculates the cost to complete its jobs.

�e user evaluates the price according to its budget. (ii) If the

user accepts the o�ered price, the cloud provider deploys this

job on its servers to minimize job runtime. Note that shorter

runtime has a positive impact on the provider’s pro�t, as

more resources can be released and then resold. We employ

a multi-armed bandit (MAB) framework to learn from past

sales, and select best unit price based on rewards, while the

reward is computed according to job runtime. �e detailed

technical contributions are as follows:

Timespan

 user 1 user 2 user N

1. submit job
configuration

2. inform user of charge

3. deploy job if user accepts price

cloud provider

server 1 server 2

server 3
user 1’s PS

user 1’s worker user 2’s worker

user 2’s PS

Fig. 1: An illustration of pricing and placement process.

First, We formulate the pro�t maximization problem as

a mixed integer linear program (MILP). �e program pre-

cisely models the feature of ML jobs (uncertain runtime),

and captures all factors that would in�uence the decisions

(resource capacity constraints and budget limitation). Even

in the o�ine se�ing with known information, this problem

is proven to be NP-hard. �e challenges further escalate

when both the budget and the job runtime is stochastic

and unknown. To overcome these challenges, we divided

our design into two steps: pricing strategy and placement

algorithm.

Second, the critical challenge in pricing design is that the

budget of each job is a private information and its runtime is

stochastic and hard to estimate before the job admission. To

tackle this issue, we design an online learning strategy based

on the MAB framework. Speci�cally, we �rst get the upper-

bound of pro�t related to unit resource prices as well as the

runtime of jobs. Job runtime is calculated according to the

experience and its placement, and its exact value is updated

when a job is completed. �e price interval is appropriately

discretized and we get a set of prices (arms) for selection.

Each price corresponds to a related reward contributing to

the total pro�t. �e unit price with the highest reward will

be used for the current job. �en its reward is adjusted

according to the feedback (i.e., whether the user accepts the

o�ered charge and job runtime). �erefore, the job that has a

high budget and its resources occupation (involving resources

demand and job runtime) matches its budget can be accepted,

which means the higher pro�t can be obtained.

�ird, in the placement design, to reduce the time for

parameter transmission among di�erent physical servers, we

deploy as few servers as possible to serve a job. Hence, we

place jobs on servers in a greedy manner so workers and PSs

of a job are placed as close as possible, which can reduce the

job runtime. Our online algorithm, DPS, takes both pricing

and placement into account and they work in concert with

each other.

Last but not the least, we conduct rigorous theoretical

analysis to examine our algorithm’s performance. DPS has a

polynomial time complexity. Moreover, we derive a sub-linear

upper-bound on the regret, which implies that our algorithm

has an asymptotically optimal performance. �e results show

that DPS outperforms other benchmark algorithms. �e over-

all pro�t achieved by DPS is 125%, 115%, 122% and 238% of

BFP’s, DPS-simple’s, TOP’s [9] and Random’s, respectively.

�is percentage increases over time, and the performance

of DPS in practice is be�er than the theoretical analysis.

�e rest of the paper is organized as follows. Sec. II reviews

related literature. �e system model is introduced in Sec. III.

�e learning-based algorithm is presented in Sec. IV and

evaluated in Sec. V. Sec. VI concludes the paper.

II. related work

Dynamic Pricing for Cloud Resources. Compared with

traditional cloud resource pricing methods, dynamic pricing

strategies which can enhance cloud provider pro�t have been

explored in recent years. Wang et al. [10] and Shi et al.
[11] study how to dynamically price VMs to pursue overall

pro�t or social welfare maximization in online auctions. An

auction-based online mechanism for virtual machines pricing

in clouds is proposed in [12]. �ose pricing strategies either

focus on posted price mechanism [13] or request the user

to determine the runtime of its job. However, the runtime

of a ML job is stochastic and unknown to users before its

completion.

Multi-armed Bandit Schemes. To address the unknown

budget and runtime of jobs, we design an our pricing algo-

rithm based on MAB, which is an e�ective online learning

and optimization framework [14]. Bubeck et al. [15] has

proven that MAB is e�cacious to get a good trade-o�

between exploration and exploitation in sequential decisions.

�e basic MAB framework learns to choose an optimal arm

without considering any system constraints. Mahdavi et al.
[16] extend the study of MAB where the learner aims to

maximize total reward, given that some additional constraints

need to be satis�ed. However, it is not applicable to our

system where the resources can be reused a�er a job is

completed.

III. problem model

System Model and Job Information. Suppose the cloud

service provider provides K types of workers and M types of

parameter servers (PSs), and they are deployed on S di�erent

physical servers. Let [X] denote the integer set {1, 2, ...X }.

Ck (Cm) denotes the maximum number of available type-

k workers (type-m PSs), ∀k ∈ [K] (∀m ∈ [M]). �e system

operates in discrete time slots t = 1, 2, ...,T . �ere are N

users arriving during the timespan and each user comes

with a machine learning (ML) job to be processed. Each job

needs to train a ML model over a large input dataset, using

synchronous training method. Let ti denote the arrival time

of job i. �e con�guration of job i includes the following

information: (i) the worker type ki and the PS type mi ; (ii)

the number of type-ki workers (type-mi PSs) dik (dim); (iii)

the size of the gradients/parameters wi ; (iv) required training

epochs αi . Moreover, users usually have their budgets for

completing jobs, which are private and will not be revealed

to the cloud provider. We denote job i’s budget as vi . Let Bi
denote the information of job i:Bi = {ki ,dik ,mi ,dim,wi ,αi }.

Stochastic Assumptions. �e budgets of users are usually

related to their demands of resources. We assume that the

budget and the demand of jobs which require same type of

worker and PS follow a jointly unknown distribution. For

each resource combination (k,m), the (demand,budдet) pairs

of users who request type-k workers and type-m PSs are in-

dependently and identically distributed, namely, (dik ,dim,vi)

are i.i.d., and drawn from an unknown distribution Fk ,m .

Runtime of Jobs. In the parameter server architecture,

the runtime of an epoch for a ML job consists of the

following two parts: (i) computation time, which is the sum

of computation time at the workers (i .e ., the data training

time and gradients computation time) and at the PSs (i .e ., the

parameters updating time); (ii) transmission time, which is the

time for workers to push gradients to PSs and pull updated

parameters from PSs. According to job i’s con�guration as

well as the historical knowledge, the computation time βi
can be estimated. Next, we analyze job i’s transmission time.

If a worker is deployed on a server where there is no

PS, the data transmission time (i .e ., the worker exchanges

gradients with all PSs) in an epoch is 2wi/bi , where bi is the

bandwidth between the PS and worker. Each type-k worker

(type-m PS) reserves some bandwidth, which is denoted as

hk (Hm). Hence, bi = min(hki ,Hmi /dik). When all PSs and

workers are located on the same server, the bandwidth to

exchange gradients/parameters is abundant between them

and the transmission time is negligible. Let qi represents

whether all workers and PSs serving job i are in the same

server (1) or not (0). Hence, the runtime of job i:

τi = αiβi + αi (1 − qi)(2wi/bi). (1)

Decision Variables. A�er receiving job i’s request, the

cloud provider prices the resources and informs user the

current unit prices pik and pim for type-ki worker and type-

mi PS. When its overall payment, i .e ., pik × dik + pim × dim ,

is no larger than its budget vi , the user accepts the o�ered

price and the provider need to decide how to place this job

on available servers; otherwise, the user will leave without

purchasing anything. Suppose the number of type-ki workers

serving job i on server s is xski and the number of type-mi
PSs serving job i on server s is zsmi . Let Xski (Zsmi) denote

the number of idle type-ki workers (type-mi PSs) on server

s when job i arrives.

Problem Formulation. To pursue the maximum overall

pro�t over the system timespan, the cloud provider dynam-

ically prices resources upon user arrives, and decides the

placement for this job if the user accepts the price. �is o�ine

optimization problem can be formulated as the following

mixed integer linear program (MILP):

maximize

∑
i ∈[N]

(
∑

k ∈[K]

pikdik +
∑

m∈[M]

pimdim)fi (2)

subject to:

fi = 1{dik + y
i
k ≤ Ck ,dim + y

i
m ≤ Cm,

∑
k ∈[K]

pikdik+∑
m∈[M]

pimdim ≤ vi ,∀k,∀m}, (2a)

yim =
∑

j ∈[i−1]:
tj+τj ≥ti

djm fj ,∀m ∈ [M],∀i ∈ [N], (2b)

yik =
∑

j ∈[i−1]:
tj+τj ≥ti

djk fj ,∀k ∈ [K],∀i ∈ [N], (2c)

∑
s ∈[S]

xski = dik fi ,∀i ∈ [N], (2d)∑
s ∈[S]

zsmi = dim fi ,∀i ∈ [N], (2e)

0 ≤ xski ≤ Xski ,∀s ∈ [S],∀i ∈ [N], (2f)

0 ≤ zsmi ≤ Zsmi ,∀s ∈ [S],∀i ∈ [N], (2g)

xski ∈ N, zsmi ∈ N,∀s ∈ [S],∀i ∈ [N], (2h)

pik ,pim ≥ 0,∀i ∈ [N],∀m ∈ [M],∀k ∈ [K]. (2i)

�e 1{X } is an indicator function, which equals 1 if X is true

and 0 otherwise. Variable fi in constraint (2a) indicates that

job i runs if there are enough resources and the user accepts

the price. yik (yim) in constraint (2b)/(2c) is the total number

of type-k workers (type-m PSs) that have been occupied at

the time of job i’s arrival. Constraints (2d) and (2e) guarantee

the number of type-k workers (type-m PSs) allocated to job

i is consistent with its request. �e resource capacity of

physical servers for running PSs and workers is formulated

by constraints (2f) and (2g).

IV. algorithm design and analysis

Our learning-based algorithm consists of two subroutines.

We introduce the pricing mechanism and placement strat-

egy in Sec. IV-A. �e theoretical analysis are presented in

Sec. IV-B.

A. Algorithm Design

1) Dynamic Pricing Mechanism
Design Rationale. In order to set prices to maximize

the pro�t, the core idea is to estimate the likelihood that

a user will accept the o�ered price without the knowledge

of the (demand,budдet) distribution as well as the runtime

of jobs, so that the best prices can be set. We propose an

online algorithm based on UCB (Upper Con�dence Bound)

to dynamically determine prices. Speci�cally, we learn the

runtime and the distribution according to past jobs, and set

prices for arriving jobs based on the learned knowledge.

Without loss of generality, we normalize pk and pm into

[0, 1], i.e., pk (pm) ∈ [0, 1]. Suppose �xed-price strategy is

adopted, i .e ., same prices pk and pm are o�ered to jobs

requesting type-k workers and type-m PSs during the system

timespan, which can be viewed as the expectation of realized

prices. Let Qk (pk) denote the expected number of type-k

workers sold at price pk to any job who requests type-k

workers, i.e., Qk (pk) = E(dik ,dim ,vi)∼Fk ,m [
ˆdik], where

ˆdik = dik
if vi ≥ pkdik + pmdim and

ˆdik = 0 otherwise. We denote the

total number of jobs requesting type-k workers in [1,T] as

nk . Similarly, we have Qm (pm) and nm for type-m PSs.

We �rst analyze the upper-bound of the overall pro�t

under the �xed-price strategy. �e analysis can be divided into

two cases: (i) the resources are always su�cient to serve all

jobs; (ii) the resources are insu�cient, which means current

running jobs occupy all resources. In the �rst case, the total

expected pro�t of type-k workers (type-m PSs) with a �xed

price pk (pm) is nkpkQk (pk) (nmpmQm (pm)). To simplify the

description, we focus on workers in the following analysis.

In the second case, at most Ck type-k workers are available

at any time slot due to the resource capacity. In each time

slot, if type-k workers have been exhausted, the maximum

expected number of type-k workers which can be allocated

to new jobs is Ck (1 − Ei :ki=k [τi]/T) (job i runs in τi slots,

then if we average its workload over T slots, job i runs τi/T

slot in each slot). �us, the average maximum total pro�t of

type-k workers with a �xed price pk is pkCk (T − Ei :ki=k [τi]).

We denote T − τi as µi . �en, this expected pro�t can be

formulated as pkCk µk , where µk = Ei :ki=k [µi]. Let A(pK ,pM)

denote the expected overall pro�t under �xed prices pK and

pM , where pK = {p1,p2, · · · ,pK } and pM = {p1,p2, · · · ,pM }.

Under this price strategy, we have

A(pK ,pM) ≤min(
∑

k ∈[K]

pkCk µk +
∑

m∈[M]

pmCmµm,∑
k ∈[K]

nkpkQk (pk) +
∑

m∈[M]

nmpmQm (pm)). (3)

To maximize the long-term pro�t, the prices that maximize

the upper-bound, i.e., RHS of (3), should be used. However,

it is intractable to determine such prices, because both

the budget distribution and the runtime are unknown in

the online se�ing. �erefore, we design an online learning

algorithm based on multi-armed bandit (MAB) to estimate the

uncertain distributions and set dynamic prices to maximize

the pro�t upper-bound in expectation. First, we discretize the

price interval [0, 1], and get a candidate price set Pk (Pm) for

type-k workers (type-m PSs). Upon the arrival of job i, price

pki ∈ Pki and pmi ∈ Pmi are chosen for this job. For each

price pk ∈ Pk (pm ∈ Pm), we de�ne a reward contributing to

the overall pro�t, and the prices with the highest reward are

picked. We de�ne the reward of price as follows:

R̂ik (pk) = min(nkpkQ
U
ik (pk),pkCk µ

U
ik) (4)

R̂im (pm) = min(nmpmQU
im (pm),pmCmµ

U
im). (5)

Intuitively, R̂ik (pk) and R̂im (pm) are estimates of the upper-

bound of the expected pro�t of type-k workers and type-m

PSs. Here, QU
ik (pk) (QU

im (pm)) is the UCB of Qk (pk) (Qm (pm))

estimated before job i arrives; µUik (µUim) is the UCB of µk (µm)

estimated before job i arrives, as de�ned below:

µUik = µ̂ik + ri (µ̂ik), µ
U
im = µ̂im + ri (µ̂im), (6)

QU
ik (pk) = Q̂ik (pk) + ri (Q̂ik (pk)), (7)

QU
im (pm) = Q̂im (pm) + ri (Q̂im (pm)), (8)

where µ̂ik , µ̂im , Q̂ik (pk) and Q̂im (pm) are the current average

values of their realizations of µk , µm , Qk (pk) and Qm (pm),

respectively. �ese parameters can be computed as follows:

Q̂ik (pk) =
total # o f type-k workers sold at pk

o f times pk has been used
, (9)

Q̂im (pm) =
total # o f type-m PSs sold at pm

o f times pm has been used
, (10)

µ̂ik =

∑
i′<i :ki′=k µi′ fi′1(ti′ + τi′ < ti)∑
i′<i :ki′=k fi′1(ti′ + τi′ < ti)

, (11)

µ̂im =

∑
i′<i :mi′=m µi′ fi′1(ti′ + τi′ < ti)∑
i′<i :mi′=m fi′1(ti′ + τi′ < ti)

. (12)

And ri (X) is the con�dence radius of the random variable

X such that for XU = X̂ + ri (X̂), inequality |X − X̂ | ≤ ri (X)

holds with high probability. �erefore, suitable con�dence

radius needs to be designed, since a smaller con�dence radius

implies a more accurate estimate of the parameter X . Let

N k
i (pk) (Nm

i (pm)) be the number of times that pk (pm) has

been used to price jobs requesting type-k workers (type-m

PSs) before job i arrives. We design the con�dence radius
1

as:

1
Only variables ri (Q̂im (pm)) and ri (µ̂im) are presented here since

ri (Q̂ik (pk)) and ri (µ̂ik) are de�ned the same way.

ri (Q̂im (pm)) =
η

1 + Nm
i (pm)

+

√
ηQ̂im (pm)

1 + Nm
i (pm)

, (13)

ri (µ̂im) =
η

1 +
∑
i′<i :mi′=m fi′1(ti′ + τi′ < ti)

+

√
ηµ̂im

1 +
∑
i′<i :mi′=m fi′1(ti′ + τi′ < ti)

, (14)

where η = Θ(lognm).

Algorithm 1 Dynamic Pricing Strategy (DPS)

Input: K,M,T , {Ck }k ∈[K], {Cm }m∈[M], {nk }k ∈[K], {nm }m∈[M]
Initialize: θk = (TCk lognk)

2

3 /nk , θm = (TCm lognm)
2

3 /nm, δk ∈

(0, 1), δm ∈ (0, 1),Pk = {δk (1 + δk)
z ∩ [0, 1] : z ∈ Z},Pm =

{δm (1 + δm)
z ∩ [0, 1] : z ∈ Z}

Upon: job i comes with its information Bi

1: Set k = ki ,m =mi ;
2: if ∑i

i′=1
1(ki′ = k) ≤ θknk or

∑i
i′=1

1(mi′ =m) ≤ θmnm then
3: pik ,pim = 0;

4: (xki , zki) = PA(Bi , {Xski }, {Zsmi });
5: Update the number of occupied resource:

6: yi+1

k = yik + dik ,y
i+1

m = yim + dim ;

7: else
8: if dik + yik ≤ Ck and dim + y

i
m ≤ Cm then

9: Pick pik ∈ arg maxpk ∈Pk R̂ik (pk);

10: Pick pim ∈ arg maxpm ∈Pm R̂im (pm);
11: Inform the user price pikdik + pimdim ;

12: if user accepts the o�ered price then
13: (xki , zki) = PA(Bi , {Xski }, {Zsmi });
14: Compute runtime τi according to (xki , zki) and (1);

15: Update the number of occupied resource:

16: yi+1

k = yik + dik ,y
i+1

m = yim + dim ;

17: According to (6)-(14), update parameters:

18: QU
ik (pk),Q

U
im (pm), µ

U
ik , µ

U
im ;

19: end if
20: else
21: Reject this user’s request;

22: end if
23: end if

Upon: job j is completed

1: Release and update the resource:

2: y
j+1

kj
= y

j+1

kj
− djk ,y

j+1

mj = y
j+1

mj − djm ;

3: {Xsk (j+1) = Xsk (j+1) + xsk j }s ∈[S];

4: {Zsm(j+1) = Zsm(j+1) + zsk j }s ∈[S];

5: Reshape the estimates µ̂ik and µ̂im according to (11)(12);

Online Pricing Algorithm. Our dynamic pricing strategy

DFS is summarized in Alg.1. In the initialization phase, we

elaborately design δk and δm to discretize the prices interval

and get sets of candidate prices. Note that parameters δk and

δm have a signi�cant impact on our algorithm performance,

and we will illustrate this impact in Sec.V. Inspired by the

trade-o� between exploration and exploitation in classic MAB

framework, we set nil prices for jobs in the beginning stage

(lines 2-6), such that users can accept the price and we can

obtain some information about job’s runtime. �e smaller θk
and θm , the shorter is the exploration time. Hence, parameters

θk and θm indicate the balance between exploration and

exploitation: a shorter exploration stage means less loss of

pro�t but larger risk on the estimation error; in contrast,

a longer exploration stage means larger loss of pro�t but

smaller risk of estimation error. Here, θk and θm are derived

carefully to reach a good balance between them. A�er the

exploration phase, our algorithm starts the exploitation stage.

If there are enough available resources to serve job i, the

reward of each price in candidate sets is calculated based

on the historical knowledge and the prices with the highest

rewards are chosen (lines 7-11). If the user accepts the price,

the placement algorithm PA is invoked (line 13) to decide

how to deploy this job on servers, which is described in detail

in next subsection. According to the placement strategy and

the experiences of the computation time, job i’s runtime τi is

approximately calculated in line 14. Meanwhile, the amount

of occupied resources is updated and we update the estimated

parameters QU
ik (pk),Q

U
im (pm), µ

U
ik and µUim (lines 14-18), which

will be used to calculate the rewards of prices when the next

job arrives. Once a job is completed, the occupied resources

are released and related resource parameters as well as the

parameters (i .e ., µ̂ik and µ̂im) related to the exact runtime are

updated.

Algorithm 2 Placement Algorithm (PA)

Input: wi ,dik ,dim,Hmi ,hki , {Xski }s ∈[S], {Zsmi }s ∈[S]
Initialize: xki = 0, zki = 0, c = 1

1: Sort all servers in descending order of Xski and Zsmi ,

the result sequence is denoted as {s1, s2, · · · , sS };
2: for s = s1, s2, · · · , sS do
3: if Xski ≥ dik and Zsmi ≥ dim then
4: /* Deploy all workers and PSs on server s */

5: xski = dik , zsmi = dim ;

6: /* Update current idle resources */

7: Xsk (i+1) = Xski − dik ,Zsm(i+1) = Zski − dim ;

8: Return xki , zki
9: end if

10: end for
11: /* Multiple servers are used */

12: while
∑c
j=1
Xsjki < dik do

13: xscki = Xscki ,Xsck (i+1) = 0;

14: c = c + 1;

15: end while
16: xscki = dik −

∑c−1

j=1
Xsjki ,Xsck (i+1) = Xscki − xscki ;

17: c = 1;

18: while
∑c
j=1
Zsjmi < dim do

19: zscmi = Zscmi ,Zscm(i+1) = 0;

20: c = c + 1;

21: end while
22: zscmi = dim −

∑c−1

j=1
Zsjmi ,Zscm(i+1) = Zscmi − zscmi ;

23: Return xki , zki

2) Placement Policy
If user i accepts the o�ered price, the cloud provider needs

to decide how to place its job in physical servers so to

minimize the runtime, since shorter runtime results in larger

reward, leading to higher pro�t. �e placement problem for

job i can be formulated as:

minimize τi (15)

subject to: (2d) ∼ (2h),

where fi = 1. If there is a server having enough resources

to serve job i, placing this job on the server results in the

shortest runtime. We focus on another case, i.e., qi = 0. In this

case, we try to use as few servers as possible to serve a job.

As shown in Alg.2, all servers are sorted according to their

current idle resources. Lines 2-10 determine whether there is

a server on which all workers and PSs requested by job i can

be deployed. If there is no such server, workers and PSs are

deployed in a greedy manner to serve job i (lines 12-23).

B. �eoretical Analysis
Runtime. First, we analyze the runtime of DPS, which can

be completed in polynomial time.

�eorem 1. Our algorithm determines the price pik , pim and
makes placement decision in O[2(TCmax logN)1/3 + S2] time for
each job, where Cmax = max(Ck ,Cm),∀k ∈ [K],∀m ∈ [M].

Proof. See Appendix. A. ut

Regret Analysis. Now we theoretically analyze the regret
of our algorithm. �e benchmark used in our work is the best

�xed-price strategy, which knows all information in advance

and o�ers �xed unit prices for resources to all jobs with the

maximal expected pro�t
2
. �e regret is the di�erence between

the expected overall pro�t obtained by our algorithm and that

by the best �xed-price strategy. �eorem 2 below shows that

the regret of DPS is sub-linear with both the timespan and

the total job number.

Let pK∗ and pM∗ denote the price vectors of the best �xed-

price mechanism. �erefore, the regret of our algorithm can

be de�ned as follows:

Reдret(L) = A(pK∗ ,p
M
∗) − E[A(L)]

=
∑

k ∈[K]

Ak (p
k
∗) +

∑
m∈[M]

Am (p
m
∗) − E(

∑
k ∈[K]

Ak (L) +
∑

m∈[M]

Am (L))

=
∑

k ∈[K]

[Ak (p
k
∗) − E[Ak (L)]] +

∑
m∈[M]

[Am (p
m
∗) − E[Am (L)]],

(16)

where A(L) is the total expected pro�t achieved by DPS.

�e regret Reдret(L) is derived in three steps: (i) we analyze

the upper bound of the di�erence between the total expected

pro�t of the best �xed candidate prices (namely, the best

prices in candidate sets Pk and Pm in Alg.1) and the pro�t

of our policy without considering resources capacity (namely,

the condition in line 7 in Alg.1 is ignored); (ii) the upper

bound of the di�erence between the best �xed candidate

prices and our policy considering the resources capacity is

derived; (iii) �nally, the upper bound of Reдret(L) (namely,

the gap between the best �xed prices and DPS) is obtained.

�eorem 2. Let δk = (TCk)
−1/3(lognk)

2/3 and δm =

(TCm)
−1/3(lognm)

2/3 in Alg.1. �en, the regret of DPS is O[(K +
M)((N logN)1/2 + (TCmax logN)2/3)].

For ease of description, we denote the overall expected

pro�t of the best �xed candidate prices as A(pcK∗ ,p
cM
∗) and

that of our policy without considering resources capacity is

2
Such benchmark has been widely used in the regret analysis in online

learning-based algorithm.

denoted as A(L′). In the rest of the proof, we mainly focus

on PSs (the pro�t of workers can be analyzed the same way).

Lemma 1 (�e upper-bound of Am (p
cm
∗) − Am (L

′)). Let
∆(pim) denote the discrepancy between the expected pro�t
per job requesting type-m PSs achieved by pcm∗ and that
achieved by o�ering our price pim for job i, namely, ∆(pim) =
max{Am (p

cm
∗)/nm−pimQm (pm), 0}. We have : Am (p

cm
∗)−Am (L

′)

≤ θmnm +
∑

pm ∈Pm :

∆(pm)≥σm

∆(pm)N (pm) +
∑

pm ∈Pm :

∆(pm)<σm

∆(pm)N (pm)

≤ σmnm + θmnm + |Pm |O(lognm)(1 +Cmµ
U
m/(σmnm)), (17)

where σm = δmCmµm/nm , N (pm) is the number of times that
pm has been picked during the whole timespan and µUm is the
UCB of µm when price pm is picked at the last time.
Claim 1.1. With probability at least 1−n−2

m holds, for each job
i with mi =m:

Am (p
cm
∗) ≤ pim ·min(nmQ ′m (pm),Cm µ̄

′
m), (18)

where Q ′m (pm) = Qm (pm) + 2ri (Q̂im (pm)), µ̄
′
m = µ̄m + 2ri (µ̂im).

Proof. See Appendix. B. ut

In view of Claim 1.1, we have a straightforward corollary

as shown in Claim 1.2.

Claim 1.2. Let pim denote the price for job i designed by our
algorithm without considering the resources capacity. We have

Pr[pim ≥ Am (p
cm
∗)/(Cm µ̄

′
m)] ≥ 1 − n−2

m ,∀i : mi =m. (19)

As mentioned in Lemma 1, ∆(pm) is de�ned at any can-

didate price pim = pk and equals zero if price pm has never

been chosen. �en, we have

Am (p
cm
∗) − Am (L

′) ≤
∑

pm ∈Pm

∆(pm)N (pm). (20)

Intuitively, if the distribution Qm (pm) is accurately known

for all pim ∈ Pm,∀i : mi = m, we can accurately estimate the

term nmpmQU
im (pm) in (5). �en, pimnmQm (pm) can be used

to upper bound Am (p
cm
∗) (as shown in (18)). Hence, such an

upper bound exactly equals pimQm (pm). Namely, ∆(pim) will

equal zero if Qm (pm) is known to us, which means that the

existence of non-zero ∆(pim) results from Qm (pm)’s incorrect

estimate. �erefore, ∆(pim) is actually upper bounded by

ri (Q̂im (pm)). Next, we upper bound ∆(pim) to further upper

bound ∆(pm)N (pm) in the RHS of (20).

Claim 1.3. For each job i, we have ∆(pim) ≤ pim ·O(ri (Q̂im (pm))).
Furthermore, we have

∆(pm)N (pm) ≤ O(pm lognm)(1 +Cmµ
U
m/(nm∆(pm))). (21)

Proof. See Appendix. C. ut

Since the pro�t loss caused by DPS compared to Am (p
cm
∗)

consists of two parts: (i)

∑
pm ∈Pm ∆(pm)N (pm) calculated by

(21); (ii) prices are set to nil, in the exploration stage where

the loss of pro�t can be upper bounded by θmnm . Combining

them with Claim 1.2 and Claim 1.3, Lemma 1 is proofed. ut

Lemma 2 (�e upper-bound of Am (p
cm
∗) − E[Am (L)]). Let

dmmax denote the maximum number of type-m workers requested
per job and rmax (X) denote the maximum con�dence radius on
X a�er the exploration stage. We have Am (p

cm
∗) − E[Am (L)]

≤ σmnm + θmnm + |Pm |O(lognm)(1 +Cmµ
U
m/(σmnm))

+O[
√
nm lognm +Cmµm (

2rmax (µm)

µm + 2rmax (µm)
+
dmmax
Cm
)].

Proof. See Appendix. D. ut

Lemma 3 (the upper-bound of

∑
m∈[M][Am (p

m
∗)−E[Am (L)]]).

For each σm > 0, we have∑
m∈[M]

[Am (p
m
∗) − E[Am (L)]]

≤
∑

m∈[M]

[σmnm + θmnm + |Pm |O(lognm)(1 +Cmµ
U
m/(σmnm))+

O(
√
nm lognm +Cmµm/(1 +

µm
O(rmax (µm))

) + dmmax µm + δmCmµm)].

Proof. See Appendix. E. ut

Finally, we prove �eorem 2 based on Lemma3 , as shown

in Appendix. F.

ut

V. performance evaluation

Simulation Setup. We evaluate our algorithm over a

timespan of 10000 time slots (i.e., T = 10000) and each time slot

is 5 minutes. �e numbers of worker types and PS types are

15 and 10 respectively. �e bandwidth of each type worker

ranges between 100 Mbps and 5 Gbps and that of each type

PS ranges between 5 Gbps and 20 Gbps. We assume there

are 50 physical servers. �e number of each type workers

(PSs) deployed on each server is in [0, 30] ([0, 18]). �en, the

total resource capacity (i.e., Ck and Cm) can be calculated. �e

arrival time, resource demand and other information of jobs

are set according to the real-world traces [17]. In particular,

we analyze the users’ preference of resources and their prices

in the real-world traces to estimate and simulate budgets of

users. �e total number of arrived jobs is around 10000. We

set the price of each type worker (PS) according to Amazon

EC2 pricing [6] and normalize it into [0, 1].

Performance of Our Complete Algorithm DPS. We

compare DPS with four alternatives:

• Best �xed-price strategy (BFP): �e optimal �xed unit

price of each resource is set with the priori knowledge

of all jobs’ full information.

• DPS-simple: �is is a variant of DPS, where the explo-

ration stage (lines 2-6 in Alg.1) is omi�ed.

• TOP: It is adapted from an online pricing algorithm for

cloud jobs [9]. Since this algorithm only involves pricing

virtual instances, we slightly modify it to �t our system

model and add placement module for it.

• Random: �is algorithm randomly picks unit price from

interval [0, 1] upon each job’s arrival, and making place-

ment decision according to PA.

Fig. 2 shows that DPS outperforms other algorithms. In

the �rst few time slots (t < 1120), the regret of DPS increases

since the price is set nil in the exploration stage and the

relation between users’ budget and demands is unknown.

A�er this, the regret of DPS decreases and equals zero at t =

3140, i.e., the pro�t achieved by DPS is comparable to BFP’s.

�e negative regret means our algorithm exceeds BFP and

this superiority grows over time. �e regret of DPS-simple
shows that the exploration stage plays an import role, which

makes the estimation of job runtime accurate. �e overall

pro�ts of algorithms are presented in Fig. 3. At the end of

timespan, total pro�t achieved by DPS is 125%, 115%, 122% and

238% of BFP’s, DPS-simple’s, TOP’s and Random’s, respectively.

The Impact of Parameters. �e regret of DPS under

di�erent total job numbers (at di�erent ratios, 0.1, 5 and 10 of

the default N) is drawn in Fig. 4. At the beginning, the regret

is smaller when N is smaller. As time goes on, the larger

N , the faster the regret decreases. Fig. 5 shows the e�ect

of the value of δ (i.e., δk and δm) on DPS’s regret. When δ ’s

value is too small, the number of candidate prices in Pk (Pm)

becomes larger. Hence, learning period gets longer. When δ

is too large, the regret is growing. It is shown that the regret

obtained by our choice of δ is the smallest. �en, we analyze

the impact of θ ’s value on the performance of DPS. As shown

in Fig. 6, when θ gets smaller, the regret is smaller at the

beginning stage but it decreases more slowly in the later. A

larger θ makes the exploration phase longer and leads to a

larger regret in this phase. Our choice of θ shows a good

trade-o� between the exploration and exploitation.

Performance of Placement Algorithm (PA). We compare

our placement strategy with random placement (RS) algorithm

to show its e�ciency. �e pricing mechanism in Alg.1 with

random placement method (instead of PA) is used for com-

parison, which is denoted as DPS-RS. As shown in Fig. 7, the

overall pro�t obtained by DPS is larger than that by DPS-
RS and BFP when T = 4000, and the di�erence increases

over time. �e total runtime of all completed jobs under

PA is always shorter than that under RS. Furthermore, the

discrepancy between them become signi�cantly larger as the

number of completed jobs increases.

VI. Conclusion

�is paper is the �rst paper that addresses the dynamic

pricing problem for distributed machine learning jobs, while

jointly taking the placement into consideration. Our algo-

rithm consists of two subroutines: (i) a dynamic pricing

mechanism that determines the best price upon the arrival

of each job, with a goal of maximizing provider’s pro�t;

(ii) a placement strategy that minimizes the runtime of

accepted jobs. �rough theoretical analysis, we show that our

algorithm achieves a sub-linear regret with both the timespan

and the total job number. Large-scaled simulation study based

on real world data also veri�es good performance of our

algorithm, compared to state-of-the-art pricing mechanisms.

Appendix

A. Proof of �eorem 1

Proof. Lines 1-6 in Alg.1 can be done in a constant time.

In Lines 9-10, our algorithm computes the reward over all

the candidate prices in Pki and Pmi . Now, we focus on Pki .

Since Pk is initialized as {δk (1+δk)
z ∩ [0, 1] : z ∈ Z} for type-k

0 2000 4000 6000 8000 10000

Time Slot

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

12000
R

eg
re

t

DPS

DPS-simple

TOP

Random

Fig. 2: �e regret comparison with

other algorithms .

2000 4000 6000 8000 10000

Time Slot

0

0.5

1

1.5

2

2.5

3

O
v
er

al
l

P
ro

fi
t

10
4

DPS

BFP

DPS-simple

TOP

Random

Fig. 3: Overall pro�t comparison with

other algorithms.

0 2000 4000 6000 8000 10000

Time Slot

-6000

-4000

-2000

0

2000

4000

6000

R
eg

re
t

N

0.1N

5N

10N

Fig. 4: Regret (varying N).

0 2000 4000 6000 8000 10000

Time Slot

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

R
eg

re
t

0.1
1.5

5

Fig. 5: Regret (varying δk and δm).

0 2000 4000 6000 8000 10000

Time Slot

-6000

-4000

-2000

0

2000

4000

6000

R
eg

re
t

0.1
3

5

Fig. 6: Regret (varying θk and θm).

1000 2000 3000 4000 5000 6000 7000

Number of Completed Jobs

0

2000

4000

6000

8000

T
o
ta

l
R

u
n
ti

m
e PA

RS

2000 4000 6000 8000 10000

Time Slot

0

1

2

3

O
v
er

al
l

P
ro

fi
t

10
4

DPS

DPS-RS

BFP

Fig. 7: �e performance of PA.

worker, we have δk (1 + δk)
|Pk | ≥ 1 and δk (1 + δk)

|Pk |−1 < 1,

which means |Pk | = dlog
1+δk δ

−1

k e. Let δk = (TCk)
−1/3(lognk)

2/3
,

then we have |Pk | ≤ δ−1

k lognk . �us, Line 9 in Alg.1 can

be done in O((TCk lognk)
1/3) time. Similarly, Line 10 can be

done in O((TCm lognm)
1/3) time. Next, we analyze the runtime

of placement algorithm PA in Alg.2. In the worst case, the

sorting time (line 1) is O(S2). �erefore, for each job, the

runtime of our algorithm is O[2(TCmax logN)1/3 + S2].

B. Proof of Claim 1.1

Proof. As shown in Line 10 in Alg.1, the price with the highest

reward R̂im (pm) in the candidate price set Pm is chosen in

each round. Hence, for each user i with mi = m, we know

R̂im (pim) = maxpim ∈Pm R̂im (pm), which implies

R̂im (pim) ≥ R̂im (p
cm
∗),∀pim,p

cm
∗ ∈ Pm . (22)

Morever, we know that the probability of inequalities µUim ≥

µmi
and Qim (pmi)

U ≥ Qmi (pmi) holding is at least 1−n−2

m based

on the result in [18]. �erefore, we have R̂im (p
cm
∗) ≥ Am (p

cm
∗)

with high probability at least 1 − n−2

m . �en, we have

Pr[R̂im (pim) ≥ Am (p
cm
∗)] ≥ 1 − n−2

m ,∀pim,p
cm
∗ ∈ Pm . (23)

According to the de�nition of R̂im (pim), we have that

R̂im (pim) ≤ pim ·min{nmQ ′m (pm),Cm µ̄
′
m } (24)

with probability at least 1−n−2

m . Combining (23) and (24), the

Claim 1.1 follows.

C. Proof of Claim 1.3

Proof. According to ∆(pim)’s de�nition, if there is esti-

mate error (namely, ∆(pim) > 0), we knowAm (p
cm
∗) >

nmpimQm (pim),∀m ∈ [M]. Combining this inequality with the

property of (19), we obtain

Qm (pim) < Cm µ̄
′
m/nm,∀m ∈ [M]. (25)

Let Jm denote the set of jobs requesting type-m PSs. Accord-

ing to Claim 1.1, we know

Am (p
cm
∗) ≤ pimnmT (Qm (pim) + 2ri (Q̂im (pm))),∀i ∈ Jm .

Combining it with the de�nition of ∆(pim), we obtain

∆(pim) ≤ 2pimri (Q̂im (pm)), namely,

∆(pim) ≤ pim ·O(ri (Q̂im (pm))). (26)

�en, we upper bound the con�dence radii ri (Q̂im (pm)) and

ri (µ̂im). According to the result in [18], when η = Θ(lognm), we

know ri (X̂) ≤ 3η/(1+Ni (X))+3

√
ηE[X]/(1 + Ni (X)) holding with

probability at least 1 − n−2

m . �erefore, with high probability

at least 1 − n−2

m , we have

ri (Q̂im (pm)) ≤ max{
O(lognm)

1 + Nm
i (pm)

,

√
Qm (pm)O(lognm)

1 + Nm
i (pm)

}, (27)

ri (µ̂im) ≤ max{
O(lognm)

1 +
∑
i′<i :mi′=m fi′1(ti′ + τi′ < ti)

,√
µmO(lognm)

1 +
∑
i′<i :mi′=m fi′1(ti′ + τi′ < ti)

}. (28)

Combining (26) (27) with (25), for all job i ∈ Jm , we get

∆(pim) ≤ O(pim ·max(
lognm

1 + Ni (pim)
,

√
lognmQm (pim)

1 + Ni (pim)
)). (29)

Removing its dependency on i and rearranging this inequal-

ity, the Claim 1.3 follows.

D. Proof of Lemma 2

Proof. �e total pro�t of type-m PSs (i .e ., Am (pim)) achieved

by our DPS in expectation is E(
∑
i ∈Jm pimdim fi) if the re-

source is always su�cient (namely, without considering

the resources capacity). Taking the resources capacity into

account, our DPS will stop o�ering resources when type-m

PSs are not enough to serve the job, even if the price for

job i is within the user’s budget. Based on Azuma-Hoe�ding

inequality, we know that

∑
i ∈Jm |pimdim fi − pimQm (pim)| ≤

O(nm lognm) holds with high probability at least 1−n−2

m . Hence,

we have

E(
∑
i ∈Jm

pimdim fi) ≥
∑
i ∈Jm

pimQm (pim) −O(nm lognm). (30)

Moreover, there exists such a case where the workload is

high so that E(
∑
i ∈Jm dim fi) ≥ µm (Cm − d

m
max). We denote the

set of jobs accepting the deal in the cases where the resource

is su�cient as J ′m . �en, we obtain

E[
∑
i ∈J′m

pimdim fi |
∑
i ∈J′m

dim fi ≥ µm (Cm − d
m
max)]

≥ Am (p
cm
∗)(1 −O(

2rmax (µm)

µm + 2rmax (µm)
+
dmmax
Cm
)) − θmnm, (31)

where the last inequality holds due to Claim 1.2 and the

de�nition of µUm . Combining (30) and (31), we can get the

lower-bound of the expected pro�t obtained by our DPS for

selling type-m PSs:

E[Am (L)] ≥ min{Am (p
cm
∗)(1 −O(

2rmax (µm)

µm + 2rmax (µm)
+
dmmax
Cm
))

− θmnm,Am (L
′) −O(

√
nm lognm)}.

Combining this inequality and Lemma 1, we have Lemma 2.

E. Proof of Lemma 3

Proof. As shown in the initialization in Alg.1, the prices of

type-m PSs in the candidate set Pm are within the interval

[δm, 1], i .e ., pm ∈ [δm, 1],∀pm ∈ Pm . If pm∗ ≤ δm , then we know

Am (p
m
∗) − Am (p

cm
∗) ≤ δmCmµm . Let p′m denote the highest

price in Pm that is no higher than the best �xed price pm∗ ,

which indicates p′m ≥ pm∗ /(1 + δm). Hence, we have∑
m∈[M]

Am (p
cm
∗) ≥

∑
m∈[M]

Am (p
′
m) ≥

∑
m∈[M]

Am (p
m
∗ /(1 + δm))

≥
∑

m∈[M]

Am (p
m
∗)(1 − δm) ≥

∑
m∈[M]

Am (p
m
∗) −

∑
m∈[M]

δmCmµm,

where the last inequality holds because Qm (pm) is a non-

increasing function towards pm . Combining the above in-

equality with Lemma 2, Lemma 3 is derived.

F. Proof of �eorem 2

Proof. In the exploration stage in Alg.1, if the expected

number of jobs requesting type-m workers is denoted as

Φ(θmnm), then we have Φ(θmnm) ≥ θmnm − nmτmax /T . Fur-

ther, we have rmax (µm) ≤ O(lognm/(τmaxΦ(θmnm))). Due

to τmax ≤ (T
5C2

m log
2 nm)

1/3/(2nm), we obtain Φ(θmnm) ≥

(T 5C2

m log
2 nm)

1/3/2. Moreover, we know |P |m ≤ (lognm)/δm .

�erefore, when δm = (TCm)
−1/3(lognm)

2/3
and σm =

δmCmµm/nm , according to Lemma 3, we have∑
m∈[M]

[Am (p
m
∗) − E[Am (L)]]

≤
∑

m∈[M]

O(
√
nm lognm +

µUm (TCm lognm)
2

3

µm
+Cmrmax (µm))

(32)

≤ O(
∑

m∈[M]

√
nm lognm + (TCm lognm)

2/3). (33)

Inequality (32) holds since we assume dmmax ≤

T−1/3(Cm lognm)
2/3

. Due to rmax (µm) ≤ O(
(1+µm) lognm

1+Φ(θmnm)
),

we know Cmrmax (µm) ≤ (TCm)
2/3(lognm)

1/3
. Moreover,

µUm/µm asymptotically approaches O(1). Pu�ing them

together, the last inequality (33) can be established.

Similarly,

∑
m∈[M][Ak (p

k
∗) − E[Ak (L)]] is derived.

�us, the regret Reдret(L) of our DPS algorithm is

O[(K +M)((N logN)1/2 + (TCmax logN)2/3)].

References

[1] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,

J. Long, E. J. Shekita, and B. Su, “Scaling distributed machine learning

with the parameter server,” in Proc. of USENIX OSDI, 2014.

[2] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,

G. R. Ganger, and E. P. Xing, “More e�ective distributed ML via a stale

synchronous parallel parameter server,” in Proc. of NIPS, 2013.

[3] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in

distributed machine learning clusters,” in Proc. of IEEE INFOCOM, 2019.

[4] L. Mai, C. Hong, and P. Costa, “Optimizing network performance in

distributed machine learning,” in Proc. of USENIX HotCloud, 2015.

[5] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “Fireca�e:

near-linear acceleration of deep neural network training on compute

clusters,” in Proc. of IEEE CVPR, 2016.

[6] Amazon EC2 Pricing, 2019, h�ps://aws.amazon.com/ec2/pricing/.

[7] Google Cloud Pricing, 2019, h�ps://cloud.google.com/pricing/.

[8] Linux Virtual Machines Pricing, 2019, h�ps://azure.microso�.com/en-us/

pricing/details/virtual-machines/linux/.

[9] X. Zhang, C. Wu, Z. Huang, and Z. Li, “Occupation-oblivious pricing

of cloud jobs via online learning,” in Proc. of IEEE INFOCOM, 2018.

[10] W. Wang, B. Liang, and B. Li, “Revenue maximization with dynamic

auctions in iaas cloud markets,” in Proc. of IEEE/ACM IWQoS, 2013.

[11] W. Shi, C. Wu, and Z. Li, “RSMOA: A revenue and social welfare

maximizing online auction for dynamic cloud resource provisioning,”

in Proc. of IEEE/ACM IWQoS, 2014.

[12] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos, “An online

mechanism for resource allocation and pricing in clouds,” IEEE Trans.
Computers, vol. 65, no. 4, pp. 1172–1184, 2016.

[13] J. R. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, and T. Vredeveld,

“Posted price mechanisms for a random stream of customers,” in Proc.
of ACM EC, 2017.

[14] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the

multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.

235–256, 2002.

[15] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and

nonstochastic multi-armed bandit problems,” Foundations and Trends
in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[16] M. Mahdavi, T. Yang, and R. Jin, “E�cient constrained regret mini-

mization,” CoRR, vol. abs/1205.2265, 2012.

[17] P. Minet, E. Renault, I. Khou�, and S. Boumerdassi, “Analyzing traces

from a google data center,” in Proc. of IEEE IWCMC, 2018.

[18] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in metric

spaces,” in Proc. of ACM STOC, 2008.

