
EasyChair Preprint
№ 14927

Comparative Analysis of Community Rating and
Dynamic Pricing on Enhancing Healthcare
Accessibility in Low-Income Countries: a Case
Study of Tanzania

Godfrey Justo and Fadhili Meena

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 18, 2024



Comparative Analysis of Community Rating and Dy-

namic Pricing on Enhancing Healthcare Accessibility in 

Low-Income Countries: 

A Case Study of Tanzania 
 

Godfrey N Justo1 and Fadhili Z Meena2 
12 University of Dar es Salaam, College of Information and Communication Technologies, 

 P.O BOX 33335, Dar es Salaam, Tanzania. 

njulumi@gmail.com,  fadhilimeena@gmail.com 

 

Abstract. Over the last two decades out-of-pocket (OOP) payments and external donations 

have contributed over 60% of current health expenditure (CHE) in low-income countries (LICs), 

in which OOP account for more than 40%, indicating a heavy reliance on individual contribu-

tions. Current studies on pricing models for healthcare largely focuses on achieving computa-

tional efficiency, but not the pricing effect on healthcare accessibility that influence healthcare 

improvement. Analysis of healthcare pricing models based on cost affordability can bridge this 

gap. Commonly used pricing models such as community rating (CR), dynamic pricing (DP) and 

OOP are considered. DP is a machine learning (ML) model based on Tanzania’s National Panel 

Survey (NPS) data, while the CR model is based on rates from the Tanzania’s Act Supplement 

for the mandatory public health insurance scheme of 2023, to the Ministry of Health (MoH).  A 

pure premium approach for the DP model and current rates for the CR model is employed for 

comparative purpose. The results showed that CR does not significantly improve healthcare costs 

compared to DP (p-value = 0), conversely, DP significantly outperforms CR with p-value 

3.49×10-08. Moreover, DP model remains superior to CR until loading factor range of 5.7 and 

6.4, where no significant difference, beyond which DP increases healthcare costs. Likewise, DP 

outperforms OOP until the loading factor range of 0.1 and 0.2, where costs are insignificantly 

different, above which DP increases costs.  Load factor analysis confirm DP to significantly en-

hance healthcare accessibility by reducing cost compared to CR and OOP pricing models. 

Keywords: Healthcare accessibility, Community rating, Dynamic pricing, Pric-

ing affordability, Individual contribution, Machine learning 

1 Introduction 

1.1 Background 

Current healthcare financing research focuses on computational reliability and the ap-

plication of advanced AI models [1,2,3], for accuracy, albeit pay no attention pricing 
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effect on enhancement of healthcare access, a fundamental goal for sustainable human 

development (SDG) and Universal Healthcare Coverage (UHC) [4]. Effective execu-

tion of healthcare access policies, such as the UHC requires efficient funding, especially 

for disadvantaged groups [5], which is a notable challenge in low-income countries 

(LICs) such as Tanzania, where over 45% of current health expenditures (CHE) rely on 

out-of-pocket payments (OOP), compared to high-income countries where more than 

70% come from government budgets [6]. The recent Global health expenditure data-

base (GHED), shows the trend has persisted for over 20 consecutive years to 2022 [7]. 

As such due to limited sources of internal revenue, individual contributions through 

OOP remain a pillar for financing CHE in LICs [8]. 

Community rating (CR) is a prevalent approach for estimating individual contribu-

tions in LICs to major healthcare protection schemes. The CR is characterized by sim-

ilar contribution rates [9], albeit, indexed or categorized based on various factors such 

as income and geographical regions [10]. Conversely, dynamic pricing (DP) is based 

on mathematical models that account for various individual attributes (including risk 

factors such as age, gender, health history, and healthcare utilization pattern) and eval-

uate how they change over time to make contribution estimates that reflect expected 

individual healthcare costs. Recent research has leveraged Machine Learning (ML) 

models to enhance DP approaches due to their computational efficiency and ability on 

diverse datasets [11,12,13].  

Pricing affordability is one of important aspects in Levesque’s framework for 

healthcare access measures [14]. However, the relative effect of pricing models on en-

hancing healthcare access remains unexplained by current research. This study seeks to 

bridge the gap by analyzing the effect of OOP, CR and DP pricing models in improving 

healthcare accessibility, considering the case of Tanzania. 

Ensuring access to quality healthcare without financial hardship is crucial for sus-

tainable development, particularly in low-income countries where individuals often 

fund their own care. Pricing methods like CR and DP have been proposed for estimating 

premium contributions. However, the current research attention has been on computa-

tional efficiency, but it remains unclear on the effect of such pricing models to improve 

healthcare accessibility. Understanding the relative effect is important for effective im-

plementation of healthcare access policies, such as the UHC. This study is guided by 

the following research questions: 

• What are the key factors affecting healthcare pricing for accessibility with 

respect to CR and DP models?  

• How significant is the difference between CR and DP models in healthcare 

access improvement through affordability? 

The study focuses on low-income countries, with Tanzania as the case study. The 

study scope is limited to a comparative analysis of commonly used financing ap-

proaches: OOP, CR and DP models. Their relative pricing effect in influencing indi-

vidual preferences and healthcare access is subsequently assessed based on price esti-

mates from each model. The outcomes are expected to inform healthcare access policies 

and programs, such as UHC, in similar contexts. Clarifying the strengths and weak-

nesses of a financing model, helps to guides decision-makers toward more effective 
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approaches that balance financial sustainability along with the broader goal and more 

equitable healthcare access. 

 

1.2 Materials and Methods 

The research design employs a quantitative approach, using descriptive and predictive 

analysis of numerical data related to healthcare utilization [15]. The case study design 

enables an in-depth examination of healthcare financing systems. Data is collected from 

secondary sources, including National Pannel Survey (NPS), Demographic Health Sur-

vey (DHS) [16,17], and GHED [7]. The GHED provides national and global health 

expenditure data, offering insights into health financing patterns and supporting gener-

alizing the study to LMICs. The DHS is based on household surveys in low- and mid-

dle-income countries, including Tanzania, gathering data on health indicators, 

healthcare utilization, insurance uptake, fertility, maternal, and child health, providing 

valuable insights into Tanzania's healthcare landscape [17]. The NPS collects longitu-

dinal data on healthcare utilization, expenditure patterns, and demographics from 2008-

2021, capturing trends and dynamics in individual healthcare costs [16], as summarized 

in Table 1.  

 

Table 1: Summary of data collected from NPS 

Data Collection Wave Number of Observations Number of Attributes 

Wave 2 2010 - 2011 20559 42 

Wave 3 2012 - 2013 25412 42 

Wave 4 2014 - 2015 16285 43 

Wave 5 2020 - 2021 23592 43 

 

The methods in [18] for sample design for unknown populations is used for sample 

design that target a small but representative sample size, which suggests an optimal 

sample size of 385 for a large population at a 95% confidence level. In the NPS repos-

itory context, the sample size for each wave exceeds 10,000, which is sufficient for the 

models. The resampling technique, Small Minority Oversampling (SMO), is used to 

balance biased samples. The key attributes include age, gender, healthcare service fre-

quency, and claim size [12,19]. Python version 3.11.4 is used for exploratory data anal-

ysis, model training, model evaluation and hypothesis testing. 

 

1.2.1 Exploratory Data Analysis  

Different tests are conducted to explore the nature of attributes in the data set includ-

ing the chi-square test for independence on categorical variables like gender and 

healthcare utilization status, and Pearson’s correlation coefficient test across continu-

ous (numerical) attributes such as age [20,21]. Histograms are used on univariate EDA, 

to visually identify the distribution of individual continuous variables and bar plots to 

identify the distribution of individual categorical variables. Further, test for the good-

ness of fit is used to identify the best-fit distribution for each of the variables, a crucial 

step for further simulation design to create more comprehensive data to train the ML 
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model for understanding the best distribution of attribute that is reproducible independ-

ent of the raw data [22]. 

 

Missing values within the dataset challenge the accuracy of statistical analyses and 

model performance. To address this issue, the extent of missingness are identified 

across variables and the cause of missing. In turn, a multistage predictive model re-

placed missing values with estimated values derived from existing data patterns [23]. 

For systematic missing, for example, if a person is aged 5 years and has an NA marital 

status value, we directly feed ‘Never Married’. A multivariate random forest regressor 

(classifier for categorical variables) fills the remaining missing observations, provided 

the proportion of missingness is less than 0.7, otherwise, the attribute is dropped.  

The standard deviation (Z-score) analysis method is utilized to identify outliers 

across variables. Once identified, outliers are winsorized, truncated, or excluded from 

analysis, depending on the nature of the data [24,25]. For a variable 𝑋; 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 (𝑍) =
𝑥−𝐸[𝑋]

√𝑣𝑎𝑟(𝑋)
    and 𝑃(𝑍 < 3) ≈ 99.87% 

hence, observations above 3 standard deviations are considered as outliers; for the tar-

get variable, outliers are dropped, while for other variables, a predictive model is used 

to test how the observation with outliers can be explained by other covariates. That is 

the predicted values and recorded outliers are compared based on Mean Absolute Per-

centage Error (MAPE). Observations from variables with MAPE above 50% of the 

predicted values are considered; otherwise, the recorded observations are retained. 

 

The handling of imbalanced categorical attributes employed the Synthetic Minority 

Over-sampling Technique (SMOTE) to rebalance class distributions [26,27,28]. When 

observed that the resampling of one variable caused an imbalance of other categorical 

variables, the tree-based SMOTE is adopted rather than just focusing on a single cate-

gorical variable, to ensure that the target variable is balanced while other categorical 

are less biased. As data scales varied rapidly, especially on variables with many cate-

gories, only variables with two categories are rebalanced. Further, a statistical test on 

improved variability of class proportions among categorical variables is performed. 

That is, if 𝑋 = {𝑥1, 𝑥2 … 𝑘} is the variance of proportions of classes in set of all cate-

gorical variables 1,2, .. before class balance and 𝑌 = {𝑦1, 𝑦2 … 𝑘} is the variance of 

proportions of classes in set of all categorical variables 1,2, .. after class balance; it is 

hypothesized that class balance approach reduce the overall variance among the cat-

egorical variables, to which; �̂�𝑌
2 < �̂�𝑋

2 

�̂�𝑋
2

�̂�𝑌
2 ~𝐹0.05,𝑘−1,𝑘−1 

where 𝑘  is the number of categorical variables involved in class balance. Though, 

should be all categorical variables, but for computation constraint, only four variables 

are included.  In addition, an F-test is performed, with a significance level of 5% and 

on a set of p-value. With confident the adopted class balance approach significantly 

reduced the overall class proportion variance among all categorical variables (with bi-

nary classes) in the data. 
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1.2.2 Feature Selection and model development 

The categorical variables are transformed into numerical formats while preserving their 

semantic meaning by Label encoding technique. Unlike   other approaches, such as one 

hot encoding, the Label encoding technique can address the dimensionality issue for 

high cardinality categorical variables [29,30]. Leveraging on outliers handling the fea-

ture scaling techniques are performed by a standardization approach. To identify rela-

tionships between features and the target variable (individual healthcare contribution), 

correlation analysis is conducted, in which the features with high correlation coeffi-

cients are retained for model training, while those with low correlation are excluded to 

reduce dimensionality and multicollinearity. The Bartlett’s test of sphericity (BTS) and 

Kaiser-Meyer-Olkin (KMO) test of sampling adequacy is employed to evaluate if the 

correlation between the factors is significantly different from zero, more so if the data 

is suitable for factor analysis [31,32]. The BTS evaluated if observed correlation matrix 

is significantly different from identity matrix (that is variables are not intercorrelated). 

The factor analysis is employed if the correlation matrix is significantly different from 

identity matrix. Under this scenario test statistic 𝑇 is  

𝑇 =  − (𝑁 − 1 −
2𝑝 + 5

6
) × ln (|𝑅|) 

where, 𝑁 is sample size, 𝑝 is number of variables, |𝑅| is the determinant of the corre-

lation matrix 𝑇~𝑋
(

𝑝(𝑝−1)

2
)

2 . On the other hand, KMO is used to measure the adequacy of 

the sample for factor analysis, and the KMO of 0.6 overall is acceptable. The KMO 

statistic can be given as 𝐾𝑀𝑂𝑗 =
∑ 𝑅𝑖𝑗

2
𝑖≠𝑗

∑ 𝑅𝑖𝑗
2

𝑖≠𝑗 +∑ 𝑈𝑖𝑗
2

𝑖≠𝑗
 whereby 𝑅𝑖𝑗

2  is the correlation matrix 

and 𝑈𝑖𝑗
2  is the partial covariance matrix [31]. 

 

A tree-based algorithm (Random Forest) is used to assess feature importance using 

the Gini criterion. Features with higher Gini scores are prioritized for inclusion in the 

model, while less important features may be excluded to simplify the model and im-

prove interpretability. Furthermore, the permutation test is used to identify a set of fea-

tures that significantly contribute to the model's predictive performance, to improve 

parsimony and reduce overfitting. Principal Component Analysis (PCA) is used to iden-

tify latent variables that capture the most important information in the data to reduce 

computational complexity. 

 

The model development involved three stages; the prediction of healthcare cost (con-

tinuous variable) by regression-based model, the prediction of the chance for filling the 

claim based on the probabilistic classification model, where a pure premium principle 

for estimating the individual’s premiums is employed. The regression model is devel-

oped using a set of tree-based regression algorithms, including Random Forest (RF), 

Gradient Boosting (GB) and Extreme gradient boosting (XGB) algorithms due to their 

proven effectiveness in handling complex, nonlinear relationships within the data [33]. 

Model training made use of historical healthcare expenditure data from Tanzania's 
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NPS, constitute of longitudinal dataset with detailed information on individual 

healthcare utilization, demographics, and expenditure patterns, making it an ideal 

source for training a predictive model. The dataset is split into training and validation 

sets to ensure the robustness and generalizability of models. 

 

The randomized search cross-validation is employed during hyper-parameter opti-

mization to find the best hyper-parameters for the RF and GB tree-based regression 

models. This method efficiently explores the hyper-parameter space by sampling from 

specified distributions, balancing computational resources, and improving model accu-

racy. The model selection step assessed the performance of regression and classifica-

tion algorithms tailored to predicting healthcare costs and the probability of filing a 

claim. For the regression task, the mean squared error (MSE), root mean square error 

(RMSE), and mean absolute error (MAE) served as primary indicators of predictive 

accuracy (i.e., lower value of a metric signifies closer alignment between the model's 

predictions and the actual healthcare costs, reflecting superior performance). The good-

ness of fit is evaluated by the coefficient of determination (R-squared), which quantifies 

the proportion of variance in healthcare costs explained by the model's predictors (i.e., 

higher R-squared values indicate a better fit of the regression model to the data, sug-

gesting its efficacy in capturing underlying relationships). The accuracy, precision, re-

call, and F1-score are employed for the classification task of predicting claim probabil-

ities. Accuracy gauges the correctness of the model's predictions, while precision 

measures the proportion of true positives among all positive predictions. Recall, or sen-

sitivity, quantifies the model's ability to identify true positives correctly. The F1-score 

balances precision and recall, comprehensively evaluating classification performance. 

Moreover, the receiver operating characteristic (ROC) curve and the area under the 

ROC curve (AUC-ROC) are also considered to visualize the trade-off between sensi-

tivity and specificity. Ultimately, the model selection process prioritizes the algorithm 

demonstrating superior performance across the metrics, ensuring robustness and gen-

eralizability in predicting healthcare costs and claim probabilities. 

The individual contribution for ML based DP model is estimated as follows: If 𝑌𝑖 is 

the random output healthcare cost for individual 𝑖 form the regression model, and 𝑝𝑖  is 

the probability for a particular individual to make a claim. Based on pure premium, the 

principal premium equals the expected loss.  

𝜋𝑖 = 𝐸[𝑌𝑖] = 𝑦𝑖 × 𝑝𝑖   

 

where 𝜋𝑖 is the pure premium for 𝑖𝑡ℎ individual. This principle is employed to ignore 

external expenses such as administrative costs. However, a sensitivity analysis is con-

ducted by introducing the loading factor in the pure premium principle to examine how 

the proportionate change in external expenses affects the inference. When adjusted to 

loading factor 𝜃 which account for cost out of the sum assured (can include underwrit-

ing expenses, management costs, and claim settlement expenses), then 

 

𝜋𝑖 = (1 + 𝜃)𝐸[𝑌𝑖] = (1 + 𝜃) × 𝑦𝑖 × 𝑝𝑖  
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Individual contribution for the community rating approach is based on the Act Sup-

plement for the mandatory public health insurance scheme of 2023, its respective bill 

of August 2022, and the related information to the public from the Ministry of Health 

(MoH) [34,35,36,37], as summarized in Table 2.  

 

    Table 2: Contribution rates under the CR approach 

Condition Contribution Estimate (�̂�) 

If individual is from formal sector 
�̂� =

6

100
× 𝑆 

where 𝑆 is the gross annual salary 

of an individual 

If individual is from informal sector �̂� = 84,000 

Group (family) of 6  6�̂� = 340,000 

 

The healthcare accessibility is evaluated based on the two pricing approaches: Let 

price estimates from the DP and CR models be �̂�𝑖 and �̂�𝑚𝑖
, respectively. Recall from 

the theory of expected utility, an individual's attitude (behavior) towards risk is geared 

towards increasing their expected utility, and the opportunity cost principle, where in-

dividuals decide to reduce money lost by selecting one option over the other. A hypoth-

esis is formulated to test for two samples to evaluate whether a significant price differ-

ence causes people to prefer one pricing approach over the other: 

 𝑯𝟎 ∶  𝝁𝟏 = 𝝁𝟐        

𝑯𝟏  𝝁𝟏 ≠ 𝝁𝟐   
Given 𝑛 the sample size of the latest NPS wave (test) data, where 𝜇1- average individual 

contributions for the population if exposed to community rating approach and 𝜇2- av-

erage individual contributions for the population if exposed to a dynamic pricing ap-

proach. Since one sample is evaluated over two different approaches, an independent 

two-sample test is used [38]. The test statistic 𝑇 

 �̅�𝟏 = (�̂�𝒊)
̅̅ ̅̅ ̅̅ =

𝟏

𝒏
∑ �̂�𝒊

𝒏
𝒊=𝟏      

�̅�2 = (�̂�𝑚𝑖)
̅̅ ̅̅ ̅̅ ̅ =

1

𝑛
∑ �̂�𝑚𝑖

𝑛
𝑖=1    

𝑠1
2 = 𝑣𝑎𝑟(�̂�𝑖) =

1

𝑛−1
∑ (�̂�𝑖 − (�̂�𝑖)

̅̅ ̅̅ ̅)
2

 𝑛
𝑖=1   

𝑠2
2 = 𝑣𝑎𝑟(�̂�𝑚𝑖) =

1

𝑛−1
∑ (�̂�𝑚𝑖 − (�̂�𝑚𝑖)

̅̅ ̅̅ ̅̅ ̅)
2

 𝑛
𝑖=1    

𝑠𝑝 =  √(𝑠1
2 + 𝑠2

2) × (
𝑛−1

2𝑛−1
)    

𝑇 =
�̅�1−�̅�2

𝑠𝑝√
2

𝑛

        

with probability values 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 = 2 ∗ Θ(T) at different values of 𝛼 =
0.05, 0.01, 0.005 is evaluated to identify if there is a significant difference in the indi-

vidual contributions, which consequently favor one pricing approach over the other.   
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2 Results  
2.1 Exploratory factor analysis  

The exploratory factor analysis (FA), shows continuous variables are somewhat related 

to the target variable. However, it is insufficient to conclude that the correlations sig-

nificantly differ from zero. Thus, it prompts to use of BTS, and for the correlated vari-

ables the KMO is employed to explore the number of latent variables. The KMO test 

result showed average of 0.74698 and 0.820831 in general, indicating with confident 

that the data is suitable for FA, since at least KMO of 0.6 is required in general. The 

scree plot in Figure 1 is subsequently used to determine number of variables to retain 

from the data based on the magnitude of the eigenvectors, where ten variables with the 

eigen-values greater than one are observed to meet selection criteria. 

 

 
Figure 1: Eigenvectors magnitude on data 

 

A linear regression model is fitted to asses how variables are best suited for predict-

ing healthcare costs. The regression analysis results indicate a model with poor explan-

atory power, as evidenced by the low R-squared value of 0.07. The F-statistic is high 

at 2927.00, indicating a statistically significant relationship between the independent 

and dependent variables despite the low R-squared. The Omnibus test, Jarque-Bera test, 

and their associated p-values suggest that the residuals are not normally distributed, 

with high skewness (18.56) and kurtosis (692.43), indicating significant departures 

from normality. Moreover, the extremely high condition number suggests potential is-

sues with multicollinearity that prompt to employ PCA. The Durbin-Watson statistic of 

1.858 suggests the presence of some positive autocorrelation in the residuals. Overall, 

while the model appears to be statistically significant, its practical utility is limited due 

to the poor fit, non-normality of residuals, potential multicollinearity, and autocorrela-

tion, generally suggesting all variables are significant predictors at 5% but have low 

power to linear model. This prompt to employ Random Forest regressor and Gradient 

Boosting algorithms. 

  A logit model is fitted to evaluate significant factors that influence the chance of an 

individual to incur a particular cost (i.e., predicting healthcare use). The logistic regres-

sion model reveals several important findings regarding the relationship between the 

predictor variables and the binary outcome variable. The model exhibits a pseudo-R-

squared value of 0.3145, indicating moderate predictive power. The coefficients for 

each predictor variable provide insight into their respective effects on the log odds of 
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the outcome. For instance, some variables portray positive coefficients suggesting that 

an increase in their values is associated with an increased likelihood of the outcome. 

Conversely, other variables portray negative coefficients, indicating a decrease in the 

probability of the outcome as their values increase. Notably, the p-values associated 

with each coefficient are all very low, indicating that most predictor variables are sta-

tistically significant in predicting the outcome. However, a few variables had relatively 

high p-values, suggesting that they may not be significant predictors of the outcome. 

This signals potential for elimination if their information value is lower when evaluated 

with the feature importance Gini criterion of the RF model. 

 

2.2 Models Development 

Different models are developed including a regression model for the prediction of 

healthcare cost, a classification model for predicting the probability of a person incur-

ring a particular cost and a pure premium principle used for estimation of individual 

contribution based on the dynamic model. Moreover, a community rating model, is 

developed using a rule-based approach from the ratings outlined in Table 2. 

 

2.2.1 Regression Model 

Recall that all variables’ correlations are significantly different from zero and that all 

variables are significant predictors. However, some multicollinearity exists. The PCA 

is performed to address the latter. The dataset is separated into two sections: model 

development data (NPS wave 2 - 4) and model validation data (NPS wave 5). Model 

development data is divided into two sets (training and testing set). The model is first 

trained to determine the importance of the features using the Gini information criterion 

as depicted in Figure 2. 

 

 
Figure 2: Feature importance for the regression model 

 

The results in Figure 2, support the inference from Section 2.1 that all variables are 

important predictors for the regression model. In addition, more than 86% of the vari-

ables are required to explain at least 90% of the information for the target variable. 

Consequently, all variables are selected for the regression model and the observed mul-

ticollinearity addressed with PCA. The PCA in Figure 3, show that more than 76% of 

components are required to explain 90% of the variance. Hence, dimensionality reduc-

tion is employed by using PCA and retain only 23 components for model development. 
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Figure 3: PCA variance analysis for the regression model 

 

Models are trained on raw data (i.e., without rescaling or dimensionality reduction), 

and subsequently with rescaled data first by standard scaling approach on the training 

data only to prevent information leakage, and by PCA with only 23 components re-

tained. Due to limited computational resource, iterative hyper-parameter optimization 

is not performed at start rather random initialization. Models are trained by the RF re-

gressor, GB and XGB algorithms, as depicted in Table 3. 

 

Table 3: Regression model performance before (shaded rows) and after scaling/PCA 

Model Train 

R-Squared 

Test 

R-Squared 

RMSE Computation 

Time (sec) 

Random forest 

(RF)  

0.981437 0.822853 15520.307978 420 

0.97278 0.75403 18288.2958 1080 

Gradient boost-

ing (GB) 

0.624619 0.5582952 24510.03213 60 

0.6031127 0.5402546 25003.0084 240 

Extreme gradient 

boosting (XGB) 

0.915697 0.7828987 17181.745050 3 

0.9012672 0.7174 19600.39311 15 

 

Considering RMSE, the RF regressor outperforms XGB by about 7%. On the other 

hand, considering the computation time, XGB has more than 7100% lower computa-

tional time compared to the RF regressor. Hence, the XGB regressor without scaling 

and dimensionality reduction is adopted for the prediction of healthcare costs. 

 

2.2.2 Classification Model 

Recall from Section 2.1 that all variables’ correlations are significantly different from 

zero, and that variables which are not significant predictors are dropped. However, 

some multicollinearity exists in which the PCA is used. As in Section 2.2.1, the dataset 

is separated on similar basis and first train the model to determine the importance of 

features using the Gini information criterion as depicted in Figure 4 

 

 
Figure 4: Feature importance for the classification model 
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The results, in Figure 4, support the inference in Section 2.1 that all variables are 

important predictors for the classification model. In addition, only 77% of the variables 

are required to explain at least 90% of the information for the target variable. This 

prompts to take all variables for the classification model and proceed to address the 

observed multicollinearity with PCA in Figure 5. 

 

 
Figure 5: PCA variance analysis for the classification model 

 

The PCA, in Error! Reference source not found., shows that more than 76% of c

omponents are required to explain 90% of the variance. Hence, dimensionality reduc-

tion is employed through PCA and only 20 components are retained for model devel-

opment. Table 4, shows the classification model performance before and after scaling 

and PCA. 

 

Table 4: Classification model performance before (shaded row) and after scaling/ PCA 

Model Train 

Accuracy 

Test 

Accuracy 

Computation Time 

(sec) 

Random forest (RF)  0.99978 0.880618 207 

0.9999654 0.848723 381 

Gradient boosting 

(GB) 

0.7212755 0.7168279 245 

0.67244438 0.66416666 485 

Extreme gradient 

boosting (XGB) 

0.834519982 0.807782258 48.7 

0.7920771 0.7470027 4 

 

The bias in RF is larger compared to the XGB classifier, so for the computational time, 

the XGB classifier without scaling and dimensionality reduction pipeline is adopted. 

 

2.2.3  Contribution estimation 

The dynamic model employs pure premium principle to find individual contribution, in 

which the cost is estimated by XGB regressor and probability of incurring the cost is 

estimated by the probabilistic XGB classifier. Individuals whose contributions are 

above 3 standard deviations of the whole sample individual contributions are classified 

as high-risk individuals, while others are normal-risk individuals. General individual 

contribution distributions follow beta distribution similar to individuals with normal 

risk, while high-risk individuals follow Pareto distribution with parameters as described 

in  
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Table . Based on the results, the estimated contributions can be reproduced without 

repeating the whole process (i.e., through simulations). Further the contribution distri-

butions at the family level are evaluated to build a better argument for comparison, 

since the community ratings also consider a group family contribution.  

 

Table 5: Individual contribution distribution parameters for NPS wave 5  
location shape Scale scale 

Beta 0.693809 559.894 
 

2316409 

Beta 0.637473 163.3372 
 

475851.1 

Pareto 1.851522 17002.53 
 

44731.99 

 

The rates in  

    Table 2, are used to simultaneously compute the contribution under the CR ap-

proach for all individuals in the validation data. The output for contributions estimation 

is further analyzed in the test of the hypothesis, which shows that contribution pricing 

seems to have a near-similar distribution to empirical pricing; however, CR is on a 

much broader scale than DP from the empirical spending distribution. Furthermore, 

they are from the same distribution family, see Figure 6 and 7. 

 

 
Figure 6: Individual (family level) contribution distribution comparison (a) Actual  

               (b) CR (c) DP 

 

 
Figure 7: Correlation heatmap 

(a) 

 

 

(b) 

 

 

(c) 
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3 Discussion 

The results from validation data (NPS wave 5), shows the dynamic pricing pipeline 

seems to have learned better about the distribution of healthcare costs from previous 

waves. This is because the estimated contribution rates follow the distribution of em-

pirical healthcare utilization cost, as per Figure 6, which is much better. Data attributes 

have significant information values for all target variables, and dimensionality reduc-

tion could not improve models’ performance from the initial feature selection.  Further-

more, the evidence from linear models shows a weak linear relation; thus, opting for 

nonlinear models is appropriate. The RF models have higher computational costs and 

are prone to overfitting despite producing higher performance than other approaches. 

The XGB models is adopted, illustrating a better bias-variance tradeoff and signifi-

cantly lower computational time. Healthcare spending follows very skewed distribu-

tions, and extremes exist, which are well learned by a DP model with the implication 

that high-risk individuals are expected to contribute much more than others; this can 

limit accessibility to low-income, high-risk individuals. The CR can be a better alter-

native to distributing extreme costs in this regard. However, this can be normalized to 

alternative premium principles, such as variance and standard deviation principles, as 

a significant proportion of the population is expected to make nearly zero contributions. 

Thus, it can pool the cost that each individual contributes to at least the mean of the 

projected healthcare cost for the whole scheme. This approach could ensure improved 

equity in accessing healthcare. 

At family level, how various factors could influence individual contributions are an-

alyzed, including gender distribution, age distribution (categorized in two, i.e., adults 

and children), and cost produced by the two models compared to empirical cost. At 

baseline, DP cost correlates more to actual cost than the CR approach. This is supported 

by the distribution of actual values as in Figure 7, whereby CR cost is highly correlated 

to actual cost, but the distribution of its values is different. The actual cost increases 

more for adults and females in age and gender categories than for children and males. 

On the other hand, a similar effect for particular categories is far higher in the CR ap-

proach and slightly lower in the DP approach, comprehending the relative effect on 

accessibility for the two approaches from the actual family use to be different. The test 

results in Table 6 for hypothesis of Section 1.2.2, against the actual cost for each ap-

proach and against one other, portray confident that CR significantly increases the cost 

from actual healthcare spending while the DP approach reduces it.  

 

Table 6: Hypotheses test summary 

  

Test statistic P- value 

Actual Cost Community Rating -75.3631 0 

Actual Cost Dynamic Pricing 5.519638 
 

Community Rating Dynamic Pricing 76.79101 0 

 

Furthermore, the DP approach also reduces the contribution cost compared to the CR 

approach. Subsequently, in the dimension of affordability, makes it confident that the 
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DP approach can significantly provide improved healthcare accessibility compared to 

CR or OOP approaches. 

For sensitivity analysis 10,000,000 simulations are performed to evaluate how the 

distribution of mean and variance is varied for the OOP, the contributions produced by 

CR model, and the contributions produced by the DP model.  Since the DP approach 

did not include external expenses incurred outside the actual settlement of the claim, 

the loading factor is adjusted, as explained in Section 1.2.2 to analyze how the induction 

of the expenses could affect the results, see Figure 8 and 9. 

 

 
Figure 8: Sensitivity analysis between CR and DP 

 

Figure 8, shows that when the loading factor ranges between 5.66 and 6.35, there is no 

significant difference between the CR and DP approaches. When it exceeds 6.35, the 

DP approach significantly increases the healthcare cost thus considered to lower 

healthcare access. 

 

 
Figure 9: Sensitivity analysis of models to actual cost 

 

In Figure 9, the results show that the loading factor does not impact the CR approach. 

In the DP approach, when the loading factor is between 0.09 and 0.2, the contribution 

rates are not significantly different from OOP. At loading above 0.2, the DP rates are 

significantly higher than OOP, thus, inferring the DP is not appropriate to enhancing 

healthcare accessibility over OOP.  



15 

The results imply that the DP approach provides a promising framework for opti-

mizing healthcare contributions and improving accessibility. By leveraging machine 

learning techniques and pure premium models, the DP approach demonstrates a nu-

anced understanding of healthcare cost distributions, effectively balancing individual 

contributions while ensuring equitable access. The comparison with traditional CR ap-

proaches highlights the DP model's superiority in aligning contribution rates with actual 

costs, potentially reducing individual financial burdens. 

Moreover, sensitivity analyses illuminate the DP model's robustness to varying ex-

ternal factors, offering insights into its adaptability and potential limitations. While 

computational costs and complexities remain challenging, the DP approach presents a 

viable solution for healthcare financing, warranting further exploration and refinement. 

4 Conclusion 

A comparative analysis of DP models and CR approach in healthcare financing with a 

link to healthcare access has been intensively explored through literature review and 

development of robust regression and classification models for predicting healthcare 

costs and individual contributions. The statistical techniques (linear regression and logit 

models) and ML algorithms are used to identify key factors influencing healthcare ex-

penditure. Different tests including KMO, BTS, and log-likelihood ratio test are per-

formed and utilized metrics including MAPE, RMSE, Adjusted R-squared, accuracy 

score, and F1-scored in data preprocessing and model evaluation, overcoming chal-

lenges such as multicollinearity. The analysis, unveiled the differential effect of DP on 

diverse demographic cohorts, offering insights crucial for shaping equitable healthcare 

access  policies. 

The research represents a significant leap toward redefining healthcare financing 

paradigms, highlighting the transformative potential of DP in fostering accessible and 

inclusive healthcare systems about CR and OOP. By harnessing the power of machine 

learning, have not only improved the accuracy of cost prediction but also shed light on 

the intricate dynamics of healthcare economics.  
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