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ABSTRACT 

In  this   research  paper,  it  is   proved  [RRN]   that  the  variance  of  a   discrete   random  variable, Z    

can  be  expressed  as a  quadratic  form  associated  with   a  Laplacian  matrix  i.e. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 [𝑍] =    𝑋𝑇  𝐺 𝑋,
𝑤ℎ𝑒𝑟𝑒  𝑋  𝑖𝑠  𝑡ℎ𝑒  𝑣𝑒𝑐𝑡𝑜𝑟  𝑜𝑓  𝑣𝑎𝑙𝑢𝑒𝑠  𝑎𝑠𝑠𝑢𝑚𝑒𝑑  𝑏𝑦  𝑡ℎ𝑒  𝑑𝑖𝑠𝑐𝑟𝑡𝑒  𝑟𝑎𝑛𝑑𝑜𝑚  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 

𝐺  𝑖𝑠  𝑡ℎ𝑒  𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛  𝑚𝑎𝑡𝑟𝑖𝑥  𝑤ℎ𝑜𝑠𝑒  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑  𝑖𝑛  𝑡𝑒𝑟𝑚𝑠  𝑜𝑓  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠.  We  

formally  state  and  prove   the  properties  of   Variance  Laplacian  matrix, G.  Some  implications of  the  

properties  of  such  matrix  to  statistics  are  discussed.  It  is   reasoned  that  several  interesting  

quadratic  forms  can  be   naturally  associated  with  statistical  measures   such  as  the  covariance  of   

two  random  variables.  It  is  hoped   that   VARIANCE  LAPLACIAN  MATRIX  G  will  be  of   significant  

interest   in  statistical  applications.  The  results  are  generalized  to  continuous  random  variables  

also.  It   is   reasoned   that  cross-fertilization  of  results  from  the  theory  of  quadratic  forms and  

probability  theory/statistics   will  lead  to   new  research  directions. 

 

1. Introduction: 

                          Structured  matrices  such  as  Toeplitz  matrix  naturally   arise  in  various  

application   areas  of  Mathematics,  Science  and  Engineering.  Specifically,  in  Probability  

Theory  as  well  as  Statistics,   the  autocorrelation  matrix  of   an  Auto-Regressive ( AR )  

random  process  is  a  Toeplitz   matrix.   Auto-Regressive   stochastic  processes  find  many  

applications  in  stochastic  modeling.  Motivated  by  practical   considerations,  detailed  

research  efforts  went  into   understanding  the  properties  of   Toeplitz  matrices  (  such  as   

connections  to  orthogonal  polynomials ).  For  instance,  considerable  research effort   

went  into  efficiently  inverting  a  Toeplitz  matrix  ( such as  Levinson-Durbin  algorithm ).    

                           In  the  research  area  of  Graph  theory,  a   structured  matrix  called  Laplacian  

naturally   arises.  It  is  defined  utilizing  the  adjacency  matrix  of  a  graph  (  which  essentially  

summarizes  the  adjacency  information  associated  with  the  vertices  of  graph ).  Thus,  

Graph  Laplacian  was  subjected   to  detailed  study  and  several  new  properties  of  it  are  

discovered.  Some  of   these  properties  have  graph-theoretic  significance.               

                          Effectively,   researchers  are  interested  in  discovering,  the  connections  

between  concepts  in  Probability/ Statistics   and  Structured  Matrices.  Discrete  random  

variables  find  many  applications  in  Statistics.  Thus,  a  curious  natural  question  is  to  see  if  

structured  matrices  are  naturally  associated  with  scalar  measures  of  discrete  random  

variables,  such  as   the  moments. 

 



2. Review  of  Related   Literature: 

                                                            In   the  field  of  mathematics,   research  related   to  

quadratic  forms   has   long   history   dating  back  to   the  time  of   Fermat,  Bhaskara  and  

others. Several  interesting  results  such  as  the  Rayliegh’s   theorem  were   discovered  and  

proved.  Quadratic  forms  have  connections  to  such  diverse  areas  such  as   topology,  

differential  geometry   etc.  To  the  best  of  our  knowledge,  the  author  discovered  for  the  

first  time   that  the  variance  of  a   discrete  random  variable  can  be  expressed  as  the  

quadratic  form  associated  with  a  Laplacian  matrix  ( of  probabilities )  [Rama].  This  

discovery  motivated  the  author  to   express  other   statistical/probabilistic  measures  as  

quadratic  forms.   This  line  of   research  enables   cross-fertiization  of   ideas   between  

probability  theory/ Statistics  and   the  theory  of   quadratic  forms.  

 

3. Variance  of  a  Discrete   Random  Variable:  Laplacian  Quadratic  Form: 

                                                                                                                                     Consider  a  discrete   

random  variable, Z  with  probability  mass  function  { 𝑝1, 𝑝2, … , 𝑝𝑁  }.  The  variance  of  Z  is  

given  by 

                     𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑍) = 𝑉𝑎𝑟(𝑍) =   𝐸(𝑍2) − ( 𝐸(𝑍) )2. 

 

Let   the  values  assumed  by  the  random  variable  Z  be  given  by  { 𝑇1, 𝑇2, … , 𝑇𝑁 }. Let  the  

associated  vector of  values  assumed  by  Z  be  denoted  by �̅�.   Hence,  we  have  that 

𝑉𝑎𝑟(𝑍) =   ∑𝑇𝑖
2

𝑁

𝑖=1

𝑝𝑖  −   ( ∑𝑇𝑖  𝑝𝑖  )
2 

𝑁

𝑖=1

 

= ∑𝑇𝑖
2

𝑁

𝑖=1

𝑝𝑖 −∑∑𝑇𝑖𝑇𝑗𝑝𝑖 𝑝𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

= �̅�𝑇[�̅� − �̃�]  �̅�, 

where  �̅� is  a  diagonal  matrix  whose  diagonal  elements  are { 𝑝1, 𝑝2, … , 𝑝𝑁  }    and  

�̃�𝑖𝑗 = 𝑝𝑖𝑝𝑗   for  all   1≤ 𝑖, 𝑗 ≤ 𝑁. 

Let  �̅� = �̅� − 𝑃.̃   Hence,  we  have  that   

                                  𝑉𝑎𝑟(𝑍) =  �̅�𝑇�̅�  𝑇.̅ 

               Thus,  we  have  shown   that   variance  of  discrete   random  variable  Z   constitutes  a  

quadratic  form  associated  with  the  matrix �̅� .   

Note:  Since  �̅�  is   the  vector  of  values  assumed  by  the  random  variable  Z,  the  components  of  �̅�  

are  necessarily  distinct  real  numbers. 

                          We  now  introduce  the  following  well  known  definition: 

Definition  1:  A  square   matrix  �̅� is  called  a  Laplacian  matrix   if  and  only  if  all  diagonal  elements 

of  it  are  all  positive,  all  non-diagonal  elements  are  non-positive  and  all   the  row  sums  are  all  

zero. 

                    Now, we  prove  that  the  square  matrix  �̅�  is  a   Laplacian  matrix. 

Lemma  1:  The  square  matrix  �̅�  is  a   Laplacian  matrix 



Proof:  From  the  definition  of  �̅�,  we  readily  have  that 

𝐺𝑖𝑖 =  𝑝𝑖 − 𝑝𝑖
2  =  𝑝𝑖( 1 − 𝑝𝑖). 

Also,  we  have  that 

                                                                    𝐺𝑖𝑗  = − 𝑝𝑖  𝑝𝑗   𝑓𝑜𝑟  𝑖 ≠ 𝑗 .   

Further 

     ∑ 𝐺𝑖𝑗  =   𝐺𝑖𝑖
𝑁
𝑗=1  +  

∑ 𝐺𝑖𝑗
𝑁
𝑗=1

𝑗 ≠ 𝑖
 =  𝑝𝑖( 1 − 𝑝𝑖)  − 

∑𝑁𝑗=1
𝑗 ≠ 𝑖

  𝑝𝑖  𝑝𝑗  =  𝑝𝑖( 1 − 𝑝𝑖) − 𝑝𝑖( 1 − 𝑝𝑖) = 0. 

Hence,  the  square   matrix  �̅�  is  a   Laplacian  matrix.                                       Q.E.D. 

Note:  In   the   case  of  a  discrete  random  variable  which  assumes  countably  many  values,  if  the  

variance  is  finite,  then   the  associated  quadratic  form  is  based  on  an  infinite  dimensional  

Laplacian  matrix. 

Note:  It  readily  follows   that  the  sum  of   two  variance  Laplacian  matrices  is  also  a  Laplacian 

matrix.  Under  some  conditions  on  the  elements  of  two  matrices,  the  sum  will  also  be  a  

Variance  Laplacian  matrix.  The  class  of   Variance  Laplacian  matrices  of  discrete   random  variables  

forms  an  interesting  algebraic  structure. 

Note:  In the case  of  specific  discrete  random  variables  ( such  as  Bernoulli,  Poisson,  Binomial  etc ),  

the  associated  Laplacian  matrix  can  easily  be  determined.  Also,  if  the  number  of   values  assumed  

by  the  random  variables  is  atmost  5,  the  eigenvalues  of  Laplacian  matrix  (  roots  of  the  

associated  characteristic  polynomial )  can  be  determined  by  algebraic  formulas  ( Galois  Theroy ).  

Example  1:   Specifically  when  the  dimension  of  �̅�  is  2  ( i.e.  the  random  variable, Z  is  Bernoulli  

random  variable ),  we   determine  its  eigenvalues  and  eigenvectors  explicitly.  Let   

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 {  𝑍 =   0 } = 𝑞 .  𝑇ℎ𝑒𝑛  𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡 

                                  �̅�  =   [ 
𝑞(1 − 𝑞) −𝑞(1 − 𝑞)

−𝑞(1 − 𝑞)   𝑞(1 − 𝑞)  
  ] = 𝑞(1 − 𝑞) [

1 −1
−1 1

 ].   

𝑇ℎ𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑎𝑟𝑒 { 0,2 (𝑞 − 𝑞2}.  𝑇ℎ𝑒 

𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚𝑎𝑙  𝑏𝑎𝑠𝑖𝑠  𝑜𝑓  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠  𝑎𝑟𝑒  

{
 

 

  

[
 
 
 
1

√2
1

√2]
 
 
 

,

[
 
 
 
1

√2
−1

√2]
 
 
 

  

}
 

 

.𝑊ℎ𝑒𝑛  𝑞 =
1

2
, 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙  𝑟𝑎𝑑𝑖𝑢𝑠  𝑖𝑠 

1

2
. 

Note:  Suppose   we  consider   a  discrete  random  variable  Z  which  assumes  the  values  { +1, -1 }.  In  

such  case,  it  is  easy  to  show  that 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑍) = 4 𝑞 ( 1 − 𝑞 ). 

Example 2:   We  now  consider   discrete  uniform  random  variable  whose  probability  mass  function  

is  given   by  { 
1

𝑁
,
1

𝑁
, … ,

1

𝑁
 }.   The  Variance  Laplacian  associated  with  it  is  given  by 



�̅� =

[
 
 
 
 
 
 
𝑁 − 1

𝑁2
−1

𝑁2
⋯

−1

𝑁2

−1

𝑁2
𝑁 − 1

𝑁2
⋯

−1

𝑁2
⋮
−1

𝑁2

⋮
−1

𝑁2

⋯
⋯

⋮
𝑁 − 1

𝑁2 ]
 
 
 
 
 
 

 . 

Since,  the  sum  of  absolute  values  of  elements  in  every  row  is  same,  the  spectral  radius  

𝑆𝑝(�̅� ) is  given by  (  using  well  known  result  in  linear  algebra )  

𝑆𝑝(�̅�) =     
2(𝑁 − 1) 

𝑁2
, 𝑇𝑟𝑎𝑐𝑒( �̅�) =  

𝑁 − 1

𝑁
 , 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(�̅�) = 0. 

Since  �̅�  is  a  right  circulant  matrix,  from  linear  algebra,  its eigenvalues  as well  as   eigenvectors  

can  be  explicitly  determined.  From  basic  argument,  we   now  determine  the  eigenvalues  of  �̅�.  

�̅�  can  be  rewritten  in  the  following  manner: 

�̅�  =   (
𝑁 − 1

𝑁2
)  𝐼 − 

1

𝑁2
  �̅�  , 𝑤ℎ𝑒𝑟𝑒  �̅�   𝑖𝑠  𝑎  𝑚𝑎𝑡𝑟𝑖𝑥  𝑤𝑖𝑡ℎ  𝑧𝑒𝑟𝑜 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑛𝑑  𝑎𝑙𝑙 

𝑡ℎ𝑒  𝑜𝑓𝑓 − 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  𝑒𝑞𝑢𝑎𝑙  𝑡𝑜 1′ ′.  𝑇ℎ𝑢𝑠 �̅�  =  �̅�  �̅�𝑇  − 𝐼, 𝑤ℎ𝑒𝑟𝑒  𝐼 𝑖𝑠 𝑡ℎ𝑒 

𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥  𝑎𝑛𝑑  �̅�  𝑖𝑠  𝑎  𝑐𝑜𝑙𝑢𝑚𝑛  𝑣  𝑒𝑐𝑡𝑜𝑟  𝑜𝑓 1′ ′𝑠.   𝐼𝑡  𝑟𝑒𝑎𝑑𝑖𝑙𝑦  𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑡ℎ𝑎𝑡  𝑡ℎ𝑒 

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑜𝑓�̅�  𝑎𝑟𝑒  { (𝑁 − 1),−1,−1,… ,−1 }.  𝐹𝑟𝑜𝑚  𝑏𝑎𝑠𝑖𝑐  𝑙𝑖𝑛𝑒𝑎𝑟  𝑎𝑙𝑔𝑒𝑏𝑟𝑎, 

  𝑖𝑓 𝛼′ ′ 𝑖𝑠  𝑎𝑛  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒  𝑜𝑓 �̅� , 𝑡ℎ𝑒𝑛  𝑡ℎ𝑒  𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝜇 𝑜𝑓  �̅�  𝑖𝑠  

𝜇 = (
𝑁 − 1

𝑁2
)  − 

1

𝑁2
  𝛼  .   

Thus,  we  infer  that  the  eigenvalues  of  �̅�  are  {0,
1

𝑁
 ,
1

𝑁
 , … .,

1

𝑁
 }.  

    Now,  we  arrive  at   the  spectral  representation  of   such  a  structured  �̅� .  Let ‘0’  be  the  first  

eigenvalue  and   𝑓1̅  be  the  corresponding   right  eigenvector. 

�̅�  =  
1

𝑁
∑𝑓�̅�  �̅�𝑖

𝑇  =  ∑�̅�𝑖

𝑁

𝑖=2

𝑁

𝑖=2

  , 𝑤ℎ𝑒𝑟𝑒  �̅�𝑖
′𝑠   𝑎𝑟𝑒  𝑟𝑒𝑠𝑖𝑑𝑢𝑒  𝑚𝑎𝑡𝑟𝑖𝑐𝑒.  

It  is  well  known  that  ∑ �̅�𝑖
𝑁
𝑖=1  =   𝐼 ̅  i.e.  identity  matrix.  Hence ∑ �̅�𝑖

𝑁
𝑖=2  = 𝐼 ̅  −

1

𝑁
 �̅� �̅�𝑇 , 𝑤ℎ𝑒𝑟𝑒  

�̅�   is  a  column  vector  all  of  whose   components  are   ‘1’. 

Note:  The  matrix,  -�̅�  constitutes   a generator  matrix  of  a  finite  state  space  Continuous  Time  

Markov  Chain  ( CTMC ). Thus  a  discrete  random  variable  can  be  associated  with  a  CTMC. Since  in  

this  case,  the  generator  matrix  of  CTMC  is  symmetric,  the  equilibrium  probability  distribution  is  

the  uniform  probability  mass  function. 

Note:  Now,  we  show  that  a  Discrete  Time  Markov  Chain  (DTMC)  can  be  naturally  associated  

with  a  discrete  random  variable  using  the  related   Variance  Laplacian  𝐺.̅  We  have  that 



�̅� = �̅� − �̃� =  �̅� (𝐼 − �̅�−1�̃�).  𝑆𝑖𝑛𝑐𝑒  �̅�  𝑖𝑠  𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛  𝑎𝑛𝑑  �̅�  𝑖𝑠  𝑛𝑜𝑛 − 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟, 𝑖𝑡  𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑡ℎ𝑎𝑡 

 �̅�−1�̃� �̅� =  𝐻 ̅̅ ̅�̅� = �̅�. 

Hence,  �̅�  is  a  stochastic  matrix  (  being   non-negative  and  row  sums  are  all  one )  which  is  

naturally  associated  with  the  discrete  random  variable. 

                        In  general,  since,  �̅�  is  a  symmetric  matrix,  it  is  completely  specified  by  the  

eigenvalues  and  eigenvectors. 

Now,  we  briefly  summarize  few  properties   of  �̅�   matrix   that   readily  follow. 

(i) Let  �̅�  be  a   column  vector  of  1’s ( ONES )  i.e.  �̅� = [ 1  1 …1 ]𝑇. 

From  Lemma  1,  we   have   that   �̅��̅� ≡ 0̅ .  Hence  ‘0’  is  an  eigenvalue  of  �̅�  and  the  

corresponding  eigenvector  is  �̅� . 

 

(ii) Since  Variance [Z]   is  non-negative, we  have  that  the quadratic  form  

 �̅�𝑇�̅�  𝑇 ̅  ≥ 0  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑣𝑒𝑐𝑡𝑜𝑟𝑠  �̅� .  Hence  the  Laplacian  matrix  �̅�  is  a  positive  semi-

definite  matrix.  Thus,  all   eigenvalues  of  �̅�   are  real  and  non-negative. 

 

We  now  derive  an  important  property  of   �̅�   𝑖𝑛  𝑡ℎ𝑒  𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔  𝐿𝑒𝑚𝑚𝑎. 

 

 Property  (iii): 

Lemma  2:   The  spectral   radius,  𝜇𝑚𝑎𝑥  ( i.e.  largest  eigenvalue  of  �̅�  ) is  less  than  or  equal  to  
1

2
 .   

Proof:   From  linear  algebra  ( particularly  matrix  norms ),  it  is  well  known  that  the  spectral  radius  

of  any  square  matrix  �̅�  i.e.  Sp(�̅� )  is  bounded  in  the  following  manner: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒  𝑟𝑜𝑤  𝑠𝑢𝑚 ( �̅� )  ≤   𝑆𝑝( �̅�  ) ≤ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚  𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒  𝑟𝑜𝑤  𝑠𝑢𝑚 (�̅�  ). 

But,  in  the  case  of  Laplacian  matrix  �̅�,  we  have   that 

∑| 𝐺𝑖𝑗  |  = 2  𝑝𝑖( 1 − 𝑝𝑖)   𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖 .

𝑁

𝑗=1

 

Hence,  using  the  above  fact  from  linear  algebra,  we  have  that  

𝑀𝑖𝑛
𝑖
 {  2  𝑝𝑖( 1 − 𝑝𝑖) }  ≤ 𝑆𝑝( �̅�  ) ≤

𝑀𝑎𝑥
𝑖
{  2  𝑝𝑖( 1 − 𝑝𝑖) } .  

Using  the  fact  that,  𝑝𝑖
′𝑠   𝑎𝑟𝑒  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 𝑤𝑒  𝑛𝑜𝑤  𝑏𝑜𝑢𝑛𝑑   

𝑀𝑎𝑥
𝑖
{  2  𝑝𝑖( 1 − 𝑝𝑖) }.   

Let    𝑓(𝑝𝑖) = {  2  𝑝𝑖( 1 − 𝑝𝑖) } =  2 𝑝𝑖 − 2 𝑝𝑖
2.   We  now  calculate  the  critical  points  of  𝑓(𝑝𝑖) 

𝑓′(𝑝𝑖 ) =   2 − 4 𝑝𝑖 = 0.  𝐻𝑒𝑛𝑐𝑒  𝑝𝑖 = 
1

2
  𝑖𝑠  𝑡ℎ𝑒  𝑢𝑛𝑖𝑞𝑢𝑒  𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  𝑝𝑜𝑖𝑛𝑡  𝑖𝑛  𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒  𝑟𝑒𝑔𝑖𝑜𝑛. 

𝐴𝑙𝑠𝑜, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡  𝑓′′(𝑝𝑖) =  −4.  𝑇ℎ𝑢𝑠  𝑡ℎ𝑒  𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  𝑝𝑜𝑖𝑛𝑡 𝑖𝑠  𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑜𝑓   𝑓(𝑝𝑖). 



Thus,  𝑓 (
1

2
) =  

1

2
 .  𝐻𝑒𝑛𝑐𝑒  𝑤𝑒  𝑟𝑒𝑎𝑑𝑖𝑙𝑦  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡  𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙  𝑟𝑎𝑑𝑖𝑢𝑠  𝑜𝑓 �̅�  𝑖. 𝑒. 𝑆𝑝( �̅� )  ≤

1

2
 .   Q.E.D. 

Note:   The  function 𝑓(𝑝𝑖)  consitutes   the  well  known  logistic  map  whose  properties  were  

investigated   by  several  researchers. 

Goals:  

 Goal   1:  In   view  of  the  above   discovery  related  to the   variance  of  a   discrete  random  

variable (  i.e.  Laplacian  quadratic  form ),  we   would  like  to  discover  other  quadratic  forms    

which  naturally  arise  in  probability/statistics.   

 

 Goal  2:  Once  the  interesting  quadratic  forms  are  identified,  the   results   from   the theory  

of  quadratic   forms  (  for  example,  Rayleigh’s   Theorem )  are   applied   to  statistical/ 

probabilistic  quadratic  forms.  On  the  other  hand,  results  related  to  statistical / 

probabilistic  quadratic   forms    are   invoked  to  derive  new  results  in  the  theory  of  

quadratic  forms  (  such  as  inequalities    between  quadratic  forms ). 

 

 We  now  derive   a  specific  inequality  associated  with  quadratic  forms  based  on  

statistical/probabilistic  quadratic  forms: 

 

Consider  a  vector  �̅�  whose  components  are  all  positive  real  numbers.  It  readily  follows  

that  by  means  of  the   following  normalization  procedure,  it  can  be  converted  into  a  

probability  vector �̅� ( i.e  vector  whose  components   are   probabilities  and  sum  to  one  i.e. 

probability  mass  function  of  a   random  variable,  say  Z ).  Let  the  vector  of  values  assumed  

by  the  random  variable  Z  be  �̅� . 

�̅�  =  
�̅�

∑ 𝐾𝑖
𝑁
𝑖=1

 =   
�̅�

𝛼
 . 

But,  we  know  that  the  variance  of   discrete  random  variable  Z  is  non-negative.  Hence 

�̅�𝑇 ( 𝑑𝑖𝑎𝑔 ( 𝑝 ̅ )  − �̅�   �̅�𝑇  ) �̅�  ≥ 0, 𝑤ℎ𝑒𝑟𝑒  𝑑𝑖𝑎𝑔(�̅� )  𝑖𝑠  𝑎  𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝑚𝑎𝑡𝑟𝑖𝑥  𝑤ℎ𝑜𝑠𝑒 
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  𝑎𝑙𝑙  𝑡ℎ𝑒  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  𝑜𝑓  𝑣𝑒𝑐𝑡𝑜𝑟  �̅�.  

It   readily  follows  that  (  on  using  the  above  normalization  equation ),  we  have   the  

following  inequality: 

𝛼  (  �̅�𝑇 ( 𝑑𝑖𝑎𝑔 ( �̅� ) ) 𝑇 ̅)   ≥  (  �̅�𝑇 (  �̅�   �̅�𝑇  ) �̅� )   𝑓𝑜𝑟  𝑎𝑙𝑙  �̅� , �̅�, 𝛼. 

 

 We  now  derive  an  interesting  equality  between  quadratic   form  based  on  symmetric  

matrices  of  different  dimensions.  This  equality  is  derived  based on  the  well  known  fact  

that  the  variance  of  the  random  variable   which  sum  of  two  different  independent  

random  variables  is  the  sum  of  their  variances  i.e.  Suppose  𝑍1, 𝑍2  are  two  independent  

random  variables,  then   

 

             𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒( 𝑍3) =   𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒( 𝑍1 + 𝑍2) =   𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ( 𝑍1 ) + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ( 𝑍2 ). 

 

𝐿𝑒𝑡  𝑡ℎ𝑒  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒  𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛  𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑤𝑖𝑡ℎ  𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠   
{ 𝑍1, 𝑍2 } 𝑏𝑒  𝐺1̅̅ ̅  , 𝐺2 ̅̅ ̅̅  respectively.  Also,  let  the  two  discrete  random  variables  assume  the  

same set  of  values.   It  is  well  known  that  the  probability  mass  function  of  𝑍3(=  𝑍1 + 𝑍2) 



𝑖𝑠  the  convolution  of  probability  mass  functions  of  { 𝑍1, 𝑍2 }.  Also,  it  readily  follows  that  

if  the  vector, �̅�  of  set  of  values  assumed  by  random  variables  𝑍1  𝑎𝑛𝑑  𝑍2  is  an  N x 1  

vector, then  the  probability  mass  function  of  𝑍3  is  a  vector �̃�  of   length  2N-1. Let the  

variance  Laplacian  of  𝑍3  be  𝐺.̃    From  the  above  well  known  fact  from  probability  theor, 

It  readily  follows   that  

�̃�𝑇 �̃� �̃�  =    �̅�𝑇 �̅�1 �̅� +   �̅�
𝑇 �̅�2 �̅� . 

 

The  above  is  an  equality  between   two   quadratic  forms   based  on  matrices  of  different  

dimensions.  Similar  equality  can  be  derived  based   on  positive  vectors. 

              We  now  state  the  following   Theorem,  useful   in  bounding  the  variance  of  Z. 

Rayleigh’s  Theorem:  The  local/global  optimum  values  of  a  quadratic  form  evaluated  on  the  unit  

Euclidean  hypersphere  (  constraint  set )  are   the  eigenvalues  and  they  are  attained  at  the  

corresponding  eigenvectors.     

Using   Rayleigh’s   theorem,  we   arrive  at   the  following  result. 

Lemma  3:  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒( 𝑍 )   ≤   
1

2
  ( 𝐿2 − 𝑛𝑜𝑟𝑚 ( �̅�) )2   .   

Proof:   Formally,  if  the  vector  of  values  assumed  by  the  random  variable  i.e.  �̅�  lies   on  the  unit  

Euclidean  hypersphere, then we  have  that 

𝜇𝑚𝑖𝑛 ≤ �̅�𝑇�̅�  𝑇 ̅ ≤ 𝜇𝑚𝑎𝑥  ≤
1

2
 ,            𝑖𝑓  𝐿2 − 𝑛𝑜𝑟𝑚  (  �̅� ) = 1. 

Suppose   𝐿2 − 𝑛𝑜𝑟𝑚  (  �̅� ) ≠ 1 .   Then,  we   readily   have   that    
�̅�

   𝐿2−𝑛𝑜𝑟𝑚  (  �̅� )
  is  a   vector  whose   

 𝐿2 − 𝑛𝑜𝑟𝑚  𝑖𝑠  𝑒𝑞𝑢𝑎𝑙  𝑡𝑜  𝑜𝑛𝑒   𝑎𝑛𝑑  𝑡ℎ𝑒  𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ′𝑠   𝑇ℎ𝑒𝑜𝑟𝑒𝑚  𝑐𝑎𝑛  𝑏𝑒  𝑎𝑝𝑝𝑙𝑖𝑒𝑑  𝑡𝑜  𝑡ℎ𝑒   

𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑓𝑜𝑟𝑚   𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑖𝑡.  Thus,  it  follows   that 

𝜇𝑚𝑖𝑛  ( 𝐿
2 − 𝑛𝑜𝑟𝑚 ( �̅�) )2 ≤ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒( 𝑍 )   ≤   𝜇𝑚𝑎𝑥  ( 𝐿

2 − 𝑛𝑜𝑟𝑚 ( �̅�) )2. 

Hence,  by  applying  the  earlier  upper  bound  on  spectral  radius,  we  have 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒( 𝑍 )   ≤   
1

2
  ( 𝐿2 − 𝑛𝑜𝑟𝑚 ( �̅�) )2   .                  𝑄. 𝐸. 𝐷. 

Note:   The  above  bound  on   variance  of  a   discrete  random  variable   can  be  used  alongwith  

Chebyshev/Bienyme   inequality  in  probability  theory. 

 

Note:  We   can  consider  a   vector  whose  components  are   the   finitely  many  eigenvalues  of  the  

Laplacian  matrix.  Let   it  be  denoted  by  𝜇 ̅ i.e.  �̅� = ( 𝜇1 𝜇2…𝜇𝑁  )
𝑇.  As  in   the  case  of  any  vector,  

various   𝐿𝑝 − 𝑛𝑜𝑟𝑚𝑠  of  such  vector   can  be  defined. 

 Property  (iv)  :   Now,  we  consider   sum  of  eigenvalues  of  �̅�  i.e.  𝑇𝑟𝑎𝑐𝑒( �̅�  ). 

It   readily  follows   that  



        𝑇𝑟𝑎𝑐𝑒( 𝐺 ̅)= 𝐿1 − 𝑛𝑜𝑟𝑚 (�̅�) =   ∑ 𝑝𝑖( 1 − 𝑝𝑖)  =   ∑ ( 𝑝𝑖 
𝑁
𝑖=1 

𝑁
𝑖=1 − 𝑝𝑖

2) = 1 −  ∑ 𝑝𝑖
2𝑁

𝑖=1 = ∑ 𝜇𝑖 .
𝑁
𝑖=1  

Letting  �̅� =  [ 𝑝1  𝑝2…𝑝𝑁  ]
𝑇   ( 𝑖. 𝑒. 𝑣𝑒𝑐𝑡𝑜𝑟  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑚𝑎𝑠𝑠  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ), we have 

𝐿1 − 𝑛𝑜𝑟𝑚 (�̅�) + 𝐿2 − 𝑛𝑜𝑟𝑚 (�̅�) = 1. 

Since,  𝑇𝑟𝑎𝑐𝑒( 𝐺 ̅ )  is  the  sum  of   eigenvalues,  we  have  the  following  obvious  bounds: 

𝑁 𝜇𝑚𝑖𝑛 ≤ 𝑇𝑟𝑎𝑐𝑒( �̅�) ≤ 𝑁𝜇𝑚𝑎𝑥 . 

Treating   the  matrix  �̅�  as  a  vector,  it  readily  follows   that   

𝐿1 − 𝑛𝑜𝑟𝑚 (�̅�)  =   2  𝑇𝑟𝑎𝑐𝑒 (�̅� ) = 2 ( 1 − 𝐿2 − 𝑛𝑜𝑟𝑚 (�̅�)  ). 

Thus, 

𝐿1 − 𝑛𝑜𝑟𝑚 (�̅�) + 2 ( 𝐿2 − 𝑛𝑜𝑟𝑚 (�̅�) )   =   2.   

    The  following  Lemma   provides  an  interesting   upper  bound  on    𝑇𝑟𝑎𝑐𝑒( �̅� ). 

Lemma  4:  Let  �̅�  be   an  N x N  matrix.  Then  Trace(�̅�  ) has   the  following  upper  bound. 

                                              𝑇𝑟𝑎𝑐𝑒( 𝐺 ̅)  ≤ ( 1 − 
1

𝑁
 ) .  

Proof:  Let   { 𝑝1 , 𝑝2 , … , 𝑝𝑁  }  be   the   probability  mass  function  of   random  variable  Z. 

We  now  apply  the  Lagrange-mulitpliers  method  to  bound  ∑ 𝑝𝑖
2𝑁

𝑖=1  . The  objective  function  for  the 

optimization  problem  is  given  by 

𝐽 ( 𝑝1, 𝑝2 , … , 𝑝𝑁 ) =   ∑ 𝑝𝑖
2𝑁

𝑖=1    with  the  constraint  that  the  probabilities   sum  to  one.  Hence  the  

Lagrangian   is  given  by 

                                                  𝐿 ( 𝑝1, 𝑝2 , … , 𝑝𝑁 ) =   ∑ 𝑝𝑖
2𝑁

𝑖=1  +  𝛼  (  ∑ 𝑝𝑖
𝑁
𝑖=1  – 1 ). 

Now,  we   compute  the  critical  point   and   the  components  of  the  Hessian  matrix: 

𝛿𝐿

𝛿𝑝𝑖
 =   2 𝑝𝑖 + 𝛼  ,   

𝛿2𝐿

𝛿𝑝𝑖
2  =   2  𝑓𝑜𝑟  𝑎𝑙𝑙 𝑖′ ′ ,

𝛿2𝐿

𝛿𝑝𝑖𝛿𝑝𝑗
 = 0  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖 ≠ 𝑗. 

Hence,  there  is  a  single  critical  point  and  the   Hessian  matrix  is  positive  definite  at  the  critical  

point.  Thus,  we  conclude  that   the  objective  function  has  a  unique  minimum  and  occurs  at  

𝛿𝐿

𝛿𝑝𝑖
= 0   𝑖. 𝑒.   𝑝𝑖 = 

−𝛼

2
 .  𝑈𝑠𝑖𝑛𝑔   𝑡ℎ𝑒  𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑠𝑢𝑚  𝑡𝑜  𝑜𝑛𝑒, 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝛼 = 
−2

𝑁
.  𝑇ℎ𝑢𝑠, 𝑡ℎ𝑒  𝑔𝑙𝑜𝑏𝑎𝑙  𝑚𝑖𝑛𝑖𝑚𝑢𝑚  𝑜𝑐𝑐𝑢𝑟𝑠  𝑎𝑡  𝑝𝑖 = 

1

𝑁
  𝑓𝑜𝑟  𝑎𝑙𝑙 𝑖′ ′. 

Equivalently,  we  have  the  following  upper  bound  on  𝑇𝑟𝑎𝑐𝑒( 𝐺 ̅). 

𝑇𝑟𝑎𝑐𝑒( 𝐺 ̅)  ≤ ( 1 − 
1

𝑁
 )  .                                  𝑄. 𝐸. 𝐷. 

𝑪𝒐𝒓𝒐𝒍𝒍𝒂𝒓𝒚:  𝑊𝑒  𝑛𝑜𝑤  𝑏𝑜𝑢𝑛𝑑  𝑡ℎ𝑒  𝑠𝑒𝑐𝑜𝑛𝑑  𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 , 𝜇2  𝑜𝑓  �̅�.   𝐼𝑡 𝑖𝑠  𝑐𝑙𝑒𝑎𝑟  𝑡ℎ𝑎𝑡 

 



𝑇𝑟𝑎𝑐𝑒( 𝐺 ̅)  ≤ ( 1 − 
1

𝑁
 ) .  𝐹𝑢𝑟𝑡ℎ𝑒𝑟   (𝑁 − 1)𝜇2 ≤ 𝑇𝑟𝑎𝑐𝑒( 𝐺 ̅).  𝐻𝑒𝑛𝑐𝑒  𝜇2 ≤

1

𝑁
 .  Thus,  we  have 

𝜇2 ∈   (0,
1

𝑁
 ]   𝑎𝑛𝑑  𝜇𝑖 ∈ [ 

1

𝑁
 ,

1

2
]    𝑓𝑜𝑟  𝑖 ≥ 3.   𝐼𝑡  𝑎𝑙𝑠𝑜   𝑟𝑒𝑎𝑑𝑖𝑙𝑦   𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑡ℎ𝑎𝑡 

𝜇2 + (𝑁 − 2) 𝜇3 ≤ 𝑇𝑟𝑎𝑐𝑒( �̅� ).   
𝑆𝑖𝑛𝑐𝑒, 𝜇2  𝑖𝑠  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑒  𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔  

𝑢𝑝𝑝𝑒𝑟  𝑏𝑜𝑢𝑛𝑑  𝑜𝑛  𝜇3.   𝑀𝑜𝑠𝑡  𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑙𝑦,   𝑠𝑖𝑛𝑐𝑒  𝑡ℎ𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑎𝑟𝑒  𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒,

𝑤𝑒   ℎ𝑎𝑣𝑒  𝑡ℎ𝑒  𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔   𝑏𝑜𝑢𝑛𝑑𝑠   

 ( 𝑁 − 𝑗 ) 𝜇𝑗+1 ≤ 𝑇𝑟𝑎𝑐𝑒(�̅� ) ≤
𝑁−1

𝑁 
   𝑓𝑜𝑟  1 ≤ 𝑗 ≤ (𝑁 − 1)    𝑄. 𝐸. 𝐷.  

Note:  The  upper  bound   on Trace( �̅� )  is  attained  for  uniform  probability  mass  function  

 i.e.  𝑝𝑖 = 
1

𝑁
  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖. 

Note:  Consider  an  arbitrary  positive  definite  symmetric  matrix, �̅�  with  positive  eigenvalues  

{ 𝛿1, 𝛿2, … , 𝛿𝑁  }.  The  idea  utilized  in the  above  corollary  can  be  used  to  bound  the  eigenvalues  in  

terms  of  𝑇𝑟𝑎𝑐𝑒( �̅� ).  We  explicitly  state  the  following  bounds  which  follow   from  the  argument  

used  in  the   above  corollary 

 

0 < 𝛿𝑗 ≤
𝑇𝑟𝑎𝑐𝑒( �̅� )    

(𝑁 − 𝑗 + 1)
≤

𝑁𝛿𝑚𝑎𝑥
(𝑁 − 𝑗 + 1) 

  𝑓𝑜𝑟   1 ≤ 𝑗 ≤ (𝑁 − 1). 

 

The  bounding  idea  used  in  the  above  corollary  applies  to  an  arbitrary  positive  semi-definite  

matrix.  Also,  the  bounding  idea  is  easily  utilized  for  bounding  the  eigenvalues  of  an  arbitrary  

negative  definite/negative  semi-definite  matrix.  It  should  also  be  noted  that  the  Gerschgorin Disc  

theorem  can  also  be  readily  applied  for  bounding  the  eigenvalues. 

Note:   We   now   apply   the   well  known  inequality   relating   the  arithmetic   and   geometric  mean  

of  finitely  many    non-negative   real  numbers  i.e.  {  𝑥𝑖  }𝑖=1.
𝑁   𝑡𝑜  𝑏𝑜𝑢𝑛𝑑   𝑡ℎ𝑒  𝑡𝑟𝑎𝑐𝑒  𝑜𝑓  𝑎  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 ( 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑠𝑒𝑚𝑖 − 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 ) 𝑚𝑎𝑡𝑟𝑖𝑥.    The  inequality  is  given  by 

∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
  ≥ √𝑥1𝑥2…𝑥𝑁

𝑁    𝑤𝑖𝑡ℎ  𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦  𝑖𝑓  𝑎𝑛𝑑  𝑜𝑛𝑙𝑦  𝑥1 = 𝑥2 = ⋯ .= 𝑥𝑁   . 

Thus,  in   the   case  of   a  positive  definite  matrix,  A,  we  have  that   

𝑇𝑟𝑎𝑐𝑒(𝐴)

𝑁
≥ √𝑎11𝑎22… . 𝑎𝑁𝑁  , 𝑤ℎ𝑒𝑟𝑒   𝑎𝑖𝑖

′ 𝑠   𝑎𝑟𝑒  𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑜𝑓   𝐴. 

Hence,  in  the  case  of  variance  Laplacian  matrix  �̅�,  we   have   that 

𝑇𝑟𝑎𝑐𝑒(�̅�)

𝑁
=
∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑁
𝑖=1

𝑁
≥ √𝑝1…𝑝𝑁(1 − 𝑝1)… (1 − 𝑝𝑁)

𝑁
  . 

Note:   The  quantity  in  the   brackets  on  the  right  hand  side  of  the  above  inequality   can  be  

associated  with  any  probability  mass  function   and   can  be  readily  provided  with  probabilistic  



interpretation  ( using repeated  trials ).  It  can  readily  shown  using  Lagrange  multiplier’s  method  

that   the  quantity  is  maximized  for  uniform  probability  mass  function  (  i.e.  the  probability  mass  

function  with  maximum  Shannon  entropy ). Such   a  measure   can  be   denoted  by  

𝑀( 𝑝1 , 𝑝2 , … , 𝑝𝑁  ). 

It   can  be  readily   seen  that   for  N = 2,  𝑀( 𝑝1 , 𝑝2) = 2( 𝑝1𝑝2 ) and    

for  N=3,  𝑀( 𝑝1, 𝑝2, 𝑝3) = 𝑝1(𝑝2 + 𝑝3) 𝑝2(𝑝3 + 𝑝1)𝑝3(𝑝1 + 𝑝2) 𝑖. 𝑒.  ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  𝑜𝑓   

𝑑𝑒𝑔𝑟𝑒𝑒 6′ ′ 𝑖𝑛  𝑡ℎ𝑒  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝1, 𝑝2, 𝑝3.   For  arbitrary  N,  it  readily  follows  that 

𝑀( 𝑝1 , 𝑝2 , ., 𝑝𝑁  )  𝑖𝑠  ℎ𝑜𝑚𝑒𝑔𝑒𝑛𝑜𝑢𝑠  𝑚𝑢𝑙𝑡𝑖 − 𝑣𝑎𝑟𝑖𝑎𝑡𝑒  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  𝑜𝑓  𝑑𝑒𝑔𝑟𝑒𝑒  2𝑁 

  𝑖𝑛  𝑝1 , 𝑝2 , … , 𝑝𝑁  .  It  is   a  scalar  measure  associated  with  the  probability  mass  function. 

                                    Since  𝜇𝑚𝑎𝑥  𝑖𝑠  𝑡ℎ𝑒  𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙  𝑟𝑎𝑑𝑖𝑢𝑠  𝑜𝑓  �̅�, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡 

(𝑁 − 1) 𝜇𝑚𝑎𝑥
𝑁

≥ √𝑝1…𝑝𝑁
𝑁  √(1 − 𝑝1)… (1 − 𝑝𝑁) 

𝑁
. 

Thus,  we  have  that  𝜇𝑚𝑎𝑥 ≥
𝑁

𝑁−1
  ( √𝑝1…𝑝𝑁

𝑁  √(1 − 𝑝1)… (1 − 𝑝𝑁) 
𝑁

). 

In  the above  equation,  equality  is  attained   for  the  uniform  probabaility  mass  function  i.e. 

𝑝𝑖 = 
1

𝑁
  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖. 

Note:   The   finite   condition   number  of  Laplacian  matrix  �̅�  is   defined   as   
𝜇𝑚𝑎𝑥

𝜇𝑚𝑖𝑛
,  where  𝜇𝑚𝑖𝑛  is  

the  smallest  non-zero  eigenvalue  of �̅�   and  𝜇𝑚𝑎𝑥  is  the  spectral  radius  of  �̅�.  Using  the  content  

of  Lemma  2   and  above   corollary,  the   following  lower   bound  on  finite  condition  number  of  �̅�  

follows: 

                         as   
𝜇𝑚𝑎𝑥

𝜇𝑚𝑖𝑛
≥ 2 𝑁 𝑝𝑚𝑖𝑛( 1 − 𝑝𝑚𝑖𝑛 ),  where  

𝑝𝑚𝑖𝑛  𝑖𝑠  𝑡ℎ𝑒  𝑚𝑖𝑛𝑖𝑚𝑢𝑚  𝑜𝑓  𝑎𝑙𝑙  𝑡ℎ𝑒  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠  𝑖𝑛  𝑡ℎ𝑒  𝑃𝑀𝐹  𝑜𝑓  𝑟𝑎𝑛𝑑𝑜𝑚  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  𝑍. 

 

 Connections   to   Statistical  Mechanics: 

Note:   The  expression  for  𝑇𝑟𝑎𝑐𝑒( 𝐺 ̅)  has  familiar   relationship  to  Tsallis  Entropy  concept  from  

statistical  mechanics.  We  have  the  following  Definition: 

Definition:  Tsallis  entropy  of  a  probability  mass   function  { 𝑝1 , 𝑝2 , … , 𝑝𝑁  }  is  defined  as 

𝑆𝑞(�̅� ) =   
𝑘

𝑞 − 1
   (1 −  ∑𝑝𝑖

𝑞

𝑁

𝑖=1

) , 𝑤ℎ𝑒𝑟𝑒 𝑘′ ′ 𝑖𝑠  𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝑎𝑛𝑑   𝑞  𝑖𝑠  𝑟𝑒𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟. 

We   can  express  𝑆𝑞(�̅� )  in  the  following  form  for  integer  values  of  ‘q’ : 

𝑆𝑞(�̅� ) =
𝑘

𝑞 − 1
 [  (𝑝1 + 𝑝2 +⋯+ 𝑝𝑁)

𝑞 − ∑𝑝𝑖
𝑞

𝑁

𝑖=1

].   



𝑇ℎ𝑢𝑠, 𝑢𝑠𝑖𝑛𝑔  𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙  𝑡ℎ𝑒𝑜𝑟𝑒𝑚 , 𝑅𝐻𝑆  𝑐𝑎𝑛  𝑏𝑒  𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑  𝑎𝑠 𝑎  𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  𝑖𝑛 𝑝𝑖
′𝑠.  

 We  now  explore  the  algebraic  structure  of  Tsallis  entropy,  𝑆𝑞(�̅� ) for  integer  values  of  ‘q’.    

Thus   

𝑆𝑞(�̅� ) =   
𝑘

𝑞 − 1
   (1 −  ∑𝑝𝑖

𝑞

𝑁

𝑖=1

)  =  
𝑘

𝑞 − 1
   (∑𝑝𝑖 −∑𝑝𝑖

𝑞

𝑁

𝑖=1

𝑁

𝑖=1

) =
𝑘

𝑞 − 1
   (  ∑𝑝𝑖(1 − 𝑝𝑖

𝑞−1
)

𝑁

𝑖=1

).  

Using    the  expression  for  sum  of  a  geometric  sequence, we  have  that 

𝑆𝑞(�̅� ) =
𝑘

𝑞 − 1
   (  ∑𝑝𝑖(1 − 𝑝𝑖

𝑞−1

𝑁

𝑖=1

)) =
𝑘

𝑞 − 1
   (  ∑𝑝𝑖(1 − 𝑝𝑖)(1 + 𝑝𝑖 + 𝑝𝑖

2 +⋯ .+𝑝𝑖
𝑞−2

𝑁

𝑖=1

)   .  

We   let    𝑆𝑞(�̅� ) = ∑ ℎ(𝑝𝑖)
𝑁
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒  𝑡ℎ𝑒  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  ℎ(𝑝𝑖) ℎ𝑎𝑠  𝑧𝑒𝑟𝑜𝑒𝑠  𝑎𝑡 0′ ′,′ 1′, 

(𝑞 − 2)𝑡ℎ  𝑟𝑜𝑜𝑡𝑠  𝑜𝑓  𝑢𝑛𝑖𝑡𝑦.   

We,  also  readily    have  that 

 𝑇𝑟𝑎𝑐𝑒( �̅� ) =  𝑘  𝑆2(�̅� ) , 𝑤ℎ𝑒𝑟𝑒  �̅�  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑠  𝑡ℎ𝑒  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑚𝑎𝑠𝑠  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 
𝐼𝑛  𝑣𝑖𝑒𝑤 𝑜𝑓 𝑡ℎ𝑖𝑠  𝑟𝑒𝑠𝑢𝑙𝑡, 𝑜𝑡ℎ𝑒𝑟  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠  𝑜𝑓  𝑡ℎ𝑒  𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  𝑐𝑎𝑛   

𝑏𝑒  𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑑  𝑎𝑠  𝑒𝑛𝑡𝑟𝑜𝑝𝑦  𝑡𝑦𝑝𝑒  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠.    

 

 𝑊𝑒  𝑛𝑜𝑤  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒  𝑎𝑛  𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔  𝑚𝑎𝑡𝑟𝑖𝑥  𝑑𝑒𝑛𝑜𝑡𝑒𝑑  𝑏𝑦  �̃�, 𝑤ℎ𝑜𝑠𝑒  𝑇𝑟𝑎𝑐𝑒  𝑖𝑠  

𝑇𝑟𝑎𝑐𝑒( �̃� ) =
𝑘

𝑞 − 1
   (1 −  ∑𝑝𝑖

𝑞

𝑁

𝑖=1

)  =
𝑘

𝑞 − 1
   (  ∑𝑝𝑖(1 − 𝑝𝑖)(1 + 𝑝𝑖 + 𝑝𝑖

2 +⋯ .+𝑝𝑖
𝑞−2

)

𝑁

𝑖=1

). 

𝑊𝑒  𝑙𝑒𝑡  𝜃𝑖 = 𝑝𝑖(1 + 𝑝𝑖 + 𝑝𝑖
2 +⋯ .+𝑝𝑖

𝑞−2
)  𝑎𝑛𝑑  𝑙𝑒𝑡  𝐺𝑖�̃�  =  − 𝑘 𝑝𝑗𝜃𝑖   𝑓𝑜𝑟 𝑖 ≠ 𝑗  𝑎𝑛𝑑   

𝐺𝑖𝑖 ̃ = 𝑘  𝑝𝑖(1 − 𝑝𝑖
𝑞−1

) .  It  can  be  readily  verified  that  �̃�  has  desired  Trace  value  which  

equals  the  Tsallis  entropy  𝑆𝑞(�̅� )  𝑓𝑜𝑟  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑞′ ′.  𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔𝑙𝑦 �̃�  𝑐𝑎𝑛 𝑏𝑒  𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑  

𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐  𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛  𝑙𝑖𝑘𝑒  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛  𝑚𝑎𝑡𝑟𝑖𝑥  �̅� .  As  in  the  case  

of �̅�,  the properties  of  eigenvalues,  eigenvectors  of  �̃�  can  be  readily  investigated along  

the  same  lines  as in  the  case  of  �̅� . 

 

 𝐹𝑟𝑜𝑚  𝑡ℎ𝑒  𝑒𝑎𝑟𝑙𝑖𝑒𝑟  𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡   𝑘  𝑆2(�̅� ) ≥ 𝑁  𝑀( 𝑝1 , 𝑝2 , … , 𝑝𝑁  ),
𝑤ℎ𝑒𝑟𝑒  𝑀(�̅�) 𝑖𝑠  𝑎𝑛  𝑒𝑛𝑡𝑟𝑜𝑝𝑦 − 𝑙𝑖𝑘𝑒  𝑚𝑒𝑎𝑠𝑢𝑟𝑒  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑤𝑖𝑡ℎ  𝑡ℎ𝑒  𝑃𝑀𝐹. 

 

 𝐼𝑛  𝑡ℎ𝑒  𝑠𝑝𝑖𝑟𝑖𝑡  𝑜𝑓  𝐿𝑒𝑚𝑚𝑎  4, 𝑖𝑡  𝑐𝑎𝑛  𝑒𝑎𝑠𝑖𝑙𝑦  𝑏𝑒  𝑝𝑟𝑜𝑣𝑒𝑑  𝑡ℎ𝑎𝑡  𝑇𝑠𝑎𝑙𝑙𝑖𝑠  𝑒𝑛𝑡𝑟𝑜𝑝𝑦  𝑓𝑜𝑟   

𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦   𝑟𝑒𝑎𝑙  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑞′ ′  𝑎𝑠𝑠𝑢𝑚𝑒𝑠  𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒  𝑣𝑎𝑙𝑢𝑒  𝑓𝑜𝑟  𝑢𝑛𝑖𝑓𝑜𝑟𝑚  𝑃𝑀𝐹  

 𝑖. 𝑒   𝑝𝑖 = 
1

𝑁
   𝑓𝑜𝑟  𝑎𝑙𝑙  1 ≤ 𝑖 ≤ 𝑁.  𝐷𝑒𝑡𝑎𝑖𝑙𝑠  𝑎𝑟𝑒  𝑎𝑣𝑜𝑖𝑑𝑒𝑑  𝑓𝑜𝑟  𝑏𝑟𝑒𝑣𝑖𝑡𝑦. 

Now,   we  derive   the   following   interesting   result   where  we  set 𝑘 = 1 .  : 



Lemma  5:     
𝐿𝑖𝑚 
𝑁 → ∞

 ( 𝑆2(�̅�) )
𝑁 =  

𝐿𝑖𝑚 
𝑁 → ∞

 (  𝑇𝑟𝑎𝑐𝑒(�̅�)   )𝑁 ≤ 
1

𝑒
  .  It  will  be  an  equality  if  and  only  

if  the  probability  mass  function  corresponds  to  a   uniform  PMF  i.e.   𝑝𝑖 = 
1

𝑁
  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖. 

Proof:    From   Lemma (4), we have  that  𝑇𝑟𝑎𝑐𝑒( 𝐺 ̅)  ≤ ( 1 − 
1

𝑁
 )   𝑤𝑖𝑡ℎ  𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦  𝑖𝑓  𝑎𝑛𝑑  𝑜𝑛𝑙𝑦  𝑖𝑓 

𝑝𝑖 = 
1

𝑁
  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖  𝑖. 𝑒.  𝑢𝑛𝑖𝑓𝑜𝑟𝑚  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑀𝑎𝑠𝑠  𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  (𝑃𝑀𝐹).   

From  the  above  discussion,  we  have  that  with  𝑘 = 1, 𝑇𝑟𝑎𝑐𝑒( �̅�  ) =  𝑆2(�̅�). 

Thus,  we  readily  infer  that  

(  𝑇𝑟𝑎𝑐𝑒(�̅�) )𝑁 ≤ ( 1 − 
1

𝑁
)
𝑁

. 

Taking   the  limit  on  both  sides ,  we  have    

𝐿𝑖𝑚 
𝑁 → ∞

(  𝑇𝑟𝑎𝑐𝑒(�̅�) )𝑁 ≤ 
𝐿𝑖𝑚 
𝑁 → ∞

 ( 1 − 
1

𝑁
)
𝑁

. 

But,  from  basic  calculus, we  know  that 

𝐿𝑖𝑚 
𝑁 → ∞

 ( 1 − 
1

𝑁
)
𝑁

=  
1

𝑒
  . 

Thus,  claim  in  the  Lemma  follows  with  equality  for  uniform  Probability  Mass Function (PMF). 

We  also  readily  have  that 

𝐿𝑖𝑚 
𝑁 → ∞

(
𝐿1 − 𝑛𝑜𝑟𝑚 (�̅�)

2
)

𝑁

≤  
1

𝑒
   𝑤𝑖𝑡ℎ  𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦  𝑖𝑓  𝑎𝑛𝑑  𝑜𝑛𝑙𝑦  𝑖𝑓 

the  probability  mass  function  is  a  uniform  PMF. Q.E.D.   

The  following  corollary  is  a   generalization  and  readily  follows 

𝑪𝒐𝒓𝒐𝒍𝒍𝒂𝒓𝒚:   
𝐿𝑖𝑚 
𝑁 → ∞

 ( 𝑆𝑞(�̅�) )
𝑁
 ≤

1

𝑒( 𝑞−1 )
 . 

Note:  We  now  provide  the  probabilistic  interpretation  of  claim   in  Lemma  5.  Let  X,  Y  be  

independent  random  variables  assuming  the  values  { 1, 2, …., N }.  We  have  that        

 𝑇𝑟𝑎𝑐𝑒( 𝐺 ̅)=  ∑ 𝑝𝑖( 1 − 𝑝𝑖)  =   ∑ 𝑃𝑟𝑜𝑏 { 𝑋 = 𝑖  , 𝑌 ≠   𝑖 }𝑁
𝑖=1 

𝑁
𝑖=1  =   𝑃𝑟𝑜𝑏 { 𝑋 ≠ 𝑌 } =  𝑆2(�̅�) . 

Now,  M  such   independent   “pairs  of  trials”   are   performed  and  the  following  probability  is  

computed 

Thus,   

                  
𝐿𝑖𝑚 
𝑀 → ∞

 ( 𝑆2(�̅�) )
𝑀  =       

𝐿𝑖𝑚 
𝑀 → ∞

 ( 𝑃𝑟𝑜𝑏 { 𝑋 ≠ 𝑌 } )𝑀 . 

X, Y  can  correspond  two  independent  trials  (  assuming  values  { 1, 2, 3,…, N } ). 



 Entropic  Quadratic  and  Higher  Degree  Forms: 

                                                                                         We  now   express   𝑆2(�̅� )  in   an  equivalent  

form  and  show  the  relationship  to   a  quadratic  form.  We  have  that 

𝑆2(�̅� ) =  [  (𝑝1 + 𝑝2 +⋯+ 𝑝𝑁)
2 − ∑𝑝𝑖

2

𝑁

𝑖=1

]   =    
∑∑𝑝𝑖𝑝𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑖 ≠ 𝑗

.   

= �̅�𝑇�̅� �̅� , 

where  �̅�  is  a  symmetric  matrix   all  of  whose  diagonal  elements  are  zero  and  the   

off-diagonal  elements   are   all  equal  to  ONE.  Also,   it  readily  follows   that 

(i) �̅�  =   �̅��̅�𝑇  − 𝐼, 𝑤ℎ𝑒𝑟𝑒  �̅�  𝑖𝑠  𝑎   𝑐𝑜𝑙𝑢𝑚𝑛  𝑣𝑒𝑐𝑡𝑜𝑟  𝑎𝑙𝑙  𝑜𝑓  𝑤ℎ𝑜𝑠𝑒  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  1 

and  𝐼  𝑖𝑠   𝑡ℎ𝑒  𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  𝑚𝑎𝑡𝑟𝑖𝑥. Hence,  the  eigenvalues  of  �̅�  are   

{ (N-1),  -1, -1,…, -1 }  i.e. �̅�  is  an  indefinite  matrix  with  -1  is  an  eigenvalue  of  

multiplicity  (N-1). 

 

 Similar   interpretation  of  𝑆𝑞(�̅� )  as   a  higher  degree  form  based  on  a  tensor   can  be  

readily  given.  It  is  avoided  for  brevity. 

 

 We  are  naturally  led   to   the  following  discussion: 

                                                                                                 Entropic  measures   such  as  Shannon  

entropy, Tsallis  entropy   satisfy  the  following  conditions ( axioms ): 

 

                     AXIOM (i):    For   all  probability  vectors,  one   of  whose  elements  is  one  and  all  other          

                                          elements  are  zero  (  i..e  there  are  N  such  vectors ),  the  Shannon  and   

                                          Tsallis  entropies   are  equal  to  zero i.e.  For  such  probability  vectors i.e.  �̅�′𝑠, 

                                          𝑆2(�̅� ) = 0.   

                  AXIOM (ii):  For  probability  vector,  all  of  whose  elements  are   equal  to  
1

𝑁
,  Shannon                       

                                       entropy  as   well   as   Tsallis  entropy   assume   the  maximum  value  i.e. Those 

                                        entropies  attain  maximum  value  for  the  uniform  probability  mass  function. 

                                         Specifically   Shannon   entropy  attains  the  value  log𝑁 and   Tsallis  entropy 

                                          attains  the  value  1 −
1

𝑁
  𝑓𝑜𝑟  𝑢𝑛𝑖𝑓𝑜𝑟𝑚  𝑃𝑀𝐹.  

                 AXIOM (iii):  For  all  probability   vectors,  the  entropic  quadratic  form  is  non-negative. 

                Note:  By  multiplying    the  matrix   �̅�  by  the  scaling  factor    
𝑁 log𝑁

𝑁−1 
  ,  it  can  be  ensured    

                            that   the  dynamic   range  of  Shannon  entropy  as  well  as  Tsallis  entropy  𝑆2(�̅� ) are                       

                            same. 

                                         It   is   highly    reasonable  that   the  above  three  conditions/axioms  must  be   



                 satisfied  by  any  reasonable   entropy  measure.  Thus,  we  are   led  to  the  following   

                 problem. 

 PROBLEM:   Provide  complete  characterization  of  entropic  quadratic  forms  i.e.  

specify  the  class  of   matrices  �̅�’s  for  which  the  quadratic  forms  �̅�𝑇�̅� �̅� ‘s  satisfy  

the  above  three   conditions/axioms. 

 

We  now  provide  a  partial  solution  to  the  above  problem.  Let  us  consider  a  non-

negative  matrix, A  all  of  whose  diagonal  elements  are  zero.   It  readily  follows  that  

for  the  axiom (i)  to  be  satisfied,  it  is  necessary  and  sufficient  the   diagonal  

elements  of  matrix  defining  the  quadratic  form  must  all  be  zero.  This   result  

follows  from  the  fact  that  for  any probability  vector  one  of  whose  elements  is  

one  and  all  the  others  are  zero,  the  associated  quadratic  form  becomes equal  to  

the  diagonal  element  of  the  defining  symmetrix  matrix.  Also,  from  simple  

arithmetic  argument,  the  above  axiom (ii)  is  satisfied  at  the  probability  vector 

( 
1

𝑁
,
1

𝑁
, … ,

1

𝑁
 ).  Thus,  any   such  non-negative  matrix  leads  to  an  Entropic  Quadratic  

Form. 

 

 Hence,  it  now  remains  to  see  if  there  are  any  matrices  with  positive  as  well  as  

negative elements  (  with  zero  diagonal  elements )  and  the  quadratic  form  

associated  with  such  matrices  satisfies  the  axiom (ii)  also.  

                           In  view  of  the  above  point,  we  are  naturally  led  to  the  following  

Lemma. 

 

Lemma  6:  There  is  no  symmetrix  matrix,  other  than  �̅�  or  scaled  versions  of  it  

( i.e.  with  all  diagonal  elements  being  zero  and  all  the  off-diagonal  elements  being  

equal  to  a  constant  value ) with  �̅�     ( i.e.  a   column  vector  all  of  whose  elements  

are  ‘1’) ,  as  an  eigenvector 

 

Proof:   We   first  consider  the  case  where  N,  the  dimension  of  matrix  defining  the  

quadratic   form  is   2.  In  this,  in  view  of  axiom (i),  axiom (ii),  axiom (iii),  the  

defining  matrix  is  of  the  form 

[
0 𝛼
𝛼 0

]   𝑤𝑖𝑡ℎ  𝛼  𝑏𝑒𝑖𝑛𝑔  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒.  Thus,  the  claim  is  true.  In  the  case  of  𝑆2(�̅� ), 

𝛼 = 1.  Any   real  number  𝛼  will  also  lead  to  entropic  quadratic  form  satisfying  the  

three  axioms. 

               𝑁𝑜𝑤,𝑤𝑒  𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟  𝑁 = 3.   Let  the  defining  symmetric  matrix  be   

 

[
0 𝑎 𝑏
𝑎 0 𝑐
𝑏 𝑐 0

]   𝑓𝑜𝑟  𝑟𝑒𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟𝑠, 𝑎, 𝑏, 𝑐. 

  𝐶𝑎𝑠𝑒(𝑖):  𝑆𝑢𝑝𝑝𝑜𝑠𝑒  𝑎 + 𝑏 = 𝑎 + 𝑐   𝑖. 𝑒.  𝑓𝑖𝑟𝑠𝑡  𝑡𝑤𝑜  𝑟𝑜𝑤  𝑠𝑢𝑚𝑠  𝑎𝑟𝑒  𝑒𝑞𝑢𝑎𝑙.  𝐻𝑒𝑛𝑐𝑒  𝑏 = 𝑐. 

                               𝑁𝑜𝑤  𝑓𝑢𝑟𝑡ℎ𝑒𝑟  𝑠𝑢𝑝𝑝𝑜𝑠𝑒  𝑏 + 𝑐 = 𝑎 + 𝑏.  𝐼𝑛 𝑡ℎ𝑖𝑠   𝑎 = 𝑐.  𝑇ℎ𝑢𝑠  𝑐𝑙𝑎𝑖𝑚  𝑖𝑠  𝑡𝑟𝑢𝑒. 



            𝐶𝑎𝑠𝑒 (𝑖𝑖):  Suppose  𝑎 + 𝑏 ≠ 𝑎 + 𝑐.  In   this  case  also,  the  claim  is true. 

                             For  N>3,  the  proof  follows  by  constructing  the  symmetric  matrix  incrementally  

ensuring  that  the  row  sum  is  constant.   Also,  another  proof  by  mathematical  induction  can  be   

readily  provided.                                                                                                                                   Q.E.D. 

Note: 

           The  above  arguments   can   be  generalized  for  tensor  based  higher  degree  forms  that  

satisfy  the    above  three  axioms  expected  of  an  entropy  measure. 

 Probabilistic  Interpretation  of   Tsallis  Entropy  for  Integer  Valued  Parameter ‘q’: 

                                          The  following   probabilistic   interpretation  follows  from a  generalization  of  

the  probabilistic  interpretation  of  diagonal  elements   of  Variance  Laplacian  matrix  �̅�.  Specifically  

consider  ′𝑞′ 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙𝑙𝑦   𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑    𝑟𝑎𝑛𝑑𝑜𝑚  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑖. 𝑒. 𝑋1, 𝑋2, … , 𝑋𝑞   

 𝑎𝑛𝑑   𝑁 = 𝑞.  Consider  the  following  quantity: 

∑𝑃𝑟𝑜𝑏( 𝑋1 = 𝑖 ) ( 1 − 𝑃𝑟𝑜𝑏( 

𝑞

𝑖=1

𝑋2 = 𝑖, 𝑋3 = 𝑖,… , 𝑋𝑞 = 𝑖 ))  =   ∑𝑝𝑖

𝑞

𝑖=1

(1 − 𝑝𝑖
𝑞−1

) = (1 −  ∑𝑝𝑖
𝑞

𝑁

𝑖=1

) 

=
𝑞 − 1

𝑘
 𝑆𝑞(�̅� ). 

The   above  interpretation  can  also  be  given  in  terms  of   arbitrary   independent  trials. 

Note:  As  in  the  case  of  𝑞 = 2, 𝑓𝑜𝑟  𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦   𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑞, 𝑤𝑒  𝑐𝑎𝑛  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒  𝑎  𝑚𝑎𝑡𝑟𝑖𝑥  �̃�  

𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡   𝑇𝑟𝑎𝑐𝑒(�̃�) =  𝑆𝑞(�̅�)  𝑤𝑖𝑡ℎ 𝑘 = 1.  𝐷𝑒𝑡𝑎𝑖𝑙𝑠  𝑎𝑟𝑒  𝑎𝑣𝑜𝑖𝑑𝑒𝑑  𝑓𝑜𝑟  𝑏𝑟𝑒𝑣𝑖𝑡𝑦. 

Note:  It   readily   follows   that   𝑇𝑟𝑎𝑐𝑒( �̅� )  is  the   DC/constant   contribution  to  the   variance  

Laplacian   based   quadratic   form   evaluated   on  the  unit  hypercube (  i.e.  set  of  all  vectors  whose  

components  are  +1  or  -1 ).   We   readily  have  that 

�̅�𝑇�̅�  𝑇 ̅  =   𝑇𝑟𝑎𝑐𝑒( �̅� ) +   𝑡𝑒𝑟𝑚𝑠  𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  𝑜𝑛  �̅�  . 

It  is   exactly   equal  to  the  scaled  Tsallis  entropy, 𝑘  𝑆2(�̅� )  associated  with   the   probability  mass  

function  of  the  discrete   random  variable. 

 Relationship  between   Renyi  Entropy  and  Tsallis   Entropy: 

                                                                                                                 We   now   reason  that  Renyii  

entropy   is  approximated  by  Tsallis  Entropy  under  some  conditions.   

Definition:  Renyi   entropy  (of  a  discrete  random  variable  X ) of  order ′𝛼′, 𝑤ℎ𝑒𝑟𝑒  𝛼 ≥ 0   𝑎𝑛𝑑   

𝛼 ≠ 1  is  defined  as 

𝐻𝛼(𝑋) =   
1

1 − 𝛼
 log(  ∑𝑝𝑖

𝛼

𝑁

𝑖=1

 ) =  
1

1 − 𝛼
 log (1 −  (1 −∑𝑝𝑖

𝛼

𝑁

𝑖=1

) ) . 

Letting  ∑ 𝑝𝑖
𝛼𝑁

𝑖=1  =   𝑟, 𝑤𝑒  ℎ𝑎𝑣𝑒   𝑡ℎ𝑎𝑡    𝐻𝛼(𝑋) = 
1

1−𝛼
 log  (1 − 𝑟 ). 



But  from the  basic  theory  of  infinite  series  [Kno],  we  have  that 

log(1 − 𝑟) =  −𝑟 + 
𝑟2

2
−
𝑟3 

3
+ ⋯ . .     𝑓𝑜𝑟  |𝑟| < 1. 

We   consider    non-degenerate  probability  mass  functions.  For  such  PMF’s  it  readily  follows   that   

for  𝛼 ≥ 1, 0 < 𝑟 < 1.  Thus,  if  we  truncate  the  infinite  series  for  log( 1 − 𝑟 ),  we  have   that 

                                                    log( 1 − 𝑟 )  ≈ −𝑟           𝑓𝑜𝑟  |𝑟| < 1. 

. 

Hence,  it  readily  follows  that  with  such  approximation,  we  have  

𝐻𝛼(𝑋) ≈   
1

1 − 𝛼
 (− (1 −∑𝑝𝑖

𝛼

𝑁

𝑖=1

) )  =   
1

𝛼 − 1
  (1 −∑𝑝𝑖

𝛼

𝑁

𝑖=1

)  =   𝑆𝛼(�̅�), 𝑤ℎ𝑒𝑟𝑒  

𝑆𝛼(�̅�)  𝑖𝑠  𝑇𝑠𝑎𝑙𝑙𝑖𝑠  𝑒𝑛𝑡𝑟𝑜𝑝𝑦  𝑤𝑖𝑡ℎ 𝛼′ ′ 𝑖𝑠  𝑡ℎ𝑒  𝑟𝑒𝑎𝑙  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟. 

Now,  we  bound  the  error  term  in   approximating  log(1 − 𝑟)  𝑏𝑦   ′ − 𝑟′.  𝑇ℎ𝑒  𝑒𝑟𝑟𝑜𝑟  𝑡𝑒𝑟𝑚  𝑖𝑠 

  
𝑟2

2
−
𝑟3 

3
+
𝑟4

4
−
𝑟5 

5
… ..    =    𝑟2 (

1

2
−
𝑟

3
) + 𝑟4 (

1

4
−
𝑟

5
) +⋯ .    𝑤𝑖𝑡ℎ  |𝑟| < 1. 

Thus,  the  error  term   can  be  bounded  by  the  following  geometric  series  i.e. 

𝑟2 + 𝑟4 + 𝑟6 +⋯ .=   
𝑟2

1 − 𝑟2
 

Note:  The   above  approach  of   approximating  entropy  (  such  as  Shannon  Entropy )  was  first  

proposed  in  [Rama2].  Specfically  Shannon  Entropy   is  approximated  by  Tsallis  Entropy for  a  linear  

approximation  i.e.  log( 1 − 𝑟 )  ≈ −𝑟           𝑓𝑜𝑟  |𝑟| < 1.  It  is  shown  that  higher  order  

approximations  are   different   from  Tsallis  entropy  except  in  the  case  of  approximation. 

log(1 − 𝑟) ≈    −𝑟 + 
𝑟2

2
   𝑓𝑜𝑟  |𝑟| < 1. 

The higher  order   polynomial  approximation  of  log(1 − 𝑟)  leads  to  interesting  entropy  functions.  

We  are  currently  deriving   those  polynomials  approximating   Renyi  entropy. 

Note:  We  can  consider  higher  order  approximations  in  association  with  log( 1 − 𝑟 )  and  arrive  at  

better   approximations   of   Renyi  entropy  of   order  ′𝛼′.  We  now  consider  second  order  

approximation: 

log(1 − 𝑟) ≈    −𝑟 + 
𝑟2

2
   𝑓𝑜𝑟  |𝑟| < 1. 

Using  this  approximation,  we  have  that 

𝐻𝛼(𝑋) ≈   
1

1 − 𝛼
 ( (−1 +∑𝑝𝑖

𝛼

𝑁

𝑖=1

) +
1

2
    (1 −∑𝑝𝑖

𝛼

𝑁

𝑖=1

)

2

) . 



Expanding   (1 − ∑ 𝑝𝑖
𝛼𝑁

𝑖=1 )
2

  and  simplifying,  we  have  that 

𝐻𝛼(𝑋) ≈   
1

2(𝛼 − 1)
 (1 −∑∑𝑝𝑖

𝛼

𝑁

𝑗=1

𝑝𝑗
𝛼

𝑁

𝑖=1

)  . 

It  can  also  be  rewritten  as    

𝐻𝛼(𝑋) ≈   
1

2(𝛼 − 1)
 ((∑𝑝𝑖

𝑁

𝑖=1

)

𝛼

−∑∑𝑝𝑖
𝛼

𝑁

𝑗=1

𝑝𝑗
𝛼

𝑁

𝑖=1

). 

In  the  above  expression,  multinomial  theorem  can  be  used  for  further  simplification. 

Simplifying  the  above,  we  have  that 

𝐻𝛼(𝑋) ≈   
1

2(𝛼 − 1)
 (1 −∑(𝑝𝑘)

2𝛼

𝑁

𝑘=1

−    
∑  ∑ 𝑝𝑖

𝛼  

𝑁  

𝑗=1

𝑝𝑗
𝛼

𝑁 

𝑖=1

𝑖 ≠ 𝑗

)  . 

Using  the  definition  of  Tsallis  entropy,  we  have   

𝐻𝛼(𝑋) ≈   
( 2𝛼 − 1 )

(2𝛼 − 2 )
 𝑆2𝛼(�̅�)  − 

1

2(𝛼 − 1)
 (  

∑  ∑ 𝑝𝑖
𝛼  

𝑁  

𝑗=1

𝑝𝑗
𝛼

𝑁 

𝑖=1

𝑖 ≠ 𝑗

)  . 

We  now  obtain  an  equivalent  expression  for  Renyi  Entropy.  Letting  𝑡𝑖 = 𝑝𝑖
𝛼 , we  arrive  at  the  

vector  𝑡̅  =   (𝑡1 𝑡2⋯𝑡𝑁)
𝑇.  In  terms   of   that  vector,  the  following  approximation  based  on  

quadratic   form  is  readily obtained 

𝐻𝛼(𝑋) ≈   
1

2(𝛼 − 1)
 (1 − 𝑡̅𝑇 �̅� 𝑡 ̅), 𝑤ℎ𝑒𝑟𝑒  �̅�  =   �̅� �̅�𝑇  𝑤𝑖𝑡ℎ  �̅�, 𝑎  𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓  1′𝑠. 

 Now,  we   consider  a  specific  value  of  𝛼  𝑖. 𝑒.  𝛼 = 2  and  arrive  at  an  expression  for  

approximating  the   Renyi  entropy: 

𝐻2(𝑋) ≈   
1

2
 ((∑𝑝𝑖

𝑁

𝑖=1

)

2

−∑∑𝑝𝑖
2

𝑁

𝑗=1

𝑝𝑗
2

𝑁

𝑖=1

). 

Initial  simplification  of  the  above  expression  leads  to   

𝐻2(𝑋) ≈   
1

2
  (  𝑆2(�̅�)  ( 1 − 𝑆2(�̅�) ) + 

∑∑𝑝𝑖𝑝𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑖 ≠ 𝑗

  ). 

On  further  simplification,  we  arrive   at   the  following   approximation  for    𝐻2(𝑋)  in  terms  of  

Tsallis   entropy    𝑆2(�̅�)  . 



𝐻2(𝑋) ≈  (  𝑆2(�̅�)  −  
1

2
  (  𝑆2(�̅�) )

2) . 

Note:  Entropic  functions  are  associated  with  a  probability  mass  function. We  are  naturally  led  to  

the  idea  of  associating  a  single  probability  value  with  a  probability  mass  function.  The  following  

discussion   proposes  one  such  approach. 

 Single   Probability  Representing  a  Probability  Mass  Function:  Renyi  Entropy: 

 

                     From   the   above  discussion, for  𝛼 ≠ 1,  we  have  that 

𝐻𝛼(𝑋) =   
1

1 − 𝛼
 log(  ∑𝑝𝑖

𝛼

𝑁

𝑖=1

 ).  

Denoting   the  𝐿𝛼 − 𝑛𝑜𝑟𝑚  of  the  probability  vector  𝑝 ̅= (𝑝1  𝑝2… . 𝑝𝑁  )
𝑇  by  ||�̅�||𝛼, we  have  

that   (  We   consider   integer  values  of  𝛼>1,  where ever required  in  the  following )  

𝐻𝛼(𝑋) =   
𝛼

1 − 𝛼
 log( ||�̅�||𝛼) .  𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦, 𝑤𝑒 ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡 

𝐻𝛼(𝑋) =   log( 
1

(||�̅�||𝛼)
𝛼
𝛼−1

) .  𝐻𝑒𝑛𝑐𝑒 

𝑒−𝐻𝛼(𝑋) = (||�̅�||𝛼)
𝛼
𝛼−1 .  

Now,  we   consider   the  sigmoidal  function  i.e.  𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑦) =   
1

1+𝑒−𝑦
.  It  readily  follows 

that    

            2 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑦) − 1  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠  𝑎  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑖. 𝑒.  𝑣𝑎𝑙𝑢𝑒  𝑙𝑖𝑒𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0′ ′𝑎𝑛𝑑 1′ ′. 

𝑇ℎ𝑢𝑠, 𝑔𝑖𝑣𝑒𝑛  𝑎𝑛𝑦  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑚𝑎𝑠𝑠  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑖. 𝑒. vector  𝑝 ̅ =  (𝑝1  𝑝2… . 𝑝𝑁  )
𝑇 ,    

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐻𝛼(𝑋) ) =   
1

1 + (||�̅�||𝛼)
𝛼
𝛼−1

 . 

𝐻𝑒𝑛𝑐𝑒, 𝑖𝑛  𝑣𝑖𝑒𝑤  𝑜𝑓  𝑎𝑏𝑜𝑣𝑒  𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛, 𝑡ℎ𝑒  𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔  𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦  𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑  𝑡𝑜  

𝑎  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑣𝑎𝑙𝑢𝑒  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑤𝑖𝑡ℎ  𝑡ℎ𝑒  𝑃𝑀𝐹. 

2 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐻𝛼(𝑋)) − 1   =   
1 − (||�̅�||𝛼)

𝛼
𝛼−1

1 + (||�̅�||𝛼)
𝛼
𝛼−1

  . 

From  the  above  expression,  the  probability  value  representing  a  degenerate  PMF  as  well  as  

Uniform  PMF   can  be  readily  calculated. 

                                                                              In  the  following  lemma,  we  derive  interesting  results   

related  to    ∑ 𝑝𝑖
𝑞𝑁

𝑖=1  .  Specifically,  the  set  of  inequalities   can  have   interesting   consequences  for  

Tsallis  entropy  as  wells   as  𝐿𝑝 − 𝑛𝑜𝑟𝑚𝑠  𝑜𝑓  𝑣𝑒𝑐𝑡𝑜𝑟𝑠  𝑤ℎ𝑜𝑠𝑒  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑟𝑒 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒   

𝑟𝑒𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟𝑠 . 

Lemma  7:  Consider  probability  mass   function  { 𝑝1 , 𝑝2 , … , 𝑝𝑁 }.  The  following  inequalities  hold  

true: 



∑𝑝𝑖
2𝑚+1

𝑁

𝑖=1

  ≤ ∑𝑝𝑖
𝑚+1   𝑓𝑜𝑟  𝑎𝑙𝑙   𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑚′ .   𝐵𝑢𝑡

𝑁

𝑖=1

 

∑𝑝𝑖
2𝑚+1

𝑁

𝑖=1

≥  (  ∑𝑝𝑖
𝑚+1 )2

𝑁

𝑖=1

   𝑓𝑜𝑟  𝑎𝑙𝑙 𝑚′ ′ .  𝐻𝑒𝑛𝑐𝑒  𝑆2𝑚+1 (�̅�) ≤  
𝑘

2𝑚
( 1 − (  ∑𝑝𝑖

𝑚+1 )2
𝑁

𝑖=1

 ).  

Furthermore, 

∑𝑝𝑖
2𝑚+1

𝑁

𝑖=1

≤ (∑𝑝𝑖
𝑚+1 

𝑁

𝑖=1

)

2

+ 
1

2
 ( ∑𝑝𝑖

2𝑚

𝑁

𝑖=1

 ) .   

 

Proof:   Since  𝑝𝑖
,𝑠  are  probabilities,  we   readily have  that  𝑝𝑖

2𝑚+1 ≤ 𝑝𝑖
𝑚+1  𝑓𝑜𝑟  𝑎𝑛𝑦  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑚′ .  

Thus,  

∑𝑝𝑖
2𝑚+1

𝑁

𝑖=1

  ≤ ∑𝑝𝑖
𝑚+1   𝑓𝑜𝑟  𝑎𝑙𝑙   𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑚′ .   

𝑁

𝑖=1

 

 Now,  consider  a   random  variable  Z   which  assume   the  values   {𝑝1
𝑚 , 𝑝2

𝑚, … , 𝑝𝑁
𝑚 }   i.e.  values  

assumed  are higher  integer  powers  of  the  probabilities  in  the  associated  PMF.   We   know  that  

the  variance  of  Z  is  non-negative. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑍) = 𝑉𝑎𝑟(𝑍) =   𝐸(𝑍2) − ( 𝐸(𝑍) )2 ≥ 0. 

Thus,  it  readily   follows   that   𝐸(𝑍2) ≥ ( 𝐸(𝑍) )2  and  hence 

∑𝑝𝑖
2𝑚+1

𝑁

𝑖=1

≥  (  ∑𝑝𝑖
𝑚+1 )2

𝑁

𝑖=1

   𝑓𝑜𝑟  𝑎𝑙𝑙 𝑚′ ′.    

Thus,  effectively   we  have  that  

∑𝑝𝑖
𝑚+1 ≥ ∑𝑝𝑖

2𝑚+1

𝑁

𝑖=1

≥  (  ∑𝑝𝑖
𝑚+1 )2

𝑁

𝑖=1

  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑚.  

𝑁

𝑖=1

 

𝑇ℎ𝑢𝑠  𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦    𝑆2𝑚+1 (�̅�) ≤  
𝑘

2𝑚
( 1 − ( (  ∑𝑝𝑖

𝑚+1 )2
𝑁

𝑖=1

 ) 𝑜𝑟  𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦 

𝑆2𝑚+1 (�̅�) ≤  (  𝑆𝑚+1(�̅�) −
𝑚

2𝑘
( 𝑆𝑚+1(�̅�) )

2 ) . 

Using  Lemma  3,  we  have  that 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒( 𝑍 )   ≤   
1

2
  ( 𝐿2 − 𝑛𝑜𝑟𝑚 ( �̅�) )2   =  

1

2
 ( ∑𝑝𝑖

2𝑚

𝑁

𝑖=1

 ) .  𝐻𝑒𝑛𝑐𝑒  



∑𝑝𝑖
2𝑚+1

𝑁

𝑖=1

≤ (∑𝑝𝑖
𝑚+1 

𝑁

𝑖=1

)

2

+ 
1

2
 ( ∑𝑝𝑖

2𝑚+1

𝑁

𝑖=1

 ) .                  𝑄. 𝐸. 𝐷. 

Corollary  1:   Suppose   the   random  variable  Z   assumes   probability  values  𝑞𝑖
′𝑠  different  from 𝑝𝑖

′𝑠. 

                      Then,  using  the  fact   that  Variance  of  Z   is  non-negative,  we  have  the  following  

inequality 

∑𝑞𝑖
2

𝑁

𝑖=1

𝑝𝑖 ≥  
1

2
( ∑𝑞𝑖𝑝𝑖

𝑁

𝑖=1

 )2 .   

It  should   be  noted  that  both  sides  of  inequality  are  convex  combinations of  real  numbers. 

𝐴𝑙𝑠𝑜, 𝑢𝑠𝑖𝑛𝑔   𝐿𝑒𝑚𝑚𝑎  3, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡 

∑𝑞𝑖
2

𝑁

𝑖=1

𝑝𝑖 ≤  ( ∑𝑞𝑖𝑝𝑖

𝑁

𝑖=1

 )2 + 
1

2
(∑𝑞𝑖

2

𝑁

𝑖=1

)        𝑄. 𝐸. 𝐷. 

Note:  The  result  in  Lemma 7  can  be  restated  in  terms  of  𝐿𝑝 − 𝑛𝑜𝑟𝑚𝑠  𝑜𝑓  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑣𝑒𝑐𝑡𝑜𝑟𝑠   

𝑖. 𝑒.  𝑣𝑒𝑐𝑡𝑜𝑟𝑠 ( �̅� ) 𝑤ℎ𝑜𝑠𝑒  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠  𝑡ℎ𝑎𝑡  𝑎𝑑𝑑  𝑢𝑝𝑡𝑜  𝑜𝑛𝑒.  Specifically, we  have  

that 

( 𝐿2𝑚+1 − 𝑛𝑜𝑟𝑚(�̅�))
2𝑚+1

≥ ( 𝐿𝑚+1 − 𝑛𝑜𝑟𝑚(�̅�))
2𝑚+2

. 

We  also,  have   that 

( 𝐿2𝑚+1 − 𝑛𝑜𝑟𝑚(�̅�))
2𝑚+1

≤ ( 𝐿𝑚+1 − 𝑛𝑜𝑟𝑚(�̅�))
2𝑚+2

+
1

2
  ( 𝐿2𝑚 − 𝑛𝑜𝑟𝑚(�̅�))

2𝑚
. 

Since   vectors   whose   elements  are  non-negative  real  numbers   can  always   be  normalized  ( by  

the sum  of  their  elements )   to  arrive  at  probability  vectors,  the  above  lemma  leads  to  

interesting  inequaity  between   𝐿𝑝 − 𝑛𝑜𝑟𝑚𝑠  𝑜𝑓 𝑠𝑢𝑐ℎ  𝑣𝑒𝑐𝑡𝑜𝑟𝑠 .  

Note:  In  terms  of   the  Laplacian  matrix  �̅�,  the  above   Lemma   based   inequality  can  be  restated. 

Let  �̅� = [ 𝑝1
𝑚  𝑝2

𝑚…𝑝𝑁
𝑚 ]  𝑓𝑜𝑟  𝑎  𝑓𝑖𝑥𝑒𝑑   𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑚′ .  𝑊𝑒  𝑟𝑒𝑎𝑑𝑖𝑙𝑦  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡  �̅� = �̅� − 𝑃 ̃  𝑎𝑛𝑑 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑍) ≥ 0.  𝐻𝑒𝑛𝑐𝑒  𝑤𝑒 ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡  �̅�𝑇𝐷 ̅�̅�   ≥ �̅�𝑇𝑃 ̃ �̅�. 

Such  a  type  of  inequality  can  also  be  associated  with  positive  real  numbers  which  can  be  

normalized  into  probabilities  (  using  their  sum ).  Details  are  avoided  for  brevity. 

Note:  Suppose   the  values   assumed  by  the  random  variable  are  {
1

𝑝1
𝑚 
  ,    

1

 𝑝2
𝑚 , … .

1

,𝑝𝑁
𝑚},  then  using  

the idea  in  the  above  proof,  we  have  that 

∑
1

𝑝𝑖
2𝑚−1

𝑁

𝑖=1

≥ ( ∑
1

𝑝𝑖
𝑚−1

𝑁

𝑖=1

 )2. 



In  the  above  inequalities,  the  probabilities  can  be  rational  numbers   less  than  one.  Hence  the  

above  inequalities  hold  true  between   rational  numbers. 

Note:  In  the  spirit  of  above  lemma,  inequalities  in  probability   theory  (  such  as  Var ( Z  )≥ 0 ) 

lead  to  new  inequalities  associated  with  real  numbers.  Detailed  are  avoided  for  brevity.   

                 Now,  we   compute   the  𝑇𝑟𝑎𝑐𝑒( �̅�2)  (   in  the  same  spirit  of  𝑇𝑟𝑎𝑐𝑒( �̅� ) ) and  briefly  

study  its   properties.   It   readily  follows  that,  treating  �̅�  as  a  vector,  we  have   that   

𝑇𝑟𝑎𝑐𝑒( �̅�2) =   ( 𝐿2 − 𝑛𝑜𝑟𝑚 (�̅� ) )2 =  ∑𝜇𝑖
2 =

𝑁

𝑖=1

( 𝐿2 − 𝑛𝑜𝑟𝑚 (�̅� ) )2. 

i.e.  treating  the  set  of  eigenvalues  leading  to  eigenvalue  vector,  𝑇𝑟𝑎𝑐𝑒( �̅�2)  is  the  square  of 

 𝐿2 − 𝑛𝑜𝑟𝑚  of  such  vector  (  of  eigenvalues,  the  smallest  of  which  is  zero ).  Also, from   the   

theory  of  matrix  norms,  the  𝐿2 − 𝑛𝑜𝑟𝑚  of   a   matrix  is  related  to  the  spectral  radius. We  have 

𝑇𝑟𝑎𝑐𝑒( �̅�2)  =   ∑𝑝𝑖
2 ( 1 − 𝑝𝑖 )

2

𝑁

𝑖=1

+
∑∑𝑝𝑖

2𝑝𝑗
2

𝑁

𝑗=1

𝑁

𝑖=1

𝑖 ≠ 𝑗

 

                                                                          = 
∑ 𝑝𝑖

2𝑁
𝑖=1 ∑ 𝑝𝑗

2𝑁
𝑗=1

𝑗 ≠ 𝑖
 +  

∑ ∑ 𝑝𝑖
2𝑝𝑗

2𝑁
𝑗=1

𝑁
𝑖=1

𝑖 ≠ 𝑗
 

= 2 [
∑∑𝑝𝑖

2𝑝𝑗
2

𝑁

𝑗=1

𝑁

𝑖=1

𝑖 ≠ 𝑗

] =   ∑𝜇𝑖
2

𝑁

𝑖=1

 (  𝑤𝑖𝑡ℎ  𝜇𝑚𝑖𝑛  = 0  ). 

Hence,  𝑇𝑟𝑎𝑐𝑒( �̅�2)  is  divisible  by   2. Using  the  definition  of  Tsallis  entropy 𝑆𝑞(�̅� ),  it  can  be  

readily  seen  that 

𝑇𝑟𝑎𝑐𝑒( �̅�2) = 2 [   
1

𝑘2
 (𝑆2(�̅� ) )

2 −
2

𝑘
 (𝑆2(�̅� ) ) +

3

𝑘
  ( 𝑆4(�̅�))  ]. 

Letting     [ 𝑝1
2  𝑝2

2… . 𝑝𝑁
2 ]  =   �̅�𝑇 ,   𝑤𝑒  ℎ𝑎𝑣𝑒   𝑡ℎ𝑎𝑡   

𝑇𝑟𝑎𝑐𝑒( �̅�2) =   �̅�𝑇 �̅�  𝑉 ̅ , 

where  �̅�  is  a  symmetric  matrix   all  of  whose  diagonal  elements  are  zero  and  the   

off-diagonal  elements   are   all  equal  to  ONE.  Also,   it  readily  follows   that 

�̅�  =   �̅��̅�𝑇  − 𝐼, 𝑤ℎ𝑒𝑟𝑒  �̅�  𝑖𝑠  𝑎   𝑐𝑜𝑙𝑢𝑚𝑛  𝑣𝑒𝑐𝑡𝑜𝑟  𝑎𝑙𝑙  𝑜𝑓  𝑤ℎ𝑜𝑠𝑒  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  1 

and  𝐼  𝑖𝑠   𝑡ℎ𝑒  𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  𝑚𝑎𝑡𝑟𝑖𝑥. Hence,  the  eigenvalues  of  �̅�  are   

{ (N-1),  -1, -1,…, -1 }  i.e. �̅�  is  an  indefinite  matrix  with  -1  is  an  eigenvalue  of  multiplicity  (N-1). 

 In  view  of   above  result   on    𝑇𝑟𝑎𝑐𝑒( �̅�2)   and  the  earlier  discussion  on  entropic  quadratic  

and  higher  degree  forms,  we  introduce  the  concept  of  GENERALIZED  ENTROPIC  FORMS. 



Let  �̃�(𝑚) =  [ 𝑝1
𝑚+1  𝑝2

𝑚+1… . 𝑝𝑁
𝑚+1 ]   𝑓𝑜𝑟  𝑚 ≥ 0.  𝑊𝑒  𝑟𝑒𝑎𝑙𝑖𝑧𝑒  𝑡ℎ𝑎𝑡  �̃�(0) = �̅�,  vector  of  

probabilities.  Also, �̃�(1) =  𝑉,̅   𝑎𝑠  𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑎𝑏𝑜𝑣𝑒.  𝐹𝑢𝑟𝑡ℎ𝑒𝑟, 𝑙𝑒𝑡  𝑢𝑠  𝑑𝑒𝑓𝑖𝑛𝑒  𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  

 𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐  𝑓𝑜𝑟𝑚𝑠  �̃�𝑚(�̅�)  𝑏𝑦  𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔  𝑡ℎ𝑒  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑓𝑜𝑟𝑚𝑠  𝑖𝑛  𝑡ℎ𝑒  𝑣𝑒𝑐𝑡𝑜𝑟𝑠  

�̃�(𝑚)  𝑓𝑜𝑟  𝑚 ≥ 0.  i.e. 

�̃�𝑚(�̅�) = �̃�
𝑇(𝑚) �̅�  �̃�(𝑚)  𝑓𝑜𝑟  𝑚 ≥ 0.    

𝑊𝑒  𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠  𝑜𝑓  𝑠𝑢𝑐ℎ  𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐  𝑓𝑜𝑟𝑚𝑠.   

𝐼𝑡  𝑟𝑒𝑎𝑑𝑖𝑙𝑦  𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑡ℎ𝑎𝑡   

�̃�0(�̅�) = 𝑆2(𝑝) = 𝑇𝑟𝑎𝑐𝑒( �̅�  )  𝑖. 𝑒  𝑇𝑠𝑎𝑙𝑙𝑖𝑠   𝑒𝑛𝑡𝑟𝑜𝑝𝑦  𝑓𝑜𝑟  𝑞 = 2. 

𝐴𝑙𝑠𝑜   

 2 �̃�1(�̅�) = 𝑇𝑟𝑎𝑐𝑒( �̅�
2).  

                     We   now  determine  an  lower  bound  on  𝑇𝑟𝑎𝑐𝑒( �̅�2). 

 Now,  we  derive  interesting   property  related  to  the  eigenvectors  of  �̅�. 

Lemma  8:   Let  �̅�  be   an  N x N  matrix.  Then  Trace(�̅�2 ) has   the  following  lower  bound. 

                                                   𝑇𝑟𝑎𝑐𝑒( �̅�2)  ≥
2(𝑁−1) 

𝑁3
 .  

Proof:  We   apply  Lagrange  Multiplier’s  method  to  bound  

𝑇𝑟𝑎𝑐𝑒( �̅�2)  =   2 [  ∑∑𝑝𝑖
2𝑝𝑗 

2

𝑁

𝑗=1

𝑁

𝑖=1

−   ∑ 𝑝𝑘  
4

𝑁

𝑘=1

].   

𝑇ℎ𝑢𝑠  𝑡ℎ𝑒  𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑓𝑜𝑟  𝑡ℎ𝑒  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝑝𝑟𝑜𝑏𝑙𝑒𝑚  𝑖𝑠  𝑔𝑖𝑣𝑒𝑛  𝑏𝑦  

𝐽 ( 𝑝1, 𝑝2 , … , 𝑝𝑁 ) =   2 [  ∑∑𝑝𝑖
2𝑝𝑗 

2

𝑁

𝑗=1

𝑁

𝑖=1

−   ∑ 𝑝𝑘  
4

𝑁

𝑘=1

]. 

Using  the  constraint   that   the   probabilities   sum  upto  one,  we   have   that  the  Lagrangian  is  

given  by 

                       𝐿 ( 𝑝1, 𝑝2 , … , 𝑝𝑁 ) =  2[  ∑ ∑ 𝑝𝑖
2𝑝𝑗 

2𝑁
𝑗=1

𝑁
𝑖=1 −   ∑ 𝑝𝑘  

4𝑁
𝑘=1 ]  +  𝛽 (  ∑ 𝑝𝑖

𝑁
𝑖=1  – 1 ). 

The   critical  point   and  the  components  of  Hessian matrix  are  given  by: 

𝛿𝐿

𝛿𝑝𝑖
 =   [  4(∑𝑝𝑘

2

𝑁

𝑘=1

𝑘 ≠ 𝑖

) (𝑝𝑖) +  𝛽  ]  ,   
𝛿2𝐿

𝛿𝑝𝑖
2  =  4(

∑𝑝𝑘
2

𝑁

𝑘=1

𝑘 ≠ 𝑖

)     𝑓𝑜𝑟  𝑎𝑙𝑙 𝑖′ ′ ,   

𝛿2𝐿

𝛿𝑝𝑖𝛿𝑝𝑗
 = 0  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖 ≠ 𝑗. 

Thus,  there   is   a   single  critical   point  and  the  Hessian  matrix  is   positive  definite  at   the  critical  

point.  Hence,  we   infer   that  the   objective  function  has  a  unique  minimum  and  occurs  at 



𝛿𝐿

𝛿𝑝𝑖
= 0  𝑖. 𝑒. 𝑝𝑖 = 

−𝛽

4 (
∑ 𝑝𝑘

2𝑁
𝑘=1

𝑘 ≠ 𝑖
)
 .  𝑈𝑠𝑖𝑛𝑔   𝑡ℎ𝑒  𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑠𝑢𝑚  𝑡𝑜  𝑜𝑛𝑒,

𝑤𝑒 ℎ𝑎𝑣𝑒 

𝛽 =  
−4(

∑ 𝑝𝑘
2𝑁

𝑘=1

𝑘 ≠ 𝑖
) 

𝑁
.  𝑇ℎ𝑢𝑠, 𝑡ℎ𝑒  𝑔𝑙𝑜𝑏𝑎𝑙  𝑚𝑖𝑛𝑖𝑚𝑢𝑚  𝑜𝑐𝑐𝑢𝑟𝑠  𝑎𝑡  𝑝𝑖 = 

1

𝑁
  𝑓𝑜𝑟  𝑎𝑙𝑙 𝑖′ ′. 

𝑇𝑟𝑎𝑐𝑒( �̅�2)  𝑎𝑡  𝑡ℎ𝑒  𝑢𝑛𝑖𝑞𝑢𝑒  𝑚𝑖𝑛𝑖𝑚𝑢𝑚  𝑝𝑜𝑖𝑛𝑡  𝑖𝑠  𝑔𝑖𝑣𝑒𝑛  𝑏𝑦  

𝑇𝑟𝑎𝑐𝑒( �̅�2) =
2(𝑁 − 1)

𝑁3
                                      𝑄. 𝐸. 𝐷. 

Corollary:  Using  the  above  lower  bound  on  𝑇𝑟𝑎𝑐𝑒( �̅�2),  we   lower  bound   the   

spectral  radius  of  �̅�  𝑖. 𝑒.  ( 𝑁 − 1) 𝜇𝑚𝑎𝑥
2 ≥  

2(𝑁−1)

𝑁3
  .  Thus   𝜇𝑚𝑎𝑥 ≥  

1

𝑁
 √

2

𝑁
  .        𝑄. 𝐸. 𝐷. 

 Now,  we  derive  interesting  property   related  to  the  eigenvectors  of  �̅� . 

 

Lemma  9:   The  right   eigenvectors  𝑔′𝑠̅̅ ̅̅   (  whose   transpose  are  the  left  eigenvectors )  of  

the  variance   Laplacian  �̅�  that   are   different   from   the  all-ones   vector  (  i.e. �̅�  which  lies  

in  the  right  null  space  of  𝐺 ̅ )  are  such   that  they  lie  in  the  null  space  of  matrix  of  all  

ones,  𝑆̅  𝑖. 𝑒.  𝑆𝑖𝑗 = 1  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖, 𝑗. 

              Proof:  Since   �̅�  is  a  symmetric  matrix,  the  set  of  eigenvectors   forms  an  orthonormal  

basis.  Also,  the  eigenvector  corresponding  to  the  ZERO  eigenvalue  of   �̅�   is  the  column  vector  of  

all  ONES. Hence, we   readily  have  the  following  fact: 

�̅�𝑖
𝑇 �̅�  = 0   𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖.  𝑇ℎ𝑢𝑠, 𝑡ℎ𝑒  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  𝑜𝑓  𝑎𝑙𝑙  𝑜𝑡ℎ𝑒𝑟  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠  𝑠𝑢𝑚  𝑡𝑜  𝑧𝑒𝑟𝑜. 

Also,  it   readily  follows   that �̅�𝑇𝑆 ̅𝑔 = 0 .  𝑆𝑖𝑛𝑐𝑒  𝑆̅  𝑖𝑠  𝑎  𝑟𝑎𝑛𝑘  𝑜𝑛𝑒  𝑚𝑎𝑡𝑟𝑖𝑥  𝑤𝑖𝑡ℎ  𝑡ℎ𝑒  𝑜𝑛𝑙𝑦  𝑛𝑜𝑛 −

𝑧𝑒𝑟𝑜  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒  𝑏𝑒𝑖𝑛𝑔 𝑁′ ′  ( 𝑤𝑖𝑡ℎ  �̅�  being  the  associated  eigenvector ),  all  the  vectors   𝑔′𝑠̅̅ ̅̅   lie  

in   the  null  space  of  𝑆̅  (  in  fact  they  form  the  basis  of  the  null  space  of  𝑆̅  ). 

𝐻𝑒𝑛𝑐𝑒, 𝐿1 − 𝑛𝑜𝑟𝑚 (�̅�𝑖  )  𝑖𝑠  𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒  𝑏𝑦  2  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠  𝑔
′𝑠̅̅ ̅̅ .  

𝐴𝑙𝑠𝑜, 𝑙𝑒𝑡  �̅�  𝑏𝑒  𝑎𝑛  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟  𝑜𝑓  �̅�, 𝑜𝑡ℎ𝑒𝑟  𝑡ℎ𝑎𝑛  𝑎𝑙𝑙  𝑜𝑛𝑒𝑠  𝑣𝑒𝑐𝑡𝑜𝑟 𝑖. 𝑒. �̅�.   𝑊𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡 

(∑𝑔𝑖

𝑁

𝑖=1

 )2 =  ∑𝑔𝑖
2

𝑁

𝑖=1

 + 2  (  𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒  𝑝𝑟𝑜𝑑𝑢𝑐𝑡  𝑜𝑓  𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  𝑜𝑓 �̅� )  = 0. 

Hence, it  follows  that  �̅�𝑇𝑆 ̃�̅�  = −1, 𝑤ℎ𝑒𝑟𝑒 �̃�  𝑖𝑠  𝑎  𝑚𝑎𝑡𝑟𝑖𝑥  𝑎𝑙𝑙  𝑜𝑓  𝑤ℎ𝑜𝑠𝑒  𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠   

𝑎𝑟𝑒 zero   and   all  the   non-diagonal  elements  are  1. 

                                 Since  𝐿2 − 𝑛𝑜𝑟𝑚  𝑜𝑓  �̅�  is   ONE,   it  readily  follows   that  

                                    𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒  𝑝𝑟𝑜𝑑𝑢𝑐𝑡  𝑜𝑓  𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  𝑜𝑓 �̅�  =  −
1

2
  .  Q.E.D. 



Similar  result  can  be  derived  based  on  the  𝐿𝑝 − 𝑛𝑜𝑟𝑚  𝑜𝑓  �̅�  .  Details  are  avoided  for  brevity. 

       We now  propose  an  interesting  orthonormal  basis  which  satisfies  all  the  properties  required  

of  the set  of  eigenvectors  of  an  arbitrary  Laplacian  matrix. 

Definition:  Hadamard  basis  ( orthonormal ) is  the  normalized  set  of  rows/columns  of  a  symmetric 

Hadamard  matrix,  𝐻𝑚.   For  instance,  it  is  well  known  that  𝐻2 = [
1 1
1 −1

].  Hence  the  Hadamard  

basis  is  given  by  {  [

1

√2
1

√2

] , [

1

√2
−1

√2

]  }. 

Note:  Two  { +1, -1 }  vectors  are  orthogonal  if  and  only  if  the number  of  +1’s  is  equal  to  the  

number  of  -1’s.   Such  vectors  exist  if  and  only  if  the  dimension  of  vectors  is  an  even  number.  

Further  the sum  of  elements  in  such  vectors  is  zero (  as  required  by  the   eigen vectors  of  an  

arbitrary  Laplacian  matrix  which  is  not  necessarily  a  variance  Laplacian  matrix ). 

Note:  In  view  of  Rayleigh’s   Theorem,  if  the  orthonormal  basis  of  eigenvectors  of  a  Variance  

Laplacian  �̅�  is  the  Hadamard  basis,  then   the  global  maximum  value  of  associated  quadratic  form  

evaluated  on  the  unit  hypercube  is  attained   at  the  eigenvector  corresponding  to  its  spectral  

radius.   

 Spectral   Representation  of  Symmetric   Laplacian  Matrix  �̅� : 

                                                                                                                     We  now  arrive   at  the  

spectral   representation  of  variance  Laplacian  matrix  �̅� 𝑖. 𝑒. 

�̅�  =   �̅� 𝐷�̅�𝑇  =   ∑𝜇𝑖 

𝑁

𝑖=2

𝑓�̅�  𝑓�̅�
𝑇  𝑤ℎ𝑒𝑟𝑒 𝜇𝑖

′𝑠   𝑎𝑟𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑤𝑖ℎ   𝜇1 = 0  𝑎𝑛𝑑  𝑓�̅�
′  𝑎𝑟𝑒   

 Normalized  eigenvectors  of  �̅� .  It  should  be  noted   that  the  column  vector  of   ALL  ONEs   

i.e.   �̅� =   ( 1  1…   1 )𝑇  𝑖𝑠  𝑎𝑛  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟  𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔  𝑡𝑜  𝑡ℎ𝑒 𝑧𝑒𝑟𝑜  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒  𝑎𝑛𝑑 
1

√𝑁
 �̅�  𝑖𝑠  𝑡ℎ𝑒  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟.  

                                                                                                     We  know  that  �̅�  is  completely  

specified  by  the  probability  mass  function  of  the  associated   discrete   random  variable 

i.e. { 𝑝1 , 𝑝2 , … , 𝑝𝑁  }.  Hence  we  have  that 

∑𝜇𝑖

𝑁

𝑖=2

𝑓𝑖𝑗
2  =   𝑝𝑗  ( 1 − 𝑝𝑗  )  𝑓𝑜𝑟  1 ≤ 𝑗 ≤ 𝑁 ( 𝑖. 𝑒. 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑜𝑓  �̅�  ). 

 

Also,  we  have  that 

                                   ∑ 𝜇𝑖  𝑓𝑖𝑙  𝑓𝑖𝑚  =  −𝑝 𝑙𝑝𝑚   𝑓𝑜𝑟  𝑙 ≠ 𝑚  𝑎𝑛𝑑  1 ≤ 𝑙 ≤ 𝑁, 1 ≤ 𝑚 ≤ 𝑁  𝑖. 𝑒  𝑁
𝑖=2             

                   ( off  diagonal  elements  of   �̅�  ). 

                  The  orthogonal  matrix  �̅�  is  of  the  following  form: 



�̅�  =  

[
 
 
 
 
 
 
 
 
 

  

1

√𝑁
𝑓21 𝑓31 ⋯ 𝑓𝑁1

1

√𝑁
𝑓22 𝑓32 ⋯ 𝑓𝑁2

1

√𝑁
⋮
1

√𝑁

𝑓23
⋮
𝑓2𝑁

𝑓33 ⋯ 𝑓𝑁3
⋮       ⋮ ⋮
𝑓3𝑁 ⋯ 𝑓𝑁𝑁

  

]
 
 
 
 
 
 
 
 
 

 . 

Since,  we  have   that  �̅��̅�𝑇 =  �̅�𝑇�̅�  = 𝐼,   𝑡ℎ𝑒  𝐿2 − 𝑛𝑜𝑟𝑚  𝑜𝑓  𝑟𝑜𝑤𝑠, 𝑐𝑜𝑙𝑢𝑚𝑛  𝑣𝑒𝑐𝑡𝑜𝑟𝑠  𝑜𝑓  �̅� 𝑖𝑠  𝑜𝑛𝑒. 

The  residue  matrices 𝑖. 𝑒. �̅�𝑖 = 𝑓�̅� 𝑓�̅�
𝑇  are  such  that 

∑�̅�𝑖  =   𝐼.  𝐻𝑒𝑛𝑐𝑒∑�̅�𝑖

𝑁

𝑖=2

= �̅� 

𝑁

𝑖=1

  𝑤𝑖𝑡ℎ  𝑄𝑖𝑖 = 
𝑁 − 1

𝑁
  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖   𝑎𝑛𝑑  𝑄𝑖𝑗 = − 

1

𝑁
  𝑓𝑜𝑟  𝑖 ≠ 𝑗. 

It  follows   that   𝑄 ̅�̅� = 0̅, 𝑤ℎ𝑒𝑟𝑒  �̅�  𝑖𝑠  𝑎  𝑐𝑜𝑙𝑢𝑚𝑛  𝑣𝑒𝑐𝑡𝑜𝑟  𝑜𝑓  𝑎𝑙𝑙  𝑜𝑛𝑒𝑠  𝑎𝑛𝑑   �̅�  𝑖𝑠  𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 . 

 

Also,  we   readily  have   that 

∑𝑓𝑖𝑗
2

𝑁

𝑖=2

 =  
𝑁 − 1

𝑁
  𝑎𝑛𝑑 ∑  𝑓𝑖𝑙  𝑓𝑖𝑚  =  −

1

𝑁
   𝑓𝑜𝑟  𝑙 ≠ 𝑚  𝑎𝑛𝑑  1 ≤ 𝑙 ≤ 𝑁, 1 ≤ 𝑚 ≤ 𝑁 .

𝑁

𝑖=2

    

Note:  In   the  spirit  of  properties  of  Laplacian �̅�,  we   can   derive  new  results  related  to  Graph  

Laplacian.  Thus  new  results  in  spectral  graph  theory  can  be  readily   derived. 

 Abstract  Vector  Space  of  Random  Variables: 

                                                                                       Consider  a  collection  of  discrete  random  

variables.  All  of  them  assume  same  values.  Specifically  consider   two  random  variables  

X, Y.  From   research  literature [PaP],  E (XY)  ( i.e.  expected  value  of  their  product )  can  be  

regarded  as  an  inner  product   between  the  random  variables  { X, Y } ( regarded  as  abstract  

vectors ).  Suppose  �̅�  be  the  set  of  values  assumed  by  the  random  variables  X, Y.  It  

readily  follows  that 

           𝐸(𝑋𝑌) =   �̅�𝑇 �̃�  �̅�, 𝑤ℎ𝑒𝑟𝑒  �̃�  𝑐𝑎𝑛  𝑏𝑒  𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑  𝑎𝑠  𝑎  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  𝑚𝑎𝑡𝑟𝑖𝑥. 

            𝑈𝑠𝑖𝑛𝑔  𝐷𝑖𝑟𝑎𝑐  𝑛𝑜𝑡𝑖𝑜𝑛   𝐸(𝑋𝑌) = < �̅�, 𝑃 ̃�̅� >. 

𝐼𝑡  𝑟𝑒𝑎𝑑𝑖𝑙𝑦  𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑡ℎ𝑎𝑡  𝑡ℎ𝑒  𝑖𝑛𝑛𝑒𝑟  𝑝𝑟𝑜𝑑𝑢𝑐𝑡  𝐸(𝑋𝑌)  𝑖𝑠  𝑧𝑒𝑟𝑜  𝑖.e.  the  associated  random  

variables  are  ORTHOGONAL  if  �̅� lies  in  the  null  space  of  the  symmetric  matrix  �̃� .  Thus,  

the  null   space  of  matrix  �̃�   determines   the  space  of  orthogonal  random  variables. 

 

 Connections  to  Stochastic  Processes: 

                                                                          Let  us   first  consider  a  discrete  time,  discrete  state 

space  stochastic  process  i.e.  a   countable  collection  of  discrete  random  variables. In  view  

of   tha  above   results,  the variance  values  of  random  variables   constitute  a  sequence  of  



quadratic  forms.  Thus,  the  sequence  of  scalar  variance  values  constitute  an  infinite  

sequence  of   real/complex  numbers. We  consider  the  following  special  cases: 

 

(I)  Consider  the  case   where  the  random  process   is  a  strict  sense  stationary  random  

process.  Hence,  the  sequence  of  variance  values  ( i.e.  the  associated  quadratic  

forms )  form  a   constant  sequence  (  DC  sequence ). 

 

(II) Consider   the  case   where  the  random  process  constitutes  a  homogeneous   

Discrete  Time  Markov  Chain  ( DTMC ).  Since  such  a   process  exhibits  an  

equilibrium  bahviour,  the  sequence  of  variance  values  of  the   discrete  random  

variables  (  i.e.  associated  quadratic  forms  )  converges  to  an  equilibrium  variance  

value (  based  on  the  equilibrium  probability  mass  function ). 

 

 

 Unit   Random   Process:   Connection   to   Verhulst  Dynamical  System: 

 Now,  we  consider  a  UNIT  Random  Process  (  i.e.  state, 𝑋(𝑛) of  the  random  process   assumes        

{ +1 , -1 }  values  only )  whose  marginal  Probability  Mass  Function ( PMF )  is  of  the  form    

{ 𝑞(𝑛), 1 − 𝑞(𝑛) }  i.e.  time-varying  PMF  depends  on  the  time  evoluation  of  probability  𝑞(𝑛).      

Let  the  evolution  of  𝑞(𝑛)  be  given  by 

𝑞(𝑛 + 1) =   𝑎  𝑞(𝑛)( 1 − 𝑞(𝑛) ), 𝑤ℎ𝑒𝑟𝑒  𝑎 ∈ [0, 4]. 

𝑇ℎ𝑒  𝑎𝑏𝑜𝑣𝑒  𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠  𝑖𝑠  𝑠𝑎𝑚𝑒  𝑎𝑠 𝑡ℎ𝑎𝑡  𝑜𝑓  𝑎  𝑉𝑒𝑟ℎ𝑢𝑙𝑠𝑡  𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙  𝑠𝑦𝑠𝑡𝑒𝑚.  𝐻𝑒𝑛𝑐𝑒  𝑤𝑒 

𝑐𝑎𝑛  𝑢𝑡𝑖𝑙𝑖𝑧𝑒  𝑡ℎ𝑒  𝑘𝑛𝑜𝑤𝑛  𝑟𝑒𝑠𝑢𝑙𝑡𝑠  𝑓𝑜𝑟  𝑉𝑒𝑟ℎ𝑢𝑙𝑠𝑡  𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙  𝑠𝑦𝑠𝑡𝑒𝑚.  𝑇ℎ𝑢𝑠, 𝑖𝑡 𝑟𝑒𝑎𝑑𝑖𝑙𝑦  𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑡ℎ𝑎𝑡  

𝑓𝑜𝑟  𝑎 ∈ [0,3],

𝑡ℎ𝑒  𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙  𝑃𝑀𝐹  𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠  𝑡𝑜  𝑡ℎ𝑒  𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚  𝑃𝑀𝐹  𝑜𝑓  {  
𝑎 − 1

𝑎
,
1

𝑎
   } .  𝐴𝑙𝑠𝑜, 𝑓𝑜𝑟    

𝑎 ∈ (3, 4], 𝑡ℎ𝑒  𝑃𝑀𝐹  𝑒𝑥ℎ𝑖𝑏𝑖𝑡𝑠  𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟𝑦  𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟  𝑜𝑟  𝑐ℎ𝑎𝑜𝑡𝑖𝑐  𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟. 

𝐼𝑛  𝑡ℎ𝑒  𝑐𝑎𝑠𝑒  𝑜𝑓  𝑠𝑢𝑐ℎ  𝑈𝑁𝐼𝑇  𝑅𝐴𝑁𝐷𝑂𝑀  𝑃𝑟𝑜𝑐𝑒𝑠𝑠, 𝑡ℎ𝑒  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒  𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛  𝑖𝑠  𝑔𝑖𝑣𝑒𝑛  𝑏𝑦 

�̅�(𝑛)  =   [ 
𝑞(𝑛)(1 − 𝑞(𝑛)) −𝑞(𝑛)( 1 − 𝑞(𝑛))

−𝑞(𝑛)(1 − 𝑞(𝑛) )   𝑞(𝑛)(1 − 𝑞(𝑛) )  
  ]. 

It  also   immediately  follows  that   𝑇𝑟𝑎𝑐𝑒(�̅�(𝑛)) = 2 𝑞(𝑛)(1 − 𝑞(𝑛))  𝑎𝑛𝑑   

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒((𝑋(𝑛)) = 4 𝑞(𝑛)(1 − 𝑞(𝑛)).   Thus,  𝑓𝑜𝑟  𝑎 ∈ [0,3],  the  equilibrium  value  of  Variance  of  

the   UNIT  random  process  is  given  by  4 
(𝑎−1) 

𝑎2
.  

Note:   The  unit   random   process  considered   exhibits  Markovian  property.  But,  the  time  

evolution of  marginal   PMF   is   non-linear.  Under  some  conditions  such  a   stochastic  dynamical  

system  exhibits  steady  state/ equilibrium  behavior. 

Note:  In  view  of  algebraic  interpretation  of 𝑆𝑞(�̅�)  𝑓𝑜𝑟  𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑣𝑎𝑙𝑢𝑒𝑑 𝑞, 𝑤𝑒  𝑑𝑒𝑓𝑖𝑛𝑒  𝑡ℎ𝑒   

𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔   𝑮𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒆𝒅  𝑽𝒆𝒓𝒉𝒖𝒍𝒔𝒕  𝒕𝒚𝒑𝒆  𝒅𝒚𝒏𝒂𝒎𝒊𝒄𝒂𝒍  𝒔𝒚𝒔𝒕𝒆𝒎:  Generalized  Logistic  Map 

𝑥(𝑛 + 1) =   𝑎  𝑥(𝑛)( 1 − 𝑥(𝑛) ) (1 + 𝑥(𝑛) + 𝑥2(𝑛) + ⋯+ 𝑥𝑙(𝑛))  𝑓𝑜𝑟  𝑎𝑛  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑙  𝑤𝑖𝑡ℎ 𝑥(𝑛) > 0 



We   are  currently  investigating  the  dynamics  of  such  a  Generalized  Verhulst  dynamical  system. 

We   now  provide  some  related   results.  The   generalized  logistic  map  is  given  by 

𝑓(𝑦) =   𝑎  𝑦 (1 − 𝑦𝑙)  for ′𝑙′ 𝑎𝑛  𝑖𝑛𝑡𝑒𝑔𝑒𝑟.   From  basis  calculus,  it  follows  that  the  global  maximum  

of  𝑓(. )  𝑜𝑐𝑐𝑢𝑟𝑠  𝑎𝑡  𝑦 = √
1

1+𝑙
 

𝑙
.  𝑇ℎ𝑢𝑠, 𝑓𝑜𝑟  𝑓(𝑦) < 1 , 𝑤𝑒  𝑟𝑒𝑞𝑢𝑖𝑟𝑒  𝑡ℎ𝑎𝑡   𝑎 ∈ (0,

(𝑙+1) √𝑙+1
𝑙

𝑙
 ). 

It  can  be  readily  verified  that  the  above  generalized  logistic  map  reduces  the  ordinary  logistic  

map  for 𝑙 = 1 .  

 Functional   Logistic  Map:  Sigmoid  Function: 

                                                                                                    We  now  introduce   the  following  

generalization  of  logistic  map.  The   basis  for  the  generalization  is  the  following  function  of  

interest  in  artificial  neural networks  (  called  SIGMOID  function ). 

𝑆𝐼𝐺𝑀𝑂𝐼𝐷(𝑧) =   
1

1 + 𝑒−𝑧
 = 𝑓(𝑧).  𝐼𝑡  𝑟𝑒𝑎𝑑𝑖𝑙𝑦  𝑓𝑜𝑙𝑙𝑜𝑤𝑠   𝑡ℎ𝑎𝑡 

𝑑 𝑓(𝑧)

𝑑 𝑧
  =   𝑓(𝑧) (1 − 𝑓(𝑧) ). 

From  the  theory  of  ordinary  non-linear  differential  equations,  it  could  be reason  that   the  above  

differential  equation  has  a  unique  solution.   We  are  naturally  led  to  the  following  generalization: 

𝑑 𝑓(𝑧)

𝑑 𝑧
  =   𝑎0 + 𝑎1 𝑓(𝑧) + 𝑎2( 𝑓(𝑧) )

2 +⋯+ 𝑎𝑀( 𝑓(𝑧) )
𝑀 , 𝑤ℎ𝑒𝑟𝑒   

𝑔(𝑦) = 𝑎0 + 𝑎1 𝑦 + 𝑎2 𝑦
2 +⋯+ 𝑎𝑀𝑦

𝑀  𝑖𝑠  𝑎  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡   𝑔(1) = 0. 

 

Thus,  we  are   led  to  the  following  definition: 

Definition:  A  functional  logistic  map  based  on  the  function  𝑓(𝑧)  𝑖𝑠  𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑎𝑠 

𝑔(𝑓(𝑧)) =   𝑏  𝑓(𝑧) ( 1 − 𝑓(𝑧) )  𝑤ℎ𝑒𝑟𝑒  𝑏  𝑖𝑠  𝑎  𝑟𝑒𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟.  More  generally, in  the  spirit  of  

above  discussion,  we  have   

ℎ(𝑓(𝑧)) =   𝑏  𝑓(𝑧) ( 1 − 𝑓𝑞(𝑧) )  𝑓𝑜𝑟  𝑎𝑛  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑞′ ′. 

It  readily  follows  that  if   𝑓(𝑧) = 𝑧 , 𝑡ℎ𝑒𝑛 𝑔(𝑧) 𝑖𝑠  𝑡ℎ𝑒  𝑤𝑒𝑙𝑙  𝑘𝑛𝑜𝑤𝑛  𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐  𝑚𝑎𝑝. 

We  realize  that  Verhulst  population  dynamical  system  is  defined  based  on  the  logistic  map. In  

the  same  spirit, we  can  define   interesting  non-linear  dynamical  systems   based  on  the  above  

generalized  logistic  maps  proposed  above.  Details  are  avoided  for  brevity.  We  expect  detailed  

results  to  be  derived  in  association  with  such  non-linear  differential  equations  and  dynamical  

systems. 

 Matrix  Logistic   Map:  Matrix   Verhulst  Dynamical  System: 

                                                                                                              We  now  introduce  the  concept  

of  “Matrix  Logistic  Map”. 



 

Definition:   Given  a   constant  matrix  “C”  and  matrix  Variable  “A”,  matrix  logistic  map  is  

defined  as 

                        𝑓(𝐴)  =   𝐶 𝐴 ( 𝐼 − 𝐴 ), 𝑤ℎ𝑒𝑟𝑒  𝐼  𝑖𝑠  𝑡ℎ𝑒  𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  𝑚𝑎𝑡𝑟𝑖𝑥. 

 

𝑇ℎ𝑒  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑚𝑎𝑡𝑟𝑖𝑥  𝑣𝑒𝑟ℎ𝑢𝑙𝑠𝑡  𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙  𝑠𝑦𝑠𝑡𝑒𝑚  𝑖𝑠  𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑎𝑠  

 

𝐴(𝑛 + 1) = 𝐶 𝐴(𝑛) ( 𝐼 − 𝐴(𝑛) )  𝑓𝑜𝑟  𝑛 ≥ 0. 

 

𝑇ℎ𝑒  𝑚𝑎𝑡𝑟𝑖𝑥  𝑓𝑖𝑥𝑒𝑑  𝑝𝑜𝑖𝑛𝑡, 𝑍  𝑜𝑓  𝑎𝑏𝑜𝑣𝑒  𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙  𝑠𝑦𝑠𝑡𝑒𝑚  𝑖𝑠  𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑎𝑠   

 

𝑍 = 𝐶 𝑍 ( 𝐼 − 𝑍 ) 𝑖. 𝑒.  𝑍  𝑖𝑠  𝑎  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑜𝑓 𝑡ℎ𝑒  𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔  𝑚𝑎𝑡𝑟𝑖𝑥  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  

𝐶 𝑍2 − 𝐶 𝑍 + 𝑍 =   𝐶 𝑍2 + ( 𝐼 − 𝐶 ) 𝑍 = 0.̅ 

 

 𝑁𝑜𝑤, 𝑤𝑒  𝑏𝑟𝑖𝑒𝑓𝑙𝑦  𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑧𝑒  𝑡ℎ𝑒  𝑟𝑒𝑠𝑢𝑙𝑡𝑠  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠  𝑜𝑓  𝑎𝑛   

𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦  𝑚𝑎𝑡𝑟𝑖𝑥  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑖. 𝑒.  𝐵2𝑍
2 + 𝐵1 𝑍 + 𝐵0 ≡ 0̅  𝑤𝑖𝑡ℎ  { 𝐵2, 𝐵1, 𝐵0}  

being  the  coefficient  matrices  and  Z  is  the  unknown  matrix .  The  following  factorization  

readily  holds  true: 

𝛿2𝐵2 + 𝛿 𝐵1 + 𝐵0  =   ( 𝛿 𝐵2 + 𝐵2 𝑍 + 𝐵0 ) ( 𝛿 𝐼 − 𝑍 ). 
𝑇ℎ𝑢𝑠, 𝑡𝑎𝑘𝑖𝑛𝑔  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡  𝑜𝑛  𝑏𝑜𝑡ℎ  𝑠𝑖𝑑𝑒𝑠, 𝑤𝑒  𝑖𝑛𝑓𝑒𝑟  𝑡ℎ𝑎𝑡  𝑡ℎ𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑜𝑓  

 𝑎𝑙𝑙  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠  𝑜𝑓  𝑎𝑏𝑜𝑣𝑒  𝑚𝑎𝑡𝑟𝑖𝑥  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑚𝑢𝑠𝑡  𝑏𝑒  𝑧𝑒𝑟𝑜𝑒𝑠  𝑜𝑓  𝑡ℎ𝑒  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑛𝑡𝑎𝑙  

 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙    

                                        𝐷𝑒𝑡 ( 𝛿2𝐵2 + 𝛿 𝐵1 + 𝐵0 ) .  

Further,  the  right  vector, 𝑓 ̅ of  a  solution  matrix  (  of  the  matrix  quadratic  equation ),  ‘Z’  

corresponding  to  the  eigenvalue  ′𝜇′  is   in  the  right  null  space  of  the  matrix 

                                       𝜇2𝐵2 + 𝜇𝐵1 +𝐵0  𝑖. 𝑒. 𝑓 ̅(𝜇2𝐵2 + 𝜇𝐵1 + 𝐵0) ≡ 0̅. 

Now,  we  apply  the  above  results  to  the  case  of  structured  matrix  quadratic  equation  arising  in  

the  case  of  matrix  logistic  map  of  interest  to  us.  We  readily  have  that 

𝐵2 = 𝐶  , 𝐵1 = 𝐼 − 𝐶   𝑎𝑛𝑑  𝐵0 ≡ 0̅. 

Thus,  the  associated   determinental  polynomial  of  interest  to  us  becomes 

𝐷𝑒𝑡( 𝛿2𝐶 + 𝛿(𝐼 − 𝐶)  ) =   𝐷𝑒𝑡 ( 𝛿𝐼 ( 𝛿 𝐶 + (𝐼 − 𝐶))). 

Suppose  𝑪  matrix  doesnot  have  an  eigenvalue  at  ‘1’ ( one )  ( i.e. (𝑰 − 𝑪)  is  non-singular ),  then  

the  above  determinental  polynomial  has  ‘N’  (  C  is  an  N x N  matrix )  zeroes  identically  ‘zero’  and  

the  rest  of  zeroes  ( i.e.  N  of  them  since  the  determinental polynomial  is  of  degree 2N ) are non-

zero.  Now  let  us  consider  the  solutions  of  above  structured  matrix  quadratic  equation   all  of  

whose  eigenvalues  are  non-zero  (  i.e.  non-singular  solution  matrices ).  In  the  following  discussion,  

we  reason  that  there  is  a  UNIQUE  NON-SINGULAR  matrix  which  is  a  solution  of  the  structured  

matrix  quadratic  equation.  We  readily  have  that  for  such  a  matrix  solution   ( with 

𝜇  𝑎𝑠  𝑡ℎ𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒  𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔  𝑡𝑜  𝑡ℎ𝑒  𝑟𝑖𝑔ℎ𝑡  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟  𝑓̅  ),  

𝐷𝑒𝑡( 𝜇 𝐶 + ( 𝐼 − 𝐶 ) ) = 0  𝑖. 𝑒   ( 𝜇 𝐶 + ( 𝐼 − 𝐶 ) )𝑓̅ ≡ 0̅ .  𝑇ℎ𝑢𝑠, 𝑤𝑒 ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡 



𝐶 𝑓̅ =
1

( 𝜇 + 1 )
 𝑓̅  =   𝜃 𝑓̅ . 

Hence,  an  eigenvalue  of  the  unique  solution  matrix ′𝜇′ ( i.e.  matrix  fixed point )  is  readily  obtained  

using  an  eigenvalue  of  constant  matrix  𝐶  𝑖. 𝑒.  𝜃  in  the  following  manner 

𝜇 =
1 − 𝜃

𝜃
 .  𝐴𝑙𝑠𝑜, 𝑓̅   𝑖𝑠  𝑎  𝑟𝑖𝑔ℎ𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟  𝑜𝑓  𝑚𝑎𝑡𝑟𝑖𝑥  𝐶.  

Thus,  the  eigenvalues,  right  eigenvectors  of  non-singular  solution  matrix,  Z  can  be  readily   

computed.  If  the  solution  matrix,  Z   is  also  diagonalizable  (  i.e.  sufficient  condition  is  that  the  

eigenvalues  of  matrix  C  are  distinct ),  then,  it  can  be  readily  computed  explicitly. 

Note:  There  is  a  unique,  non-singular  fixed  point  of  the  dynamical  system  associated  with  the  

matrix  logistic  map.  Trivially  𝑍 ≡ 0 ̅ 𝑖𝑠   𝑎  𝑓𝑖𝑥𝑒𝑑  𝑝𝑜𝑖𝑛𝑡 𝑜𝑓  𝑡ℎ𝑒  𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙  𝑠𝑦𝑠𝑡𝑒𝑚.  

Note:  The  non-linear  behavior  of  dynamical  system  associated  with  the  matrix  logistic  map  can  

be  determined  using  extensive  numerical  work. 

We  are  naturally  led  to  the  following   “generalized  matrix  logistic  map”.  

Definition:   Given  a   constant  matrix  “C”  and  matrix  Variable  “A”,  generalized  matrix  

logistic  map  is  defined  as 

                        𝑓(𝐴)  =   𝐶 𝐴 ( 𝐼 − 𝐴𝑞−1 ), 𝑤ℎ𝑒𝑟𝑒  𝐼  𝑖𝑠  𝑡ℎ𝑒  𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  𝑚𝑎𝑡𝑟𝑖𝑥, 𝒒 ≥ 𝟑. 

 

𝑇ℎ𝑒  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑚𝑎𝑡𝑟𝑖𝑥  𝑣𝑒𝑟ℎ𝑢𝑙𝑠𝑡  𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙  𝑠𝑦𝑠𝑡𝑒𝑚  𝑖𝑠  𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑎𝑠  

 

𝐴(𝑛 + 1) = 𝐶 𝐴(𝑛) ( 𝐼 − (𝐴(𝑛))
𝑞−1 

)   𝑓𝑜𝑟  𝑛 ≥ 0. 

𝑇ℎ𝑒  𝑓𝑖𝑥𝑒𝑑  𝑝𝑜𝑖𝑛𝑡𝑠  𝑜𝑓  𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐  𝑚𝑎𝑝  𝑎𝑟𝑒  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑  𝑢𝑠𝑖𝑛𝑔  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓  𝑡ℎ𝑒   

𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑚𝑎𝑡𝑟𝑖𝑥  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [ 𝑅𝑎𝑚𝑎3 ].   

 

4.  Other  Interesting  Quadratic  Forms  in  Probability/Statistics: 

                                                                                                                    In  this  section,  we  investigate  

several  other  quadratic  forms  which  are  naturally  associated  with  measures  such  as  

covariance/Correlation  of  two   random  variables  which  assume  same  values. 

 

 In  general,  quadratic  form  is  of  the  form  𝛽 = ∑  ∑ 𝑇𝑖𝑇𝑗𝐵𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1   , 𝑤ℎ𝑒𝑟𝑒  𝐵𝑖𝑗 ℎ𝑎𝑠   

𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙  𝑜𝑟  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒  𝑒. 𝑔.  𝐵  𝑐𝑜𝑢𝑙𝑑  𝑏𝑒  𝑇𝑜𝑒𝑝𝑙𝑖𝑡𝑧  𝑎𝑢𝑡𝑜 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛   

𝑚𝑎𝑡𝑟𝑖𝑥  𝑜𝑓  𝑎𝑛  𝐴𝑢𝑡𝑜 − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒  𝑝𝑟𝑜𝑐𝑒𝑠𝑠.  𝐼𝑛  𝑓𝑎𝑐𝑡  𝐵 𝑐𝑜𝑢𝑙𝑑  𝑏𝑒  𝑡ℎ𝑒  𝑠𝑡𝑎𝑡𝑒  𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛   

𝑚𝑎𝑡𝑟𝑖𝑥    𝑜𝑓   𝑎  𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 − 𝑇𝑖𝑚𝑒  𝑀𝑎𝑟𝑘𝑜𝑣  𝐶ℎ𝑎𝑖𝑛 (𝐷𝑇𝑀𝐶).  𝐹𝑢𝑟𝑡ℎ𝑒𝑟  𝐵  𝑐𝑜𝑢𝑙𝑑  𝑏𝑒 − 𝑄, 

             𝑤ℎ𝑒𝑟𝑒  𝑄  𝑖𝑠  𝑡ℎ𝑒  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟  𝑚𝑎𝑡𝑟𝑖𝑥  𝑜𝑓  𝑎  𝐶𝑇𝑀𝐶.  

 

 Variance  Laplacian  related  investigation   naturally  leads  to  studying  the  following  

more  general  quadratic  form  associated  with  two  jointly  distributed  random 



variables  X, Y  that  are  “symmetric”  in  the  sense  that  their  ‘marginal  probability  

mass  functions” are  exactly  same  and  the  values  assumed  by  them  are  same.  Let  

the  common  marginal  probability  mass  function  of  the  two  random  variables  be  

{ 𝑝1 , 𝑝2 , … , 𝑝𝑁  }. In the  spirit  of   Laplacian  �̅�,  we  are  motivated   to   introduce,  a  

more  general  Laplacian  matrix, �̅�  𝑖. 𝑒. 

 

�̅� = �̅� − 𝑃,̃   𝑤ℎ𝑒𝑟𝑒  �̅�  = 𝑑𝑖𝑎𝑔 (  𝑝1, 𝑝2 , … , 𝑝𝑁  ) i.e.  a  diagonal  matrix  and   

�̃�𝑖𝑗 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦 {  𝑋 = 𝑖, 𝑌 = 𝑗 } 𝑖. 𝑒.  𝑚𝑎𝑡𝑟𝑖𝑥  𝑜𝑓  𝑗𝑜𝑖𝑛𝑡  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠.  

 

With  such  definition  �̅�    need  not  be  symmetric  but  still  is  Laplacian.  Suppose, 𝑃  ̃  

is  a  symmetric  matrix  (  a   stronger  condition  which  ensures  that  the  random  

variables  { X, Y }  are  “symmetric” ) ,  �̅�  will  be  a  symmetric, Laplacian  matrix. 

 

Let   the   common  vector  of  values  assumed   by  the   random  variables, X, Y  be   �̅� . 

Hence,  the  quadratic  form  associated  with  �̅�  is  given  by  �̅�𝑇�̅�  𝑇.̅   Explicitly, we 

have  the  following  novel  measure  associated   with   jointly  distributed  random  

variables  { X, Y }. 

𝜃 = �̅�𝑇�̅�  �̅� =  ∑𝑇𝑖
2

𝑁

𝑖=1

𝑝𝑖 −∑∑𝑇𝑖𝑇𝑗 𝑃𝑟𝑜𝑏 { 𝑋 = 𝑖, 𝑌 = 𝑗 }

𝑁

𝑗=1

𝑁

𝑖=1

 

= 𝐸(𝑋2) − 𝐸(𝑋𝑌)   =   𝐸(𝑌2) − 𝐸(𝑋𝑌) 

 

Note:  If  X, Y  are  independent  and  identically  distributed  random  variables, then  the  above  

measure  is  the   common  variance  of  them.  Also, if  X, Y  are  same  then  𝜃  is  zero.    

 We  now  introduce  the  concept  of   “symmetrization  of  Jointly  Distributed  Random  

variables”  based   on  the  following  well   known  result  associated  with  quadratic  

forms: 

�̅�𝑇𝑃 ̃�̅�  =   
1

2
�̅�𝑇(  �̃� + �̌�𝑇)  𝑇̅̅ ̅̅̅  𝑖. 𝑒.  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑓𝑜𝑟𝑚. 

 

Definition:  Two  jointly  distributed   random  variables   with  Joint  PMF  matrix  �̃�   ( 

not  necessarily  symmetric  )  are  “symmetrized”  when  they  are  associated  with  the   

symmetric  joint   PMF  matrix    
1

2
(  �̃� + �̌�𝑇). 

 

Lemma  10 :   Laplacian   quadratic   form  �̅�𝑇�̅�  �̅�   is  always  positive  semi-definite.  

 

Proof:  It  readily  follows   that   if  E(XY)   is   non-positive,  then  ‘𝜃′  is  non-negative. Thus,  

             the  more  interesting  case  is  when  E(XY)   is  non-negative.  In  this  case,  we  invoke  a  

well  known   result  in  the   abstract  vector  space  of   random  variables.  From [PaP],  the  

following   definition  is  well  known 

 

Definition:  The  second  moment  of  the  random  variables  X, Y  i.e.  E( XY )    is  defined  as   

                      their   inner  product.  Further,  the   ratio 



𝐸(𝑋𝑌)

√𝐸(𝑋2) 𝐸(𝑌2)
 

 

                     is  the  cosine  of  their   angle, 𝛽  i.e.  say  𝐶𝑜𝑠(𝛽). 

Hence,  it  is  well  known   that   |𝐶𝑜𝑠(𝛽)| ≤ 1.  Thus,  in   the  case  of   random  variables  X, Y  

whose   joint  probability  mass  function  matrix, �̃�  is  symmetric,  we  have  that 

                                          |𝐸(𝑋𝑌)| ≤ 𝐸(𝑋2).   𝑇ℎ𝑢𝑠, 𝑖𝑓  𝐸(𝑋𝑌) ≥ 0, 𝐸(𝑋𝑌) ≤ 𝐸(𝑋2). 

𝑇ℎ𝑢𝑠, 𝑡ℎ𝑒  𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛   𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐   𝑓𝑜𝑟𝑚  �̅�𝑇�̅�  �̅�   𝑖𝑠  𝑎𝑙𝑤𝑎𝑦𝑠  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑠𝑒𝑚𝑖 − 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒.   

                                                                                                                                             𝑄. 𝐸. 𝐷. 

𝑪𝒐𝒓𝒐𝒍𝒍𝒂𝒓𝒚:  In  this  case,  the  covariance  of  random  variables  considered  above  can  be  

bounded   in   the  following  manner: 

𝐶𝑥𝑦 = 𝐸(𝑋𝑌) − ( 𝐸(𝑋) )
2. 

 

Since  Variance  is  non-negative,  we  have  that  𝐸(𝑋2) ≥ (𝐸(𝑋))2  or  −𝐸(𝑋2) ≤ −(𝐸(𝑋))2. 

Hence,  𝐶𝑥𝑦 ≥ −𝜃.                                                                                                             Q.E.D. 

 

We   now    briefly   consider   familiar   scalar   measures  routinely   utilized  in  probabilistic/ 

statistical  investigations   and   provide  them  with  quadratic   form   interpretation. 

(I) Covariance:  By  definition, covariance  of  two  random  variables  X, Y  is  given  by 

𝐶𝑥𝑦 = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌). 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒  𝑡ℎ𝑒  𝑟𝑎𝑛𝑑𝑜𝑚  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑋, 𝑌  𝑎𝑠𝑠𝑢𝑚𝑒  𝑡ℎ𝑒  𝑠𝑎𝑚𝑒  𝑣𝑒𝑐𝑡𝑜𝑟  𝑜𝑓  𝑣𝑎𝑙𝑢𝑒𝑠  �̅�. 

𝑇ℎ𝑒𝑛, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑒  𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑓𝑜𝑟𝑚  𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑋, 𝑌. 

𝐶𝑥𝑦 =∑∑𝑇𝑖𝑇𝑗 𝑃𝑟𝑜𝑏 { 𝑋 = 𝑖, 𝑌 = 𝑗 }

𝑁

𝑗=1

𝑁

𝑖=1

−∑∑𝑇 𝑖𝑇𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 𝑝𝑖𝑝𝑗   

=  �̅�𝑇𝑃 ̃�̅� − �̅�𝑇 𝐽  ̃�̅�, 𝑤ℎ𝑒𝑟𝑒  𝐽𝑖𝑗 = 𝑝𝑖𝑝𝑗  . 

= �̅�𝑇 ( 𝑃 ̃ −  𝐽 ̃)𝑇 .̅̅ ̅ 

              Thus,   we   have  a  quadratic   form   that  is  not  Laplacian. 

Note:  The  correlation   coefficient  of   two  random  variables  X, Y  is  defined  as   

𝜌𝑥𝑦 =
𝐶𝑥𝑦

𝜎𝑥𝜎𝑦
.  𝐼𝑡   𝑟𝑒𝑎𝑑𝑖𝑙𝑦  𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑡ℎ𝑎𝑡  |𝜌𝑥𝑦| ≤ 1  𝑖. 𝑒 . |𝐶𝑥𝑦| ≤ 𝜎𝑥𝜎𝑦. 

This  well  known   result   can  be  given  a  quadratic  form   based  interpretation  if  the  random  

variables  X, Y   assume  the  same  values. 

(II)  From   the  above   discussion,  it  readily  follows  that  given  a  random  variable, X  

( 𝐸(𝑋) )2, 𝐸(𝑋2)  are   arbitrary   quadratic  forms. 

Note:  Suppose,   we  consider  two  independent discrete  random  variables  X, Y  and  their  sum  Z  i.e.   

Z= X+Y.   The   following  inferences  are   well   known   from   probability   theory: 



 The  Probability  Mass  Function ( PMF ) of  Z  is  the  convolution  of  the  PMFs  of  the  

random  variables  X, Y 

 Variance ( Z )  =  Variance ( X ) + Variance ( Y ).   

Suppose  the  discrete  random  variables  X, Y  assume  the  same set  of   finitely  many  values   

captured  by  the N x1  vector �̅�.  Also,  let  �̅�𝑥 , �̅�𝑦  be  the  associated  N x N    variance  Laplacian  

matrices.  The  set  of  values  assumed  by  Z  (  i.e.  convolution  of  the  elements  of  �̅�  with  those  of  

elements  of   �̅� itself )  is  an  2N- 1  vector.  Thus,  the  variance  quadratic  form  associated  with  

random  variable Z  is  equal  to  the  sum  of  variance  quadratic  forms  associated   with   the  random  

variables  X, Y.  It  should  be  noted  that  the  Variance  Laplacian  matrix  associated  with  the  random  

variable  Z  i.e. �̅�𝑍  is  a  ( 2N-1) x (2N-1)  matrix.   

 Thus,  the  above  result  from  probability  theory  shows  the  equivalence  of  two  quadratic  

forms  associated  with  matrices  of  different  dimensions. 

Note:    Two  vectors  whose  elements  are  positive  real  numbers   can  be  normalized  using  their  

𝐿1 − 𝑛𝑜𝑟𝑚𝑠  𝑡𝑜 𝑎𝑟𝑟𝑖𝑣𝑒  𝑎𝑡  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑣𝑒𝑐𝑡𝑜𝑟𝑠.  𝐼𝑓  𝑡ℎ𝑒  𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑣𝑒𝑐𝑡𝑜𝑟𝑠  𝑖. 𝑒. 𝑃𝑀𝐹𝑠 

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑  𝑡𝑜  𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  𝑟𝑎𝑛𝑑𝑜𝑚  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,   𝑡ℎ𝑒  𝑎𝑏𝑜𝑣𝑒  𝑟𝑒𝑠𝑢𝑙𝑡  𝑜𝑛  𝑠𝑢𝑚  𝑜𝑓  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠   

𝑐𝑎𝑛  𝑏𝑒 𝑖𝑛𝑣𝑜𝑘𝑒𝑑  𝑖𝑛  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛  𝑤𝑖𝑡ℎ  𝑡ℎ𝑒𝑖𝑟  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑓𝑜𝑟𝑚𝑠.   

Correlation  Matrix  of  Finitely  Many  Random  Variables: 

                                                                            Let  us   consider   finitely  many   real  valued 

discrete  random  variables, all  of  which  assume  the  same  set  of   finitely  many  

values.  The  correlation   matrix  of  such  random  variables  is  given  by 

𝑅𝑁 = [ 
𝑅11 ⋯ 𝑅1𝑁
⋮ ⋮ ⋮
𝑅𝑁1 ⋯ 𝑅𝑁𝑁

 ] , 𝑤ℎ𝑒𝑟𝑒  𝑅𝑖𝑗 = 𝐸( 𝑋𝑖𝑋𝑗 ) . 

                    From  the  above  discussion,  it  is  clear  that  the  elements  of  𝑅𝑁   are  quadratic  forms  in  

the  set  of  values  assumed  by  the  random  variables  �̅�  ( 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑜𝑓  �̅�  𝑎𝑟𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑓𝑜𝑟𝑚𝑠 ).  

 𝐼𝑡 𝑖𝑠  𝑤𝑒𝑙𝑙  𝑘𝑛𝑜𝑤𝑛  𝑡ℎ𝑎𝑡  𝑅𝑁 is  non-negative  definite.  Using  the  above  discussion,  the  correlation  

matrix 𝑅𝑁  can  be   written  as 

𝑅𝑁  =  �̅�
𝑇𝑜 �̅� 𝑜 �̅�  

 𝑖. 𝑒.  𝑅𝑖𝑗 = �̅�
𝑇 �̅�𝑖𝑗�̅�  𝑤ℎ𝑒𝑟𝑒  �̅�𝑖𝑗   𝑖𝑠  𝑡ℎ𝑒  𝑠𝑢𝑏 −𝑚𝑎𝑡𝑟𝑖𝑥  𝑜𝑓  𝑏𝑙𝑜𝑐𝑘  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  𝑚𝑎𝑡𝑟𝑖𝑥 �̅�.    

𝑵𝒐𝒕𝒆: 𝑜′ ′ 𝑖𝑠  𝑎  𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒  𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑝𝑟𝑜𝑑𝑢𝑐𝑡  𝑙𝑖𝑘𝑒  𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟  𝑜𝑟  𝑆𝑐ℎ𝑢𝑟  𝑝𝑟𝑜𝑑𝑢𝑐𝑡.      

It  should  be  noted  that  �̅�  is  the  associated  block  symmetric  matrix   arising  in  association  with  

quadratic  forms. 

Note:  Covariance  matrix  is   also  well  defined  in  statistics/ probability  theory.  Suppose  all  the  

random  variables  (  whose  correlation  matrix  is  considered )  assume  the  same  values.  Then  the  

diagonal  elements  of  it  are  Laplacian  quadratic  forms  and  the  off-diagonal  elements  are  also  

quadratic  forms  which  are  not  necessarily  Laplacian. 



5.  Conclusions:   

                          In  this   research  paper,  it  is  proved  that   the  variance  of  a  discrete  random  

variable  constitutes  the  quadratic  form  associated  with  a  Laplacian  matrix  (  whose  

elements  are  expressed  in  terms  of  probabilities ).  Various  interesting  properties  of  the  

associated   Laplacian   matrix  are   proved.  Also,  other  quadratic  forms  which  naturally  arise  

in  statistics  are  identified.  It  is  shown  that  cross  fertilization  of   results  between  the  

theory  of  quadratic  forms  and  statistics/probability  theory   leads  to  new  research  

directions. 
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