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Abstract

Detecting when a person falls poses a substantial challenge to researchers because of the risk of serious injuries like femoral neck
fractures, brain hemorrhages, or burns, which can lead to significant discomfort and, in some cases, worsen over time, resulting in
complications or even fatalities. The effectiveness of fall detection is linked to promptly alerting caregivers, such as nurses, upon
detecting a fall. In our study, we present a technique for identifying falls within a 40-square-meter apartment using data collected
from three ultra-wideband radars. Our approach integrates pre-trained computer vision models (ResNet, VGG, and AlexNet) for
fall detection, which is a binary classification task aimed at distinguishing between fall and non-fall events. To refine the model’s
performance, we utilize data representing various fall scenarios simulated by 10 participants across three locations within the apart-
ment. We evaluate the performance of the presented technique by using the leave-one-subject-out strategy. The results consistently
demonstrate the superior performance of the ResNet model compared to the VGG and AlexNet models. Notably, our findings
indicate an approximate 95% F1 score in fall detection, suggesting promising prospects for real-world deployment.
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1. Introduction

The frequency of falls among elderly populations poses a significant concern for global public health, resulting in
serious injuries, diminished quality of life, and escalated healthcare expenses. Prompt and accurate detection of falls
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is crucial for timely intervention and mitigating adverse consequences. Advances in technology have spurred the de-
velopment of various fall detection systems, employing diverse sensor technologies and machine learning techniques
(Shen et al. (2023)).

Within the technology domain, Ultra-Wideband (UWB) radar systems emerge as promising tools for fall detection.
Their ability to penetrate barriers, operate in diverse settings, and provide precise sensing highlights their potential.
UWB radars are characterized by their non-intrusive nature, privacy-respecting attributes, and ability to facilitate
continuous monitoring, making them suitable for discreet fall detection applications both indoors and outdoors (Cher-
aghinia et al. (2024)).

While UWB radar-based fall detection systems show promise, there remain considerable challenges in accurately
distinguishing falls from everyday movements and reducing false alarms. In this work, we address this issue by
leveraging advanced machine learning techniques in computer vision, specifically employing pre-trained computer
vision models: Visual Geometry Group (VGG) (Majib et al. (2021)), Residual Neural Network (ResNet) (Kiliç et al.
(2020)), and AlexNet (Azhagiri and Rajesh (2024)). Our approach capitalizes on the distinct capabilities of these
models to enhance the precision of fall detection using UWB radar signals (Ullmann et al. (2023)).

The following structure is presented in this paper: Section 2 offers a synopsis of pertinent literature, followed
by Section 3 introducing the proposed methodology. Section 4 elaborates on the experimental setup, and Section 5
examines the results and analysis. Finally, Section 6 outlines the conclusions drawn from this study and suggests
avenues for future research.

2. Literature Review

Studies on fall detection can be categorized into two primary groups: approaches using wearable technologies and
those employing non-wearable solutions. Within the non-wearable category, methods vary based on the technologies
utilized, such as vision sensors or non-vision sensors. Our study focuses specifically on the non-wearable approach
utilizing non-vision sensors (Gharghan and Hashim (2024)).

The non-wearable strategy employs non-vision sensors that generate one-dimensional (2D) discrete-distance sig-
nals (Hu et al. (2024)). Unlike cameras, which provide 2D and 3D data, interpreting information from 1D signals
presents a challenge for observers. Additionally, these technologies mitigate the shortcomings of wearable devices
and cameras, such as battery management issues, data absence instances (when individuals fail to use the device), and
privacy concerns related to cameras. According to available literature, various solutions for fall detection exist, includ-
ing smart floors (comprising a network of seismic sensors) (Clemente et al. (2019)), acoustic sensors like ultrasonic
arrays (Chen et al. (2023)), and infrared array sensors (He et al. (2023)).

Baik and Shin (2024) devised an algorithm to categorize falls by identifying human movements utilizing frequency
modulation continuous wave radar. It introduced an innovative feature to mitigate detection inaccuracies, which was
derived from the range-velocity map of the 2D Fourier transform. This feature was evaluated utilizing supervised
machine learning techniques such as support vector machines and linear discriminant analysis, achieving an accuracy
surpassing 91%.

Some works have leveraged UWB radar for fall detection from various angles. For instance, Sadreazami et al.
(2019) employed a solitary UWB radar for fall detection, employing a CNN architecture yielding an accuracy of
92.72%. However, their research encountered several constraints. Specifically, the dataset they collected demonstrated
limited diversity, comprising only five subjects. Moreover, their methodology lacked validation through the leave-one-
subject-out strategy.

Arnaoutoglou et al. (2024) developed an innovative non-contact radar technique for detecting falls among elderly
individuals residing at home. The novelty lies in utilizing a 1D effective acceleration obtained through Short Time
Fourier Transform (STFT). Their method was evaluated using a 2.45 GHz Continuous Wave (CW) Radar system
built with readily available, affordable components and Software Defined Radio (SDR) technology. Test results are
presented, demonstrating the system’s ability to classify incidents as falls or non-falls in situations with clear line-
of-sight. These results were compared to data obtained from a commercially available marker-based optoelectronic
motion capture system comprising multiple cameras, showing strong correlation. Real-time scenarios were also con-
ducted to assess the accuracy and false alarm rate of their method.
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Yang et al. (2024) introduce a method for fall detection that relies on spatio-temporal features to accurately identify
falling incidents by leveraging the spatio-temporal relationships within the skeleton. Regarding network architecture,
thier approach involves two key steps. Firstly, they propose a novel spatial graph convolution technique aimed at
capturing spatial features of the skeleton. This method directs the network’s attention towards potential connections
between joint points that are not physically linked in the human skeleton structure. Secondly, they enhance the net-
work’s ability to capture temporal information by integrating temporal features of various scales using multi-scale
temporal graph convolution. Additionally, to account for the spatio-temporal correlations inherent in actions, they
incorporate a spatio-temporal attention mechanism to capture more intricate spatio-temporal characteristics.

Moreover, a fall detection method leveraging Channel State Information (CSI) (He et al. (2024)) is devised to
address the drawbacks of conventional fall detection systems such as compromised privacy, elevated expenses, and
limited cross-domain applicability. Utilizing data from standard WiFi devices, the approach scrutinizes alterations in
indoor CSI induced by human movements, enabling non-intrusive fall detection. Initially, a blend of Discrete Wavelet
Transform (DWT), phase disparity analysis, and Moving Average Filter (MAF) is employed to mitigate the influence
of ambient noise on detection accuracy. Subsequently, the variance of CSI amplitude and phase disparity is computed
to guide subcarrier selection, while moving variance aids in delineating active intervals of chosen subcarriers, thereby
diminishing data complexity and extracting time-frequency attributes. Lastly, Genetic Algorithm (GA) optimizes pa-
rameter selection for Random Forest (RF), enhancing classifier model performance.

Interestingly, no research examined in the literature utilized the leave-one-subject-out approach for assessing gen-
eralization or monitored activities across various sites. Moreover, our investigation suggests that the orientation of
the radar’s angle of operation could influence recognition outcomes. These findings underscore the importance of
our study, as it faithfully replicates real-world conditions for fall detection and implements the leave-one-subject-out
technique alongside advanced technology to showcase its applicability to novel participants.

3. Methodology

This study presents a technique utilizing a pre-trained computer vision model to enhance the precision of fall event
detection through the utilization of data collected from three UWB radars. The phases of this technique are illustrated
in Fig. 1, and further elaborated in the following paragraphs.

Data Collection

Collecting signals
from three UWB Radars

UWB Radars

Window Slicing

Arranging the data
in the form of a scatter matrix

Raw Data

Pre-trained Model

Fine-tuning
a pre-trained model

Scatter Matrix

Evaluation

Evaluating performance 
of the fine-tuned model

Fall Detection Report Results

Fig. 1. Phases of the presented technique.

Initially, raw data is gathered as signals from UWB radar systems. This data, obtained from each radar, is organized
into scatter matrices. The matrix’s horizontal axis denotes a consistent size, equivalent to 184 real values recorded at
each time instance, while the vertical axis signifies the duration of data collection. In our examination, every scatter
matrix is viewed as a time series. Furthermore, we implement a data augmentation technique by employing overlap-
ping along the scatter matrix’s vertical axis. In this work, we employ data augmentation to enhance the accuracy of
fall event detection.

Fig. 2 illustrates the initial organization of data extracted from the three UWBs following signal acquisition. Each
set of data captured by individual radars is presented as a scatter matrix, as demonstrated in Fig. 3. These scatter
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matrices serve as input channels for the deep learning models employed. We partition the scatter matrices into time
slots for the purpose of emulating time series analysis, with each time slot consisting of 200 frames, corresponding to
a four-second duration along the vertical axis of the scatter matrix. To enhance the dataset, we apply a 90% overlap
between consecutive time slots. It is important to note that no data balancing is performed in this study, as the dataset
does not display significant imbalances.

0.00507400603..., 0.00183508336..., ...

Raw Sample Radar Num

1

0.00173567025..., 0.00837850756..., ... 2

0.00127381563..., -0.00879494682..., ... 3

-0.00857470149..., 0.00143460335..., ... 1

0.50740060396..., 0.18359833629..., ... 2

0.17356702592..., 0.83785075694..., ... 3

0.12738156365..., -0.0879474682..., ... 1

-0.08574701496..., 0.14346033567..., ... 2

… … … … … …

Fig. 2. The raw data format.

Fig. 3. The Scatter Matrix for raw data.

Subsequently, we fine-tune a pre-trained model by employing the data generated from the overlapping process. We
treat this data structure as visual patterns, incorporating each scatter matrix as a separate channel into the pre-trained
models. The model was trained over 20 epochs, utilizing data segments sourced from the corresponding datasets uti-
lized in our study. The choice of 20 epochs was deliberate, aiming to balance training efficacy with time constraints.
To ensure fairness in our comparisons, we consistently applied all models to identical data segments across each eval-
uation round, encompassing train, validation, and test sets. This approach mitigates bias stemming from the random
selection of data segments from the primary datasets. Our analysis focuses on the predictive performance of the trained
model that demonstrated the highest validation accuracy during the training process.
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All experiment results are reported by using leave-one-subject-out strategy. Hence, for every iteration, we designate
the data gathered from one subject as the test set, while the data chosen from the remaining participants form the
training set. Then, the validation set is chosen from the initial training data by employing 10-fold cross-validation to
the initial training set. Finally, we report the results obtained by calculating the average performance values across test
sets corresponding to the all subjects.

4. Experimental Setup

We conducted numerous experiments to evaluate the effectiveness of the method presented from different per-
spectives. Our experiments were carried out on a workstation equipped with an NVIDIA GPU and 24GB of memory.
Python, along with the PyTorch library and additional Python modules, was employed for all experimentation. Specif-
ically, the torchvision package was utilized for constructing VGG, AlexNet, and ResNet models. Our utilized ResNet
model has a depth of 18 layers (ResNet-18), while the VGG model consists of 16 layers (VGG-16).

4.1. Datasets

This research introduces a fall detection system that relies on Ultra-Wideband (UWB) radars installed within an
apartment situated at the Laboratory of Ambient Intelligence for Activity Recognition (LIARA). The LIARA lab,
situated within the University of Quebec at Chicoutimi, comprises a typical apartment layout of 40 square meters,
featuring a kitchen, living room, bedroom, and bathroom, as illustrated in Fig. 4.

Three UWB radars, mounted on walls, were employed to collect data as shown in Fig. 5. The radars are positioned
at a standard elevation of 36 centimeters above the ground level, which corresponds to the typical height of electrical
outlets frequently encountered in Canada. The radar model utilized is the Xethru X4M200, manufactured by Novelda.
It has the capability to receive electrical power directly from standard electrical outlets. The radar receiver operates
within the 6.0 to 8.5 GHz range for low frequencies and between 7.25 and 10.2 GHz for high frequencies. The UWB
radar operates at a pulse repetition frequency (PRF) of 15.875 MHz, detecting the reflected wave pulses emitted by
objects or humans. The radar’s resolution measures 5.14 cm.

Fig. 4. The LIARA’s smart home.

The data, which is accessible online1, is gathered from ten participants aged between 23 and 39, each experiencing
three different fall positions (Maitre et al. (2020)). The experiments included simulating four categories of falls:
backward, forward, sideways (left or right), and falling while trying to take a seat on a chair. Each category of falls was

1 https://kevinbouchard122764662.wordpress.com/projets-de-recherche

https://kevinbouchard122764662.wordpress.com/projets-de-recherche
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Fig. 5. Layout of the LIARA apartment showing three UWB radars highlighted in red. The simulated falls are marked by green rectangles.

performed five times in three separate locations within the apartment, identified by green rectangular markers shown
in Fig. 5. Consequently, we have three distinct datasets covering all potential fall positions. Within each dataset, data
from individual participants are separated into fall and non-fall events. In our binary classification setup, the label ’1’
denotes fall occurrences (positive instances), while ’0’ denotes non-fall activities (negative instances).

4.2. Evaluation Measures

The practical outcomes obtained from experiments furnish a reliable method for gauging the effectiveness of the
techniques introduced for fall detection. To evaluate these methods, we utilize metrics such as classification accuracy
and F1-score. Accuracy denotes the percentage of correctly categorized samples, while the F1-score, also known as
F-score or F-measure, encapsulates the balanced average of precision and recall, with a scale from 0 (poorest) to 1
(optimal). Recall, also termed sensitivity or true positive rate, expresses the proportion of accurately classified positive
samples to the total positive samples, while precision signifies the ratio of accurately classified positive samples to all
samples identified as positive (Yacouby and Axman (2020)).

5. Results and Analysis

We conducted a study to assess how well the chosen models performed in identifying instances of falls within
the dataset utilized. Table 1 shows the performance of the evaluated pre-trained models with all used datasets. It is
evident that not all pre-trained models exhibit strong performance in fall detection tasks. ResNet demonstrates notably
superior performance compared to VGG and AlexNet.

As ResNet demonstrates superior performance, we presented additional evaluation metrics to underscore the impor-
tance of utilizing this model for fall event detection in UWB radar signals. Fig. 6 shows accuracy, F1-score, sensitivity,
and precision. It is evident that no single dataset is superior in all aspects, as each possesses unique strengths. When
scenarios demand high sensitivity, Datasets 1 and 2 are preferable. On the other hand, for situations where precision
is the main concern, Dataset 3 is the best choice.

Fig. 7 shows the confusion matrix for the ResNet model when applied to the three datasets. It is clear that Dataset
1 demonstrates strong accuracy in forecasting ”Fall” incidents, but it frequently misidentifies non-fall events as falls.
Dataset 2 appears balanced, with high precision in predicting both ”Fall” and ”Non-fall” occurrences. Dataset 3 is
exceptional at correctly identifying ”Non-fall” events but struggles significantly with ”Fall” predictions.
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Table 1. Performance of the pre-trained models

Dataset 1 Dataset 2 Dataset 3
Fold ResNet AlexNet VGG ResNet AlexNet VGG ResNet AlexNet VGG

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

1 0.99 0.99 0.72 0.84 0.72 0.84 0.71 0.83 0.72 0.84 0.72 0.84 0.83 0.88 0.72 0.84 0.72 0.84
2 0.65 0.79 0.70 0.82 0.70 0.82 0.71 0.83 0.72 0.84 0.72 0.84 0.66 0.72 0.71 0.83 0.71 0.83
3 0.75 0.85 0.71 0.83 0.71 0.83 0.88 0.92 0.70 0.83 0.70 0.83 0.62 0.67 0.74 0.85 0.74 0.85
4 0.95 0.97 0.70 0.82 0.70 0.82 0.99 0.99 0.71 0.83 0.71 0.83 0.80 0.88 0.71 0.83 0.71 0.83
5 0.70 0.82 0.70 0.83 0.70 0.83 1.00 1.00 0.68 0.81 0.68 0.81 0.82 0.85 0.69 0.82 0.69 0.82
6 0.99 1.00 0.75 0.86 0.75 0.86 1.00 1.00 0.69 0.81 0.69 0.81 0.99 1.00 0.72 0.84 0.72 0.84
7 1.00 1.00 0.70 0.82 0.70 0.82 0.99 1.00 0.73 0.84 0.73 0.84 0.92 0.95 0.73 0.84 0.73 0.84
8 1.00 1.00 0.73 0.84 0.73 0.84 0.82 0.89 0.72 0.84 0.72 0.84 1.00 1.00 0.70 0.82 0.70 0.82
9 1.00 1.00 0.73 0.84 0.73 0.84 1.00 1.00 0.72 0.84 0.72 0.84 1.00 1.00 0.74 0.85 0.74 0.85

10 1.00 1.00 0.72 0.84 0.72 0.84 1.00 1.00 0.72 0.84 0.72 0.84 1.00 1.00 0.73 0.84 0.73 0.84
Avg 0.90 0.94 0.72 0.83 0.72 0.83 0.91 0.95 0.71 0.83 0.71 0.83 0.86 0.90 0.72 0.84 0.72 0.84
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Fig. 6. Performance of pre-trained ResNet for fall detection from UWB signals.
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Fig. 7. Confusion matrix with ResNet: (a) Dataset 1; (b) Dataset 2; (c) Dataset 3.

6. Conclusion and Future Work

Through extensive experimentation and assessment, we showcase the effectiveness of employing computer vision
models and the capacity of the pre-trained models to propel the cutting-edge in fall detection technology. This work
has the potential to significantly enhance healthcare outcomes and elevate the quality of life for elderly individuals
and vulnerable populations. Our pioneering approach not only showcases innovation and originality in the presented
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technique but also demonstrates its uniqueness by seamlessly translating a state-of-the-art computer vision method
into an equally advanced fall detection method from UWB Radars.

There are several potential avenues for extending this work. One promising direction involves assessing the efficacy
of more computer vision networks in detecting falls from UWB signals. Another intriguing possibility is to explore
data prepossessing techniques. For instance, evaluating the performance of applying more data augmentation meth-
ods for fall detection holds considerable promise. Moreover, investigating various combinations of computer vision
models with diverse late fusion techniques could lead to valuable insights.
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