
EasyChair Preprint
№ 15171

Card-Based Secure Sorting Protocols Based on
the Sorting Networks

Kota Kato, Takeshi Nakai and Koutarou Suzuki

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 30, 2024

Card-based Secure Sorting Protocols
based on the Sorting Networks

Kota Kato
Toyohashi University of Technology

Aichi, Japan
kato.kota.gc@tut.jp

Takeshi Nakai
Toyohashi University of Technology

Aichi, Japan
nakai@cs.tut.ac.jp

Koutarou Suzuki
Toyohashi University of Technology

Aichi, Japan
suzuki@cs.tut.ac.jp

Abstract—Card-based cryptography enables us to realize se-
cure computation using physical cards with simple manual
operations. The efficiency of a card-based protocol is evaluated by
the number of shuffles and cards. The Haga et al. (IWSEC2022)
is the only work to address card-based secure sorting. They
proposed two protocols: a Las Vegas protocol and a finite-runtime
protocol. The finite-runtime means that the number of shuffles
is deterministic. In this paper, we propose a general converter
that transforms an arbitrary sorting network into a finite-
runtime card-based sorting protocol. The converter uses Haga
et al.’s finite-runtime protocol for n = 2 as its building block.
Furthermore, we show card-based sorting protocol obtained by
applying the converter to the AKS sorts. As a result, we improve
the number of additional cards from O(n2 + m) to O(n + m)
compared to Haga et al. On the other hand, the number of
shuffles increases from O(nm) to O(nm logn).

Index Terms—Card-based Cryptography, Secure Sorting Pro-
tocol, Sorting Network

I. INTRODUCTION

A. Background

Secure computation involves cryptographic protocols that
enable mutually distrustful parties to jointly compute a func-
tion on their private inputs [25]. While secure computation
protocols are supposed to be implemented on computers
typically, there is a line of work to realize them using physical
objects with manual operations. Since such physical protocols
allow hands-on and visual understanding, they are suitable as
educational and recreational tools.

Card-based cryptography is one of such physical protocols,
and uses a deck of physical cards in the implementation [6],
[7]. A card-based protocol consists of simple manual opera-
tions: permuting a card order, flipping a card, and shuffling
a deck of cards. We evaluate the efficiency of a card-based
protocol by the number of cards and the number of shuffles.

Many researches in card-based cryptography have been
devoted to constructing efficient protocols for basic logical
functions, such as AND, XOR, and COPY [6], [7], [10], [11],
[15], [16], [19], [24]. This is because a composition of them
can realize a secure protocol for any function [20]. Besides,
there is another approach of constructing specific protocols for
more advanced functions, e.g., the millionaires’ problem [12],
[17], [22], the majority voting [1], [2], [13], [18], the private
set intersection [5], and the secure sorting [8].

This work was supported by JSPS KAKENHI Grant Number JP23K16880.

Haga et al. [8] were the first to address the secure sorting
in card-based cryptography. A secure sorting protocol enables
parties to sort a sequence of encrypted (or secret-shared)
values without revealing the underlying values. A card-based
sorting protocol provides a similar functionality for a face-
down card sequence. They proposed two card-based sorting
protocols, a Las Vegas protocol and a finite-runtime (which
means that the number of shuffles is deterministic) protocol.
The Las Vegas protocol returns the correct output in a proba-
bilistic manner. Thus, players may require an infinitely large
number of steps to obtain the correct output. The expected
value of the number of shuffles is O(nm), where n is the
number of elements to be sorted and m is the bit length of
each element. This protocol requires O(n + m) additional
cards. (The additional cards refer to the cards that need to be
used other than cards representing the input sequence.) Haga
et al. showed a way of converting the protocol into a finite-
runtime protocol, which returns the correct output in a fixed
number of steps, their protocol is not efficient since the number
of additional cards is O(n2 + m). Also, their finite-runtime
protocol requires O(nm) shuffles.

B. Our Contribution

In this paper, we construct efficient finite-runtime card-
based sorting protocols in terms of the number of cards. We
first present a general converter that transforms an arbitrary
sorting network to a finite-runtime card-based sorting protocol.
The converter uses as its building block a card-based sorting
protocol of which the number of input elements is two. This
building block corresponds to comparators in sorting networks.
By realizing it with Haga et al.’s protocol for n = 2, we show
that the protocol obtained by our converter can be implemented
with m+20 cards for an arbitrary sorting network. However,
this evaluation is based on the assumption that the input
satisfies the conditions required by the underlying sorting
network. Note that some sorting networks have a limitation
to their input length.

We show card-based sorting protocols obtained by applying
this coverter to concrete sorting networks: the AKS [3], [4]
sorting networks. It require that the number of input elements
is a power of two. In the case where the input is not a power
of two, we must adjust the length by appending cards as a

padding to the input. Hence, in this case, the protocols require
more additional cards than the m+ 20 ones described above.

Tables I and II show the efficiency comparisons in the case
where the number of input elements n is and is not a power of
two, respectively. In the case where n is a power of two, our
protocol can be constructed with O(m) cards, which is more
efficient than Haga et al.’s finite-runtime protocol that requires
O(n2+m) cards. On the other hand, regarding the number of
shuffles, Haga et al.’s protocol requires O(nm) shuffles, which
is more efficient than our protocol that O(nm log n) shuffles.

In the case where n is not a power of two, our protocol
can be constructed with O(n +m) cards due to the padding
cards for the input, while Haga et al.’s finite-runtime protocol
requires O(n2 +m) cards. Regarding the number of shuffles,
the evaluations are the same as the case where n is a power
of two.

II. PRELIMINARIES

This section gives the notations and basic definitions of
card-based protocols. A protocol to compute a function f is
correct if players obtain f(x) for an arbitrary input x. (Note
that the function f is a sort function in this paper.) We say
a protocol fulfills privacy if an arbitrary player cannot learn
any additional information than the output from his/her view
of the protocol.

A. Notations

We use two types of colored cards, red ♡ and black ♣ .
Our protocol makes secondarily use of several other types of
cards; numbered cards 1 2 , marker cards ∗ , and arrow
cards ← →. We assume that the cards with the same suit
are indistinguishable. We also assume that back sides of
all cards have the same pattern, denoted by ? , and are
indistinguishable.

A Boolean value is encoded as 0 7→ ♣ ♡ and 1 7→ ♡ ♣ .
For a non-negative integer x, let x[i] show the i-th bit value
of x. For an m-bit integer, the most and least significant bits
are referred to (m − 1)-th and 0th bits, respectively. An m-
bit non-negative integer x is represented with 2m face-down
cards. We call a sequence of face-down cards representing a
non-negative integer x a commitment of x.

? ? ← x[m− 1]
...

...
? ? ← x[1]

? ? ← x[0].

In the depiction of a commitment, the top (resp. bottom) row
corresponds to the most (resp. least) significant bit.

In this paper, a protocol consists of the following operations.
• Permutation: permuting a card order deterministically.
• Turn: changing the face of a card.
• Shuffle: permuting a card order with some probability

distribution.
Formally, for the d-th symmetric group Sd corresponding to a
card sequence, a shuffle for Sd is defined with two parameters,

a permutation set Π ⊆ Sd and a probability distribution F
on Π. That is, a shuffle (shuffle,Π,F) is a permutation for
Sd according to π ∈ Π sampled from F . We assume that
any player cannot identify the sampled permutation π, i.e., no
player learn the result of the shuffle.

B. Shuffles Used in Our Protocols

We call a pile a sequence of cards regarded as one bundle.
Pile-Scramble Shuffle: A pile-scramble shuffle [9] is a

shuffle that completely randomizes the order of multiple piles
consisting of the same number of cards. Suppose that for a
positive integer s, we have s piles (p⃗0, p⃗1, . . . , p⃗s−1), each
having the same number of cards. Let r be a permutation
chosen uniformly at random from the s-th symmetric group.
Let [· | ·] represent a pile-scramble shuffle. The pile-scramble
shuffle result is as follows.

? · · · ?︸ ︷︷ ︸
p⃗r−1(0)

? · · · ?︸ ︷︷ ︸
p⃗r−1(1)

· · · ? · · · ?︸ ︷︷ ︸
p⃗r−1(s−1)

Pile-Shifting Shuffle: A pile-shifting shuffle [21] is a shuffle
that cyclically and randomly shifts the order of piles consisting
of the same number of cards. Suppose that for a positive
integer s, we have s piles of cards (p⃗0, p⃗1, . . . , p⃗s−1) each
having the same number of cards. Let r be chosen uniformly
at random from {0, 1, · · · , s − 1}. The pile shifting shuffle
result is as follows.

? · · · ?︸ ︷︷ ︸
p⃗r

? · · · ?︸ ︷︷ ︸
p⃗r+1

· · · ? · · · ?︸ ︷︷ ︸
p⃗r+s−1

III. EXISTING CARD-BASED SORTING PROTOCOL

A. Definition of Card-based Sorting Protocol

A card-based sorting protocol aims to sort a sequence of
commitments while keeping their values secret. Precisely, it
provides the following functionality with privacy.

Input: X = (x̃0, . . . , x̃n−1), where x̃i is a commitment of an
m-bit non-negative integer xi.

Output: X ′ = (x̃ϕ(0), . . . , x̃ϕ(n−1)), where ϕ is the permu-
tation on {0, . . . , n − 1} that satisfies xϕ(i) ≤ xϕ(i+1) for all
i ∈ {0, 1 · · · , n− 2}.

B. Procedure of Haga et al.’s Protocol

Haga et al.’s work [8] is the first and only work so far to
address card-based sorting protocol. It shows two card-based
sorting protocols: Las Vegas and finite-runtime protocols. We
here describe the finite-runtime one. Although the protocol is
general for any number of inputs n, we focus on the case of
n = 2, which is the only case we use to construct our protocol.

The two-input sorting protocol is as follows.
0. Players hold x̃0 and x̃1, which are commitments of m-bit

non-negative integers x0 and x1, respectively. They also
have 2× ♡ , 8× ♣ , 2× 1 , 2× 2 , 2× ←, 2× →,
and (m+ 2)× ∗ .

TABLE I
Comparison of card-based sorting protocols in the case where the number of input elements is a power of two.

(n: the number of input elements, m: the bit length of each element)

Protocol # additional cards # shuffles Underlying sort Runtime
Haga et al. [8] O(n+m) O(nm) Radix sort Las Vegas
Haga et al. [8] O(n2 +m) O(nm) Radix sort Finite

Ours (Section V-A) O(m) O(nm logn) AKS sort Finite

TABLE II
Comparison of sorting protocols in the case where the number of input elements is not a power of two.

Protocol # additional cards # shuffles Underlying sort Runtime
Haga et al. [8] O(n+m) O(nm) Radix sort Las Vegas
Haga et al. [8] O(n2 +m) O(nm) Radix sort Finite

Ours (Section V-A) O(n+m) O(nm logn) AKS sort Finite

1. Arrange the arrow cards above the commitments as
follows.

← → ← →
? ? ? ?

...
...

? ?︸ ︷︷ ︸
x0

? ?︸ ︷︷ ︸
x1

2. For i = 0, 1, · · · ,m−1, perform the following operations:
2-1. Prepare the numbered cards 1 1 2 2 , and make

two piles, 1 1 and 2 2 . Afterwards, apply a
pile-scramble shuffle to them.[

?
1

?
1

∣∣∣∣ ?
2

?
2

]
⇒ ?

r1

?
r1

?
r2

?
r2

2-2. Place these four cards above the arrow cards as
follows:

?
r1

?
r1

?
r2

?
r2

← → ← →
...

...
? ? ? ?

2-3. Prepare 6 × ♣ and 2 × ♡ , and make two piles
p0 = ♣ ♣ ♣ ♡ and p1 = ♣ ♡ ♣ ♣ . Then, apply
a pile-scramble shuffle to the two piles, denoted by
(pr, p1−r), r ∈ {0, 1} the result, and place them the
above of the numbered cards as follows.

♣ ♣ ♣ ♡ = p0

♣ ♡ ♣ ♣ = p1

?
r1

?
r1

?
r2

?
r2

← →← →
...

...
...

...

⇒

? ? ? ? = pr

? ? ? ? = p1−r

?
r1

?
r1

?
r2

?
r2

←→ ←→
...

...
...

...

2-4. Make the arrow cards face down. Afterwards, apply
a pile-scramble shuffle to each of the 0th and 1st
columns, and the 2nd and 3rd columns as follows:

? ?
? ?
...

...
? ?

? ?
? ?
...

...
? ?

2-5. Reveal the cards corresponding to the i-th bits and

perform a stable sort according to the relationship
♡ > ♣ while keeping the card order of each
column unchanged. Then, make all of the revealed
cards face-down.

? ? ? ?
? ? ? ?
...

...
...

...

i-th bit→ ♡ ♣ ♣ ♡
...

...
...

...

⇒
? ? ? ?
? ? ? ?
...

...
...

...

♡ ♡ ♣ ♣
...

...
...

...

2-6. Prepare 2× ♣ and (m+2)× ∗ , and arrange them
at the leftmost of the card sequences as follows.

♣ ? ? ? ?
♣ ? ? ? ?
∗

...
...

...
...

∗ ? ? ? ?
∗

...
...

...
...

2-7. Regard each column as a pile, i.e., five piles, and
apply a pile-shifting shuffle to them.

2-8. Reveal all cards on the topmost row, and move
the pile of the ♡ columns. Then, remove all of
the revealed cards. (Note that the revealed cards
correspond to the pile pr)

♣ ♣ ♡ ♣ ♣

? ? ? ? ?
? ? ? ? ?
...

...
...

...
...

⇒

♣ ♣ ♣ ♣ ♡

? ? ? ? ?
? ? ? ? ?
...

...
...

...
...

2-9. Regard each column as a pile (i.e., there is five
piles), and apply a pile-shifting shuffle to them.

2-10. Reveal all cards on the topmost row, and move
the pile of the ♡ columns. Then, remove all of
the revealed cards. (Note that the revealed cards
correspond to the pile p1−r)

♣ ♣ ♡ ♣ ♣

? ? ? ? ?
? ? ? ? ?
...

...
...

...
...

⇒

♣ ♣ ♣ ♣ ♡

? ? ? ? ?
? ? ? ? ?
...

...
...

...
...

2-11. Reveal all cards on the topmost row, and permute
them cyclically so that the pile of the ∗ column
is in the leftmost. Then restore the commitments by
moving the pile of the right-arrow columns to the
appropriate positions as follows:

1 ∗ 2 1 2

? ? ? →→

? ? ? ? ?
...

...
...

...
...

? ? ? ? ?

⇒

∗ 2 2 1 1

? ? → ? →

? ? ? ? ?
...

...
...

...
...

? ? ? ? ?

2-12. Remove all cards except the commitments. (In the
following figure, the cards whose frames are dotted
correspond to the cards to be removed.)

∗ 2 2 1 1

? ? → ? →
? ? ? ? ?
...

...
...

? ? ?︸ ︷︷ ︸
x′
0

? ?︸ ︷︷ ︸
x′
1

The protocol outputs the sequence of two commitments
(x̃′

0, x̃
′
1). Then, the underlying values (x′

0, x
′
1) is always the

sorted result of (x0, x1). Hereafter, we denote by Πn=2
HTS+ the

above protocol.
Note that both numbered and arrow cards can be substituted

by the two-colored cards in Πn=2
HTS+ , such as 1 → ♣ , 2 →

♡ , ← → ♣ , and → → ♡ . In other words, the protocol can
be constructed with only the two-colored cards and the marker
cards.

C. Efficiency

Πn=2
HTS+ uses m + 20 additional cards as described in the

previous subsection. It is important to note that if the protocol
is carried out multiple times sequentially, we can reuse the
additional cards. That is to say, we can realize multiple runs
with the same m+ 20 additional cards.

Regarding the number of shuffles, Πn=2
HTS+ requires three pile

scramble shuffles and two pile shifting shuffles per bit. Since
each input element consists of m-bit, it requires 5m shuffles.

IV. PROPOSED “SORTING NETWORK TO CARD-BASED
SORTING PROTOCOL” CONVERTER

A. Comparator Network and Sorting Network

Let X be a set of non-negative integers. A comparator is
defined as a mapping Xn → Xn as follows.

Definition 1. Let [l, r] be a mapping Xn → Xn, where
l, r ∈ {0, · · · , n − 1}. Denote by [l, r](x)k the k-th element
of [l, r](x). We call [l, r] comparator if it fulfills the following
properties for any x = (x1, · · · , xn) ∈ Xn:

[l, r](x)l = min(xl, xr)

[l, r](x)r = max(xl, xr)

Moreover, [l, r](x)k = xk holds for all k ∈ {0, · · · , n − 1} \
{l, r}.

That is, the comparator [l, r] is the sort between the l-th
and r-th elements. The compartor and sorting networks are
defined based on the comparator as follows.

Definition 2. A comparator stage S = {[l1, r1], ..., [lk, rk]} is
a composition of comparators such that l1, · · · , lk, r1, · · · , rk
are distinct.1

Definition 3. A comparator network is a composition of
comparator stages.

Definition 4. A sorting network is a comparator network such
that, for an arbitrary input, its output sequence, denoted by
(x′

0, · · · , x′
n−1), fulfills x′

i ≤ x′
i+1 for all i ∈ {0, . . . , n− 2}.

B. Our Proposed Converter

Before presenting our converter, we define card-based com-
parator protocol, denoted by Compare(X; l, r), as follows,
where X is a private input and l, r ∈ {0, . . . , n−1} are public
inputs.

Input: X = (x̃0, . . . , x̃n−1), where x̃i is a commitment of an
m-bit non-negative integer xi, and indices l, r ∈ {0, . . . , n −
1}.

Output: The sequence of commitments that consist of
[l, r](X).

Obviously, we can realize the comparator protocol by a
single execution of Πn=2

HTS+ for (x̃l, x̃r).
We present a general converter that transforms any sorting

network into a card-based sorting protocol. See Protocol 1
that shows our proposed converter. Given a sequence of
commitments, the compiled protocol returns the sorting result
of the commitments. This protocol consists of multiple card-
based comparator protocols, so that each of them corresponds
to a comparator in the given sorting network. More generally,

1Precisely, a comparator stage is a mapping Xn → Xn. However, we
denote a stage as a set of comparators for ease of describing our protocol.

our converter can also be used to transform any comparator
network into a card-based protocol that provides the same
functionality of the comparator network.

Correctness: The comparator protocol guarantees to sort two
commitments correctly in each comparison. Since each com-
parator protocol corresponds to a comparator in the underlying
sorting network, the protocol provides the result of the sorting
network. Thus, the proposed protocol ensures parties to always
obtain the correct output.

Privacy: Since the comparator protocol fulfills the privacy, it
guarantees to keep the values of commitments secret in each
comparison. Moreover, the process of the sorting network is
deterministic and depends only on the input length n. Thus,
the proposed protocol hides information other than the output.

C. Efficiency

We evaluate the protocol obtained by our converter in the
case where a comparator protocol is realized with Πn=2

HTS+ .
Since our sorting protocol uses Πn=2

HTS+ sequentially, we can
reuse the additional cards of Πn=2

HTS+ . Thus, the number of
additional cards in our sorting protocol is m+ 20.

Πn=2
HTS+ requires 5m shuffles, and the compiled protocol

requires executes Πn=2
HTS+ for c times, where c is the number

of comparators of the underlying sorting networks. Thus, the
number of shuffles is 5mc.

Note that there are sorting networks that have a limitation
to the number of input elements n. For instance, the AKS
sort requires that n is a power of two. The above evaluation
is based on the assumption that the input meets a condition
required by the underlying sorting network.

The efficiency with parallel executions: Let k0, · · · , kt−1

be the number of comparators in each stage. Also, we denote
by kmax the maximum number in {k0, · · · , kt−1}. For any
sorting network, comparators in a common stage can run in
parallel. This is also true for our card-based sorting protocol.
That is, we can carry out comparator protocols for a common
stage in parallel. It is known that multiple shuffles performed
simultaneously can be composed in one shuffle [14]. Thus, if
we apply the parallel manner, we can realize a secure sorting
protocol with 5mt shuffles. Then, it requires kmax(m + 20)
additional cards.

V. OUR CARD-BASED SORTING PROTOCOLS

In this section, we show card-based sorting protocol ob-
tained by applying our converter, shown in the previous
section, to the AKS sorting network [3], [4].

A. Card-based Sorting Protocol Based on AKS Sort

The AKS sorting network is known as the optimal sorting
network.

The AKS sorting network uses as its component a compara-
tor network, called an ϵ-halver. Given X = (x0, . . . , xn−1)
as the input, the ϵ-halver returns two blocks L =
{x′

0, · · · , x′
(n−1)/2−1} and R = {x′

(n−1)/2, · · · , x
′
n−1} for a

parameter ϵ < 1. Let X̂ = (x̂0, . . . , x̂n−1) be the ordered

sequence of X , and let X̂L,i := {x̂0, · · · , x̂i} and X̂R,i :=
{x̂n−(i+1), · · · , x̂n−1} for i ∈ {0, . . . , (n− 1)/2− 1}. Then,
for any i ∈ {0, . . . , (n − 1)/2 − 1}, the ϵ-halver ensures that
|X̂L,i ∩R| < ϵi and |X̂R,i ∩ L| < ϵi.

The ϵ-halver can be constructed with a constant number of
comparator stages by using expander graphs. (The constant
number depends on ϵ.) Ajtai et al. [3], [4] showed that there
is a sorting network with O(log n) stages and O(n log n)
comparators based on this fact.2 (See [3], [4], [23] for the
detail.)

From the above, we can claim that there is a card-based
sorting protocol that consists of O(n log n) comparator pro-
tocols. The AKS sort has the limitation that the number of
input elements n must be a power of two. Hence, we use the
padding if the input does not hold the condition, as shown in
the previous subsection. If the number of input elements is not
a power of two, it is necessary to adjust the input as follows.

How to adjust the input length.: We present a way to apply our
protocol where the number of input elements n is not a power
of two. For an input X , which consists of n commitments (n
is not a power of two), we consider d dummies, where d is the
minimum positive integer such that n+ d is a power of two.
Also, we prepare one card per dummy, and the dummies are
treated as pseudo-zero in the sorting. We use these dummies to
store the intermediate sorting result of the underlying sorting
network. Players append the dummies to any positions in
the input sequence and carry out the sorting protocol. In
a comparison between a dummy and an input element, the
players can determine that the dummy is smaller than or equals
to the input element without running a comparator protocol
since we set the dummy as zero. Similarly, in a comparison
between two dummies, the players can skip the comparison.
At the end of the sorting protocol, players remove all of
the dummy inputs. Note that since we set the dummies to
minimum number, they always locate at the leftmost positions
in the output sequence. Hence, players can obtain the sorting
result of X by removing the leftmost d dummies.

Privacy: We discuss the privacy of our card-based sorting
protocol based on the AKS sort. Then, we omit the cases where
n is a power of two since the proof is the same as in Section
IV-B. Hence, we here focus on the case where n is not a
power of two. In this case, we append the dummies to the input
sequence. The comparison results for the dummies are obvious
because the value of the dummies is the minimum number.
In addition, the sorting network process is deterministic and
depends only on the input length n. As a result, we know the
movement transitions of the dummies and they are always in
the leftmost positions in the output sequence. However, we
do not know the movement transitions of the non-dummies.
Thus, this case hides information other than the output.

2The constant factor is very large as stated in [3], and thus the AKS sort is
not practical. Due to this fact, the card-based sorting protocol obtained from
this sort is also impractical.

Protocol 1 Card-based sorting protocol based on a sorting network
converter: Given a sorting network N = (S0, · · · , St−1), where t be the number of comparator stages, and
Si = {[li,0, ri,0], ..., [li,ki−1, ri,ki−1]}, the converter generates the following card-based sorting protocol.

Input: X0 = (x̃0, . . . , x̃n−1), where x̃i is a commitment of m-bit non-negative integer xi.
Output: (x̃ϕ(0), . . . , x̃ϕ(n−1)), where ϕ is the permutation that satisfies xϕ(i) ≤ xϕ(i+1) for all i ∈ {0, 1, · · · , n− 2}.

1: Initialize c = 0.
2: for i = 0 to t− 1 do
3: for [li,j , ri,j] ∈ Si do
4: Run Xc+1 ← Compare(Xc; li,j , ri,j).
5: c = c+ 1.

Efficiency: We evaluate the efficiency separately for the
cases where the input length n is a power of two or not. As in
Section IV, we suppose that comparator protocols are realized
with Πn=2

HTS+ and they run sequentially.
In the case where n is a power of two, the number of

additional cards is m + 20. The number of shuffles is 5mc,
where c is the number of comparators of the underlying sorting
networks. Note that c is evaluated as O(n log n) and the exact
value of c is not provided in [3], [4], [23]. Thus, the protocol
requires O(nm log n) shuffles.

Next, let us consider the case where n is not a power of
two. To consider the worst case, suppose n = 2v + 1 for a
positive integer v. In this case, we must prepare n−2 dummy
cards. In addition, Πn=2

HTS+ requires m + 20 additional cards.
Thus, the sorting protocol requires n+m+ 18 cards in total.
It also requires O(nm log n) shuffles.

REFERENCES

[1] Yoshiki Abe, Takeshi Nakai, Yoshihisa Kuroki, Shinnosuke Suzuki, Yuta
Koga, Yohei Watanabe, Mitsugu Iwamoto, and Kazuo Ohta. Efficient
card-based majority voting protocols. New Generation Computing,
40(1):173–198, apr 2022.

[2] Yoshiki Abe, Takeshi Nakai, Yohei Wawanabe, Mitsugu Iwamoto, and
Kazuo Ohta. A computationally efficient card-based majority voting
protocol with fewer cards in the private model. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
advpub:2022CIP0021, 2022.

[3] M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network.
Proceedings of the fifteenth annual ACM symposium on Theory of
computing - STOC ’83, 1983.

[4] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in clog (n) parallel
steps. Combinatorica, 3:1–19, 1983.

[5] Doi Anastasiia, Ono Tomoki, Nakai Takeshi, Shinagawa Kazumasa,
Watanabe Yohei, Nuida Koji, and Iwamoto Mitsugu. Card-based
cryptographic protocols for private set intersection. In ISITA 2022. IEEE,
2022.

[6] Crépeau Claude and Kilian Joe. Discreet solitary games. In Advances
in Cryptology - CRYPTO ’93, 13th Annual International Cryptology
Conference, Proceedings, pages 319–330, 1993.

[7] Bert den Boer. More efficient match-making and satisfiability: The Five
Card Trick. In Advances in Cryptology - EUROCRYPT ’89, Workshop on
the Theory and Application of of Cryptographic Techniques, Houthalen,
Belgium, April 10-13, 1989, Proceedings, pages 208–217, 1989.

[8] Rikuo Haga, Kodai Toyoda, Yuto Shinoda, Daiki Miyahara, Kazumasa
Shinagawa, Yuichi Hayashi, and Takaaki Mizuki. Card-based secure
sorting protocol. In Advances in Information and Computer Security,
pages 224–240, Cham, 2022. Springer International Publishing.

[9] Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki. Efficient card-based
protocols for generating a hidden random permutation without fixed
points. In Unconventional Computation and Natural Computation - 14th
International Conference, UCNC, Proceedings, pages 215–226, 2015.

[10] Julia Kastner, Alexander Koch, Stefan Walzer, Daiki Miyahara, Yuichi
Hayashi, Takaaki Mizuki, and Hideaki Sone. The minimum number of
cards in practical card-based protocols. In Advances in Cryptology –
ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Proceedings, Part
III, page 126–155. Springer-Verlag, 2017.

[11] Alexander Koch, Stefan Walzer, and Kevin Härtel. Card-based cryp-
tographic protocols using a minimal number of cards. In Advances
in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security,
Proceedings, Part I, pages 783–807, 2015.

[12] Daiki Miyahara, Yuichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
Practical card-based implementations of yao’s millionaire protocol.
Theoretical Computer Science, 803:207–221, 2020.

[13] Takaaki Mizuki, Isaac Kobina Asiedu, and Hideaki Sone. Voting with
a logarithmic number of cards. In Unconventional Computation and
Natural Computation - 12th International Conference, UCNC 2013,
Milan, Italy, July 1-5, 2013. Proceedings, pages 162–173, 2013.

[14] Takaaki Mizuki and Hiroki Shizuya. A formalization of card-based
cryptographic protocols via abstract machine. Int. J. Inf. Sec., 13(1):15–
23, 2014.

[15] Takaaki Mizuki and Hideaki Sone. Six-card secure AND and four-card
secure XOR. In Frontiers in Algorithmics, Third International Workshop,
FAW 2009, Hefei, China, June 20-23, 2009. Proceedings, pages 358–369,
2009.

[16] Takaaki Mizuki, Fumishige Uchiike, and Hideaki Sone. Securely com-
puting XOR with 10 cards. The Australasian Journal of Combinatorics,
36:279–293, 2006.

[17] Takeshi Nakai, Yuto Misawa, Yuuki Tokushige, Mitsugu Iwamoto, and
Kazuo Ohta. How to solve millionaires’ problem with two kinds of
cards. New Generation Computing, 39:73–96, 01 2021.

[18] Takeshi Nakai, Satoshi Shirouchi, Yuuki Tokushige, Mitsugu Iwamoto,
and Kazuo Ohta. Secure computation for threshold functions with phys-
ical cards: Power of private permutations. New Generation Computing,
40(1):95–113, 2022.

[19] Valtteri Niemi and Ari Renvall. Secure multiparty computations without
computers. Theor. Comput. Sci., 191(1-2):173–183, 1998.

[20] Takuya Nishida, Yuichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
Card-based protocols for any boolean function. In Theory and Appli-
cations of Models of Computation - 12th Annual Conference, TAMC,
Proceedings, pages 110–121, 2015.

[21] Akihiro Nishimura, Yuichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
Pile-shifting scramble for card-based protocols. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
E101.A(9):1494–1502, 2018.

[22] H. Ono and Y. Manabe. Efficient card-based cryptographic protocols
for the millionaires’ problem using private input operations. In 2018
13th Asia Joint Conference on Information Security (AsiaJCIS), pages
23–28, 2018.

[23] M. S. Patterson. Improved sorting networks with o(log n)depth.
Algorithmica, 5:75–92, 1990.

[24] Anton Stiglic. Computations with a deck of cards. Theor. Comput. Sci.,
259(1-2):671–678, 2001.

[25] Andrew C. Yao. Protocols for secure computations. In Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science, pages
160–164, 1982.

