
EasyChair Preprint
№ 8653

Implementation of 24 Bit Multiplier Using Parallel
Multiplication with Sorting Based Binary Counters
for VLSI Applications

Pinniboyina Anand Venkat Seshu Babu and K. Rajasekhar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 11, 2022

IMPLEMENTATION OF 24 BIT MULTIPLIER USING PARALLEL

MULTIPLICATION WITH SORTING BASED BINARY COUNTERS FOR VLSI

APPLICATIONS

Pinniboyina Anand Venkat Seshu Babu1, Dr. K. Rajasekhar2

Student1, M.Tech, VLSI & Embedded Systems, Dept. of ECE, UCEK(A), JNTUK, Kakinada, India.

Assistant Proffesor2, Dept. of ECE, UCEK(A), JNTUK, Kakinada, India.

Email: anand.venkat56@gmail.com1, rajakarumuri87@gmail.com2

ABSTRACT:

This project consists of an innovative way of rapid

counters such as (7, 3), (15, 4) etc., binary counters and

approximate (4:2) compressors which is based on

sorting network. For improving the speed, a high

compressor counters need to be employed. The

counter inputs are divided asymmetrically into two

pieces and then fed into sorting networks as inputs to

construct sequences that are represented solely by one-

hot code sequences. We can develop and further refine

the (7, 3) counter using this method, which

outperforms alternative designs in terms of latency,

overall area, and power consumption in the vast

majority of circumstances. A (15, 4) counter is

developed, and it has a lower latency despite using less

power and taking up less space. In addition, using a

sorting network, we create approximation

compressors (4:2). They built an 8 x 8, 16 x 16 bit

multiplier to examine the performance of the circuits

they constructed. A 24Bit multiplier is made and the

effectiveness of the design is synthesized and

simulated using Xilinx Vivado.

Keywords: - Binary counters, sorting network,

approximate 4:2 compressor, 24 bit multiplier, one-hot

code.

INTRODUCTION

The Wallace Tree structure, which is the basic

multiplier's bottleneck, sums up all the partial

products in a basic multiplier circuit. The summing of

several operands is used in various areas of the circuit.

The summation of several operands is used as the

primary processing. A Wallace tree structure is well-

known way of summarizing numerous operands, and

its upgraded version, Wallace tree, is even more well-

known. To speed up the summing, these approaches

employ complete adders as (3,2) counters. The

architecture used is referred to as a carry–save. Then

onwards several research been published that look at

ways to build a framework that speed up summing

process. The fundamental concept is to use further

bits at the same weight to build a counter or

compressor having a greater compressing ratio

comparing with (3,2) counter. By looking at the carry

bits between neighboring columns, the compressors

compress n rows into 2 rows. Compressors that

compress four, five, or seven rows into two rows have

been explored in certain articles (4,2), (5,2), and (7,2),

respectively. They are, however, still part of the

whole adder structure, which uses XOR gates as

fundamental unit, and its logic are hard to reduce.

N rows are compressed into log2n rows by the

counters. A symmetric stacking structure was

presented. It is really quick in comparison to other

designs, however it is unsaturated. Then, on the

crucial route, they employ a MUX to build a (7,3)

saturated counter which influences the swiftness.

Further recommended reducing the intended (6:3)

counter to a (5:3) counter and combining three (5:3)

counters to form a (15:4) counter. This strategy,

however, is ineffective. We begin by reviewing the

design as the principal comparison object. They

suggested a rapid counter having symmetric stacking

structure, and based on this (6,3) counter, they built a

(7,3) saturated counter. Although it is the quickest of

the seven counter designs (7,3) but lacks performance

in delay reduction because it adds a multiplexer to

route by not optimizing it. In contrast to the

symmetric stacking structure, we begin by

asymmetrically stacking two sorting networks.

Approximate multipliers are commonly employed to

speed up multiplication. Estimated booth encoding

and partial product perforation are used to obtain an

approximate multiplier.

A symmetric stacking structure is used in high-speed

approximation (4:2) compressors. There are saturation

counters with better efficiency in this design, namely

(7,3) and (15,4). We begin by categorizing networks

asymmetrically in this collection of designs. The new

design is then optimized via logical simplification with

the use of two extended bits. With the sorting network,

we can also make exact/approximate (4:2)

compressors. The sorting network is a high-

performance parallel hardware network for sorting

data. Any number can be sorted if a sorting network

can sort a batch of data whose constituents are all 1-bit

integers, according to the famous 0,1 principle. Only

1-bit data sorting is used in this article.

The standard 3&4 way sorting networks. A) Sorting

Network Working Principle: Every standing bar is a

sorter with 2 data inputs and outputs, with all data

being one-bit values. The larger input is always sorted

first, followed by the smaller.

B) 1-Bit Data Sorter: From previously stated, the

sorter rearranges 2 inputs based on number. The

logical circuit can easily sort two 1-bit data sets. A

sorter uses 1 layer of 2-input basic logic gates, whereas

3 &4 way sorting networks use 3 layers of 2-input

basic logic gates.

We doesn’t require exact or high-precision computing

if small mistakes have no major impact on the results.

Hence, approximation computing is encouraged as a

novel method having high accuracy.

There is a system design in approximate computing

which is having high-performance and is energy-

efficient. Because addition mistakes are more sensitive

than multiplication errors in such complicated

computations, multipliers may tolerate a larger

approximation than adders. Along with gain in factors

such as performance and power consumption for these

applications, the adoption of approximation arithmetic

circuits will increase the image processing quality and

deep learning. Rapid system with reduction in

complex nature and consumed power emerge from

arithmetic processes that are approximated. The

compromise is to be a loss of accuracy, which would

not necessarily impede machine learning and

multimedia applications in their usual operation. The

human eye's inability to discern subtle differences in

photos and videos.

I. EARLIER WORK

An efficient (7, 3) counter was designed by making

sequence of one-hot code. They have established 3

Boolean that reduces the Boolean equations having

outputs.

By looking at the fig. 1 we can observe a (7, 3) counter.

The H and I sequence are not depending on C2, C1 and

S. Hence, an efficient (7, 3) saturated counter is made.

1) 7 & 8 Way Sorting Networks: To produce the

outcome, this sorting network employs 6 layers of

fundamental logic gates. By deleting 1 bit from an 8

way sorting network, a 7 way sorting network with 6

layers of basic logic gates may be obtained. Sequence

H (includes H1–H8 and is extended to H0–H9) and

sequence I (includes I1–I7 and is extended to I0–I8),

respectively, are the 8 way and 7 way output of sorting

networks. The one-hot code sequences P (P0–P8) and

Q (Q0–Q7) are obtained by employing A&B logic.

These sequences like those in the counter (7, 3).

Fig. 1: (7,3) counter

2) (15, 4) Counter: C3C2C1 S is the 4-bit output of

the (15, 4) counter. First, develop logic equations

between C3C2C1 S and sequences P and Q using

addition of the subscripts, similar to how we did

with the (7, 3) counter. We adopt the Verilog syntax

to express the original Boolean statements because

they are excessively lengthy.

3) Overall Structure: HI BUS is a module that mostly

consists of AB logic gates used to calculate the

relevant signals. Between sequences H and I, seven

AND operations are required, and the results are

denoted by R1–R8, i.e., R1 = H1&I7,..., R7 = H7&I1,

and R8 = H8.

The logical purpose of a (4:2) compressor is similar.

This also offer sorting networks to help build a rapid

(4:2) compressor. The output expressions have been

changed to rectify the divergence caused by

inadequate sorting.

II. PROPOSED WORK

Multiplication, division, addition, subtraction, cubing,

squaring, and other arithmetic operations are

performed by Arithmetic Logic Units (ALUs).

Multiplication is the most basic and commonly

utilized operation in ALUs of all the operations. It

enables the scaling of one integer by another.

Two separate 24 bits numbers are multiplied by a 24

bit multiplier.

Because 1 is greater than 0, when there are ones, all 1s

are at the beginning of the series, and when there are

0s, all 0s are at the end, as seen in Fig. A sequence's

definition. The reordered sequence must have a place

where the two 1s and 0s meet if both ones and zeros

exist. If the sequence only contains ones and zeros,

manipulate it by inserting one at top and zero at down

to make sure that the 0, 1-junction exits indefinitely.

Fig. 2: Definition of a sequence.

The reordered sequence consists of same number of 1s

and 0s as the original. Also the added ones will affect

the overall number of 1s in the new sequence, it is

established therefore it is ignored while counting.

As a result, the 3&4 way sorting networks take similar

amount of time to complete. We divide a (7, 3)

counter's seven inputs into two sections based on this.

There are four bits in one portion and three bits in the

other.

Fig. 3: Two-input binary sorter.

Find the code sequences 0, 1-Junction and One-Hot

encoding. The junction represents a rearranged

sequence under the extended fixed one and zero. As a

result, we'll keep using the 4 SN as an example,

resulting in the structure depicted in Figure 1. The

design uses an equation to generate a modified

sequence. There is only one 1 in the sequence because

the reorganized sequence consists of one junction

only.

Fig. 4: One-hot code generation circuit.

Thus it states that the sequence P0–P4 is nothing but a

one hot encoding which satisfy the needs.

P0|P1|P2|P3|P4 = 1. (1)

The sequence is arbitrarily split into two parts which

is given in equation (2).

P0|P2|P4 = P3|P4. (2)

The output sequence coming from 3SN, exact

procedure is followed to get one hot encoding

sequence Q0–Q3.

1) To generate output we got two sequence P and Q.

P0 = 1 indicates that the 4N sorting network's input

sequence has no ones, P1 = 1 shows that there is one

1, Pi = 1 indicates that the input sequence contains I 1

s, and Q indicates that the input sequence contains I 1

s. C2, C1, and S are the outputs (7,3) counter where

C2 have more weight and S have the least weight.

22C2 + 21C1 + 20 S = 22C2 + 21C1 + 20 S = 22C2 +

21C1 + 20 S = 22C

When C2 = 1 at least four 1s are present in the input

sequence of the (7, 3) counter. P4 = 1 denotes that

there are four 1s in sequence H, while Q0 = 1 denotes

that there are no 1s in sequence I. P4&Q0 = 1 shows

that there are 4 + 0 = 4 1s in the 7 bits input. Thus, C2

= 1 when total subscripts of P and Q are equal or

greater than 4. As a result, C2 may be written as

C2 = (P4&(Q0|Q1|Q2|Q3))|(P3&(Q1|Q2|Q3))|

(P2&(Q2|Q3))|(P1&Q3). (3)

Equation t the sequence Q, by same procedure in (2),

satisfies

 Q0|Q1|Q2|Q3 = 1 (4)

Q1|Q2|Q3 = Q0. (5)

Put (4) and (5) into (3), we get

C1 equals 1 when the addition of the subscripts of the

sequences P and Q equals 2, 3, 6, and 7. As a result,

we have:

S = (P1|P3) ⊕ (Q1|Q3). (11)

where ⊕ denotes XOR.

2) Further Optimization: We are having 2 sequences

H1–H4 and I1–I3. Here, we extend sequence H1–H4

by H0 and H5. Repeat for sequence I. I0 is fixed 1,

and I4 is fixed zero. The obtained equations are:

Furthermore, the subsequences from the sequence Q

or P are supplied, and their subscripts are consecutive,

the result of adding them up may be simply described

by sequence I or H.

In the earlier works a counter and compressors have

been implemented that reduces the count of

multipliers. In the proposed design a similar optimized

way as earlier work we can extend the design to higher

bit multipliers without modifying the architecture of

earlier proposed multipliers.

By using 8*8 multiplier which was implemented in the

previous work, a 24*24 multiplier is designed without

changing the previous architecture. A (15,4) or (31,5)

saturated counter will be advantageous in various

applications.

IV. EXPERIMENTAL RESULTS

On synthesizing the Verilog code a RTL schematic

can be generated in which we get to see the modules,

sub modules and gate level design.

The RTL schematic is shown in fig. 5

Fig. 5: RTL Schematic

Similar to RTL schematic, technology schematic can

also be generated after synthesizing the code. It

consists of more number of block which is not possible

to show that’s why top block is only shown in the

below fig.

Fig. 6: Technology Schematic

To check the correctness of the output and to observe

the output waveform we need to do simulation process

after completing the Verilog code. The output

waveform is shown in Fig. 7

Fig. 7: Simulation Results

Evaluation table for Area, Delay:

 AREA(L

UT’s)

DELA

Y(ns)

POWER(

Watts)

Bc_

73

6 5.804 2.022

Bc_

154

44 8.775 3.275

Bc_

315

139 11.776 5.632

Mul

8

122 12.041 14.187

Mul

16

739 17.002 41.444

Mul

24

1218 12.862 63.288

V. CONCLUSION

We can obtain optimized parameter values for higher

bit multipliers by using the proposed multipliers which

are 8 bit multiplier by extending it to 24 bit multiplier

without changing its architecture. Hence, it can be

used for higher bit multiplications.

Thus area for the higher order multipliers would be

same as that of 8 bit multiplier which results in area

efficient circuit.

VI. REFERENCES

[1] C. S. Wallace, A suggestion for a fast multiplier,

IEEE Trans.Electron. Comput., vol. EC-13, no. 1, pp.

14–17, Feb. 1964, doi:10.1109/PGEC.1964.263830.

[2] R. S. Waters and E. E. Swartzlander, A reduced

complexity Wallace multiplier reduction, IEEE Trans.

Comput., vol. 59, no. 8,pp. 1134–1137, Aug. 2010,

doi: 10.1109/TC.2010.103.

[3] P. L. Montgomery, Five, six, and seven-term

karatsuba-like formulae, IEEE Trans. Comput., vol.

54, no. 3, pp. 362–369, Mar. 2005,

doi:10.1109/TC.2005.49.

[4] S. Asif and Y. Kong, Analysis of different

architectures of counter based Wallace multipliers, in

Proc. 10th Int. Conf. Comput. Eng. Syst. (ICCES),

Cairo, Egypt, Dec. 2015, pp. 139–144, doi:

10.1109/ICCES.2015.7393034.

[5] S. Asif and Y. Kong, Design of an algorithmic

Wallace multiplier using high speed counters, in Proc.

10th Int. Conf. Comput. Eng. Syst. (ICCES), Cairo,

Egypt, Dec. 2015, pp. 133–138,

doi:10.1109/ICCES.2015.7393033.

[6] C. Fritz and A. T. Fam, Fast binary counters based

on symmetric stacking, IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2971–2975,

Oct. 2017, doi:

10.1109/TVLSI.2017.2723475.10.1109/EDSSC.2017

.8126527.

[7] M. Mehta, V. Parmar, and E. Swartzlander, High-

speed multiplier design using multi-input counter and

compressor circuits, in Proc.10th IEEE Symp.

Comput. Arithmetic, Grenoble, France, Jun. 1991, pp.

43–50, doi: 10.1109/ARITH.1991.145532.

[8] A. Fathi, B. Mashoufi, and S. Azizian, Very fast,

high-performance 5-2 and 7-2 compressors in CMOS

process for rapid parallel accumulations, IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 6,

pp. 1403–1412, Jun. 2020, doi:

10.1109/TVLSI.2020.2983458.

[9] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra,

and G. D. Meo, Comparison and extension of

approximate 4-2 compressors for low-power

approximate multipliers, IEEE Trans. Circuits Syst. I,

Reg. Papers, vol. 67, no. 9, pp. 3021–3034, Sep. 2020,

doi: 10.1109/TCSI.2020.2988353.

