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ABSTRACT: 

This project consists of an innovative way of rapid 

counters such as (7, 3), (15, 4) etc., binary counters and 

approximate (4:2) compressors which is based on 

sorting network. For improving the speed, a high 

compressor counters need to be employed. The 

counter inputs are divided asymmetrically into two 

pieces and then fed into sorting networks as inputs to 

construct sequences that are represented solely by one-

hot code sequences. We can develop and further refine 

the (7, 3) counter using this method, which 

outperforms alternative designs in terms of latency, 

overall area, and power consumption in the vast 

majority of circumstances. A (15, 4) counter is 

developed, and it has a lower latency despite using less 

power and taking up less space. In addition, using a 

sorting network, we create approximation 

compressors (4:2). They built an 8 x 8, 16 x 16 bit 

multiplier to examine the performance of the circuits 

they constructed. A 24Bit multiplier is made and the 

effectiveness of the design is synthesized and 

simulated using Xilinx Vivado. 

Keywords: - Binary counters, sorting network, 

approximate 4:2 compressor, 24 bit multiplier, one-hot 

code. 

 

INTRODUCTION 

The Wallace Tree structure, which is the basic 

multiplier's bottleneck, sums up all the partial 

products in a basic multiplier circuit. The summing of 

several operands is used in various areas of the circuit. 

The summation of several operands is used as the 

primary processing. A Wallace tree structure is well-

known way of summarizing numerous operands, and 

its upgraded version, Wallace tree, is even more well-

known. To speed up the summing, these approaches 

employ complete adders as (3,2) counters. The 

architecture used is referred to as a carry–save.  Then 

onwards several research been published that look at 

ways to build a framework that speed up summing 

process. The fundamental concept is to use further 

bits at the same weight to build a counter or 

compressor having a greater compressing ratio 

comparing with (3,2) counter. By looking at the carry 

bits between neighboring columns, the compressors 

compress n rows into 2 rows. Compressors that 

compress four, five, or seven rows into two rows have 

been explored in certain articles (4,2), (5,2), and (7,2), 

respectively. They are, however, still part of the 

whole adder structure, which uses  XOR  gates as 

fundamental unit, and its logic are hard to reduce. 

N rows are compressed into log2n rows by the 

counters. A symmetric stacking structure was 



presented. It is really quick in comparison to other 

designs, however it is unsaturated. Then, on the 

crucial route, they employ a MUX to build a (7,3) 

saturated counter which influences the swiftness. 

Further recommended reducing the intended (6:3) 

counter to a (5:3) counter and combining three (5:3) 

counters to form a (15:4) counter. This strategy, 

however, is ineffective. We begin by reviewing the 

design as the principal comparison object. They 

suggested a rapid counter having symmetric stacking 

structure, and based on this (6,3) counter, they built a 

(7,3) saturated counter. Although it is the quickest of 

the seven counter designs (7,3) but lacks performance 

in delay reduction because it adds a multiplexer to 

route by not optimizing it. In contrast to the 

symmetric stacking structure, we begin by 

asymmetrically stacking two sorting networks. 

Approximate multipliers are commonly employed to 

speed up multiplication. Estimated booth encoding 

and partial product perforation are used to obtain an 

approximate multiplier. 

A symmetric stacking structure is used in high-speed 

approximation (4:2) compressors. There are saturation 

counters with better efficiency in this design, namely 

(7,3) and (15,4). We begin by categorizing networks 

asymmetrically in this collection of designs. The new 

design is then optimized via logical simplification with 

the use of two extended bits. With the sorting network, 

we can also make exact/approximate (4:2) 

compressors. The sorting network is a high-

performance parallel hardware network for sorting 

data. Any number can be sorted if a sorting network 

can sort a batch of data whose constituents are all 1-bit 

integers, according to the famous 0,1 principle. Only 

1-bit data sorting is used in this article. 

The standard 3&4 way sorting networks. A) Sorting 

Network Working Principle: Every standing bar is a 

sorter with 2 data inputs and outputs, with all data 

being one-bit values. The larger input is always sorted 

first, followed by the smaller. 

B) 1-Bit Data Sorter: From previously stated, the 

sorter rearranges 2 inputs based on number. The 

logical circuit can easily sort two 1-bit data sets. A 

sorter uses 1 layer of 2-input basic logic gates, whereas 

3 &4 way sorting networks use 3 layers of 2-input 

basic logic gates.  

We doesn’t require exact or high-precision computing 

if small mistakes have no major impact on the results. 

Hence, approximation computing is encouraged as a 

novel method having high accuracy.  

There is a system design in approximate computing 

which is having high-performance and is energy-

efficient. Because addition mistakes are more sensitive 

than multiplication errors in such complicated 

computations, multipliers may tolerate a larger 

approximation than adders. Along with gain in factors 

such as performance and power consumption for these 

applications, the adoption of approximation arithmetic 

circuits will increase the image processing quality and 

deep learning. Rapid system with reduction in 

complex nature and consumed power emerge from 

arithmetic processes that are approximated. The 

compromise is to be a loss of accuracy, which would 

not necessarily impede machine learning and 

multimedia applications in their usual operation. The 

human eye's inability to discern subtle differences in 

photos and videos. 

 



I. EARLIER WORK 

 

An efficient (7, 3) counter was designed by making 

sequence of one-hot code. They have established 3 

Boolean that reduces the Boolean equations having 

outputs. 

By looking at the fig. 1 we can observe a (7, 3) counter. 

The H and I sequence are not depending on C2, C1 and 

S. Hence, an efficient (7, 3) saturated counter is made. 

1) 7 & 8 Way Sorting Networks: To produce the 

outcome, this sorting network employs 6 layers of 

fundamental logic gates. By deleting 1 bit from an 8 

way sorting network, a 7 way sorting network with 6 

layers of basic logic gates may be obtained. Sequence 

H (includes H1–H8 and is extended to H0–H9) and 

sequence I (includes I1–I7 and is extended to I0–I8), 

respectively, are the 8 way and 7 way output of sorting 

networks. The one-hot code sequences P (P0–P8) and 

Q (Q0–Q7) are obtained by employing A&B logic. 

These sequences like those in the counter (7, 3). 

 

Fig. 1: (7,3) counter 

2) (15, 4) Counter: C3C2C1 S is the 4-bit output of 

the (15, 4) counter. First, develop logic equations 

between C3C2C1 S and sequences P and Q using 

addition of the subscripts, similar to how we did 

with the (7, 3) counter. We adopt the Verilog syntax 

to express the original Boolean statements because 

they are excessively lengthy. 

3) Overall Structure:  HI BUS is a module that mostly 

consists of AB logic gates used to calculate the 

relevant signals. Between sequences H and I, seven 

AND operations are required, and the results are 

denoted by R1–R8, i.e., R1 = H1&I7,..., R7 = H7&I1, 

and R8 = H8. 

The logical purpose of a (4:2) compressor is similar. 

This also offer sorting networks to help build a rapid 

(4:2) compressor. The output expressions have been 

changed to rectify the divergence caused by 

inadequate sorting. 

II. PROPOSED WORK 

Multiplication, division, addition, subtraction, cubing, 

squaring, and other arithmetic operations are 

performed by Arithmetic Logic Units (ALUs). 

Multiplication is the most basic and commonly 

utilized operation in ALUs of all the operations. It 

enables the scaling of one integer by another. 

Two separate 24 bits numbers are multiplied by a 24 

bit multiplier.  

Because 1 is greater than 0, when there are ones, all 1s 

are at the beginning of the series, and when there are 

0s, all 0s are at the end, as seen in Fig. A sequence's 

definition. The reordered sequence must have a place 

where the two 1s and 0s meet if both ones and zeros 

exist. If the sequence only contains ones and zeros, 

manipulate it by inserting one at top and zero at down 

to make sure that the 0, 1-junction exits indefinitely. 

 

Fig. 2: Definition of a sequence. 



The reordered sequence consists of same number of 1s 

and 0s as the original. Also the added ones will affect 

the overall number of 1s in the new sequence, it is 

established therefore it is ignored while counting. 

As a result, the 3&4 way sorting networks take similar 

amount of time to complete. We divide a (7, 3) 

counter's seven inputs into two sections based on this. 

There are four bits in one portion and three bits in the 

other. 

 

Fig. 3: Two-input binary sorter. 

Find the code sequences 0, 1-Junction and One-Hot 

encoding. The junction represents a rearranged 

sequence under the extended fixed one and zero. As a 

result, we'll keep using the 4 SN as an example, 

resulting in the structure depicted in Figure 1. The 

design uses an equation to generate a modified 

sequence. There is only one 1 in the sequence because 

the reorganized sequence consists of one junction 

only. 

 

Fig. 4: One-hot code generation circuit. 

Thus it states that the sequence P0–P4 is nothing but a 

one hot encoding which satisfy the needs. 

P0|P1|P2|P3|P4 = 1.      (1) 

The sequence is arbitrarily split into two parts which 

is given in equation (2). 

P0|P2|P4 = P3|P4.           (2) 

The output sequence coming from 3SN, exact 

procedure is followed to get one hot encoding 

sequence Q0–Q3. 

1) To generate output we got two sequence P and Q.  

P0 = 1 indicates that the 4N sorting network's input 

sequence has no ones, P1 = 1 shows that there is one 

1, Pi = 1 indicates that the input sequence contains I 1 

s, and Q indicates that the input sequence contains I 1 

s. C2, C1, and S are the outputs (7,3) counter where 

C2 have more weight and S have the least weight. 

22C2 + 21C1 + 20 S = 22C2 + 21C1 + 20 S = 22C2 + 

21C1 + 20 S = 22C 

When C2 = 1 at least four 1s are present in the input 

sequence of the (7, 3) counter. P4 = 1 denotes that 

there are four  1s  in sequence H, while Q0 = 1 denotes 

that there are no  1s  in sequence I. P4&Q0 = 1 shows 

that there are 4 + 0 = 4 1s in the 7 bits input. Thus, C2 

= 1 when total subscripts of P and Q are equal or 

greater than 4. As a result, C2 may be written as 

C2 = (P4&(Q0|Q1|Q2|Q3))|(P3&(Q1|Q2|Q3))| 

(P2&(Q2|Q3))|(P1&Q3).        (3) 

Equation t the sequence Q, by same procedure in (2), 

satisfies 

   Q0|Q1|Q2|Q3 = 1      (4) 

Q1|Q2|Q3 = Q0.        (5) 

Put (4) and (5) into (3), we get  

 

C1 equals 1 when the addition of the subscripts of the 

sequences P and Q equals 2, 3, 6, and 7. As a result, 

we have: 

 



 

S = (P1|P3) ⊕ (Q1|Q3).                (11) 

where ⊕ denotes XOR.   

2) Further Optimization: We are having 2 sequences 

H1–H4 and I1–I3. Here, we extend sequence H1–H4 

by H0 and H5. Repeat for sequence I. I0 is fixed  1,  

and I4 is fixed zero. The obtained equations are: 

       

 

Furthermore, the subsequences from the sequence Q 

or P are supplied, and their subscripts are consecutive, 

the result of adding them up may be simply described 

by sequence I or H.  

In the earlier works a counter and compressors have 

been implemented that reduces the count of 

multipliers. In the proposed design a similar optimized 

way as earlier work we can extend the design to higher 

bit multipliers without modifying the architecture of 

earlier proposed multipliers. 

By using 8*8 multiplier which was implemented in the 

previous work, a 24*24 multiplier is designed without 

changing the previous architecture. A (15,4) or (31,5) 

saturated counter will be advantageous in various 

applications. 

IV. EXPERIMENTAL RESULTS 

On synthesizing the Verilog code a RTL schematic 

can be generated in which we get to see the modules, 

sub modules and gate level design. 

The RTL schematic is shown in fig. 5   

 

Fig. 5: RTL Schematic 

Similar to RTL schematic, technology schematic can 

also be generated after synthesizing the code. It 

consists of more number of block which is not possible 

to show that’s why top block is only shown in the 

below fig. 

 

Fig. 6: Technology Schematic 

To check the correctness of the output and to observe 

the output waveform we need to do simulation process 

after completing the Verilog code. The output 

waveform is shown in Fig. 7 



 

Fig. 7: Simulation Results 

Evaluation table for Area, Delay:   

 

 AREA(L

UT’s) 

DELA

Y(ns) 

POWER(

Watts) 

Bc_

73 

6 5.804 2.022 

Bc_

154 

44 8.775 3.275 

Bc_

315 

139 11.776 5.632 

Mul

8 

122 12.041 14.187 

Mul

16 

739 17.002 41.444 

Mul

24 

1218 12.862 63.288 

 

V. CONCLUSION 

We can obtain optimized parameter values for higher 

bit multipliers by using the proposed multipliers which 

are 8 bit multiplier by extending it to 24 bit multiplier 

without changing its architecture. Hence, it can be 

used for higher bit multiplications. 

Thus area for the higher order multipliers would be 

same as that of 8 bit multiplier which results in area 

efficient circuit. 
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