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Abstract. In time series analysis, comparing spectral densities of several processes with almost 

periodic spectra is an interested problem. The aim of this paper is to give an approach to test the equality 

among spectral densities of several independent almost periodically correlated (cyclostationary) 

processes. This approach is based on the limiting distribution for the periodogram and the discrete Fourier 

transform. The simulation results indicate that the approach well acts. 
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1. Introduction 

Comparing spectral densities of several processes is an important topic that has many 

applications in economics, finance, physics, signal processing, and many others. The researchers 

like to explore if several time series have the same stochastic mechanism. 

Many references have considered the comparison, classification and clustering of two or 

several time series. For example, De Souza and Thomson (1982), Coates and Diggle (1986), 

Potscher and Reschenhofer (1988), Diggle and Fisher (1991), Dargahi- Noubary (1992), Diggle 

and al Wasel (1997), Kakizawa et al. (1998), Timmer et al. (1999), Maharaj [(1999); (2000); 

(2002); (2005)], Caiado et al. (2006), Eichler (2008), Fokianos and Savvides (2008), Caiado et 

al. (2009), Dette and Paparoditis (2009), Dette et al. (2010), Dette and Hildebrandt (2011), 

Jentsch  (2012), Jentsch and Pauly (2012), Salcedo et al. (2012), Jentsch and Pauly (2014), 

Triacca (2016), Mahmoudi et al. (2017)  studied these subjects for stationary time series. 



But the stationarity assumption is not satisfied in many situations, specially when the 

processes have a periodic rhythm. In these cases, cyclostationary (CS) and almost 

cyclostationary (ACS) processes are naturally applied to model the rhythmic component. 

Mahmoudi et al. (2018b) and Mahmoudi et al. (2018c) considered the comparison, classification 

and clustering of two CS time series, respectively. 

The ACS is a large non-stationary time series class that contained stationary and CS 

processes. The mean and auto-covariance functions of ACS are almost periodic. The spectra of 

these processes are supported on lines that are parallel to the main diagonal, 𝑇𝑗(𝑥) = 𝑥 ± 𝛼𝑗 , 𝑗 =

1, 2, …, in spectral square [0,2𝜋) × [0,2𝜋). The theories and applications of ACS processes have 

been considered in many resarches such as Gladyshev [(1961); (1963)], Gardner (1991), Hurd 

(1991), Hurd and Leskow (1992), Leskow and Weron (1992), Gardner (1994), Leskow (1994), 

Lii and Rosenblatt [(2002); (2006)], Gardner et al. (2006), Hurd and Miamee (2007), Lenart 

[(2008); (2011)], Napolitano (2012), Lenart (2013), Lenart and Pipien [(2013a), (2013b)], 

Mahmoudi et al. (2015), Napolitano [(2016a), (2016b)], Mahmoudi and Maleki (2017), 

Nematollahi et al. (2017), Lenart and Pipien (2017), and Mahmoudi et al. (2018a). 

In this work, the asymptotic distribution for the periodogaram and discrete Fourier transform 

of ACS processes will be applied to construct an approach to compare and classify several ACS 

processes. Section 2 is devoted to notations and preliminaries. The technique to compare and 

classify the ACS processes is presented in Section 3. The ability of the introduced approach is 

studied by means of extensive Monte Carlo simulations, and real world problem, in Sections 4 

and 5, respectively. 

 

2. Notations and Preliminaries 

Definition 1:  Almost Periodic Function [Corduneanu (1989)]  

A function 𝑓 (𝑡): 𝑍 →  𝑅 is almost periodic if for any 𝜀 > 0, there exists a positive 

integer 𝐿𝜀 such that among any 𝐿𝜀 > 0 consecutive integers there is a positive integer 𝑝𝜀 such 

that 

𝑠𝑢𝑝𝑡∈Ζ|𝑓(𝑡 + 𝑝𝜀) − 𝑓(𝑡)| < 𝜀. 
 

Definition 2:  ACS Process [Mahmoudi et al. (2018a)] 

A second order process {𝑋𝑡: 𝑡 ∈  𝑍} is called ACS if the process has almost periodic 

mean, 𝜇(𝑡) =  𝐸(𝑋𝑡), and autocovariance, 𝐵(𝑡, 𝜏) =  𝑐𝑜𝑣(𝑋𝑡, 𝑋𝑡+𝜏), at t, for every τ ∈ Z.  

 

As Mahmoudi et al. (2018a), the following assumptions have been considered in this 

work: 

(A1) {𝑋𝑡: 𝑡 ∈  𝑍} is a zero-mean and real-valued time series.  

(A2) 𝑋𝑡 is an ACS process. 

By these assumptions, the autocovariance function 𝐵(𝑡, 𝜏) can be represented by 



𝐵(𝑡, 𝜏)~ ∑ 𝑎(𝜔, 𝜏)𝑒𝑖𝜔𝑡,

𝜔∈𝑊𝑡

 

where  

𝑎(𝜔, 𝜏) = lim
𝑛→∞

(
1

𝑛
∑ 𝐵(𝑗, 𝜏)

𝑛

𝑗=1

𝑒−𝑖𝜔𝑡) , 

and for fixed 𝜏. Also as Corduneanu (1989) and Hurd (1991) indicated the set 𝑊𝜏 =
{𝜔 ∈ [0,2𝜋): 𝑎(𝜔, 𝜏) ≠ 0} is a countable set of frequencies. 

 

(A3) 𝑊 = ⋃ 𝑊𝜏𝜏∈𝑍 , is a finite set and the spectra of 𝑋𝑡 is supported on lines that are parallel to 

the main diagonal, 𝑇𝑗(𝑥) = 𝑥 ± 𝛼𝑗 , 𝑗 = 1, 2, …, in spectral square [0,2𝜋) × [0,2𝜋). Thus we 

have 

𝐵(𝑡, 𝜏) = ∑ 𝑎(𝜔, 𝜏)𝑒𝑖𝜔𝑡,

𝜔∈𝑊

 

and the spectral measure of 𝑋𝑡, will be supported on the set  

𝑆 = ⋃ {(𝜈, 𝛾) ∈ [0,2𝜋)2: 𝛾 = 𝜈 − 𝜔}.

𝜔∈𝑊

 

 

Moreover, the coefficients  

𝑎(𝜔, 𝜏) = ∫ 𝑒𝑖𝜉𝜏𝑟𝜔(𝑑𝜉),
2𝜋

0

 

are the Fourier transforms of the measures 𝑟𝜔(·). 
 

We note that the 𝑟𝜔will be identified if the spectral measure of 𝑋𝑡 be restricted on the line 𝛾 =
𝜈 − 𝜔, modulo 2𝜋,  where 𝜔 ∈ 𝑊. 
Remark: In the rest of paper, all equalities of frequencies are modulo 2𝜋. 

(A4) 𝑟0 is an absolute continuous measure with respect to the Lebesgue measure. 

 

Dehay and Hurd (1994) shown by considering this assumption and ∑ |𝑎(𝜔, 𝜏)| < ∞,∞
𝜏=−∞  for any 

𝜔 ∈ 𝑊, result in a spectral density function 𝑓𝜔(·) exists such  

that 

𝑓𝜔(𝜈) =
1

2𝜋
∑ 𝑎(𝜔, 𝜏)𝑒−𝑖𝜈𝜏

∞

𝜏=−∞

. 

 

Consequently, an ACS process with support on a finite number of cyclic frequencies is 

represented by 

𝑋𝑡 =  ∫ 𝑒−𝑖𝑡𝑥𝜁(𝑑𝑥),   𝑡 ∈ ℤ,

2𝜋

0

 

where 𝜁 is a random spectral measure on [0, 2𝜋) such that 



𝐸(𝜁(𝑑𝜃)𝜁(𝑑𝜃′)̅̅ ̅̅ ̅̅ ̅̅ ̅) = 0, (𝜃, 𝜃′) ∉ 𝑆. 

As Mahmoudi et al. (2018) indicated, the spectral distribution and density matrices of 𝜁, are 

defined by 

𝑭(𝑑𝜆) = [𝐹𝑘,𝑗(𝑑𝜆)]
𝑗,𝑘=1,…,𝑚

, 

and 

𝒇(𝜆) =
𝑑𝑭

𝑑𝜆
= [𝑓𝑘,𝑗(𝜆)]

𝑗,𝑘=1,…,𝑚
,   

respectively, where 

𝐹𝑘,𝑗(𝑑𝜆) = 𝐸 (𝜁 (𝑑𝜆 + 𝛼𝑘)𝜁 (𝑑𝜆 + 𝛼𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) , 𝑘, 𝑗 =  1, … , 𝑚, 

anf 𝑓𝑘,𝑗 is spectral density correspond to 𝐹𝑘,𝑗. 

Definition 3:  Discrete Fourier Transform (DFT) 

Assume a sample 𝑋0, … , 𝑋𝑁−1, from ACS process {𝑋𝑡: 𝑡 ∈  𝑍}. The DFT of the finite sequence 

𝑋0, … , 𝑋𝑁−1, is defined by 

𝑑𝑋(𝜆) = 𝑁−1 2⁄ ∑ 𝑋𝑡𝑒−𝑖𝑡𝜆

𝑁−1

𝑡=0

 , 𝜆 ∈ [0,2𝜋). 

Definition 4:  Periodogram 

Assume that we have a sample 𝑋0, … , 𝑋𝑁−1, from ACS process {𝑋𝑡: 𝑡 ∈  𝑍}. The DFT of the 

finite sequence 𝑋0, … , 𝑋𝑁−1, is defined by 

𝐼𝑋(𝜆) = |𝑑𝑋(𝜆)|2 , 𝜆 ∈ [0,2𝜋). 

The distribution of DFT and periodogram of ACS processes are widely studied by Lenart (2013), 

Lenart and Pipien [(2013a); (2017)] and Mahmoudi et al. (2018a). 

 

3. Methodology 

 Suppose {𝑋𝑡
(1)

, 𝑡 = 1, … , 𝑛1},  {𝑋𝑡
(2)

, 𝑡 = 1, … , 𝑛2}, …, {𝑋𝑡
(𝑙)

, 𝑡 = 1, … , 𝑛𝑙}, are l 

independent ACS processes with m spectral cycles. 

Commonly, the researchers want to test the null hypothesis 𝐻0: 𝑋𝑡
(1)

≡ 𝑋𝑡
(2)

≡ ⋯ ≡ 𝑋𝑡
(𝑙)

, that is 

equivalent to 𝐻0: 𝒇𝟏 = 𝒇𝟐 = ⋯ = 𝒇𝒍, such that 𝒇𝟏, … , and 𝒇𝒍 are the spectral density matrices 

respectively corresponding to 𝑋𝑡
(1)

, …, and 𝑋𝑡
(𝑙)

. If the null hypothesis 𝐻0 is not accepted then it 



can be concluded that at least two time series of the l time series have different rhythms, and if 

𝐻0 is accepted consequently the stochastic behaviours of all processes are similar.  

Mahmoudi et al. (2018a) introduced the periodogram for ACS time series as 

𝑰𝑋
𝑚(𝜆) = 𝒅𝑋

𝑚(𝜆)𝒅𝑋
𝑚∗(𝜆), 

 such that 

𝒅𝑋
𝑚(𝜆) = (𝑑𝑋(𝑇1(𝜆)), 𝑑𝑋(𝑇2(𝜆)) … , 𝑑𝑋(𝑇𝑚(𝜆)))

′

 , 𝜆 ∈ [0, 2𝜋), 

where 𝒅𝑋
𝑚∗(𝜆) is the complex conjugate transpose of 𝒅𝑋

𝑚(𝜆). 

 

Lemma 3.1: Let  {𝑋𝑡 , 𝑡 ∈ ℤ} is an ACS time series with corresponding spectral density 𝒇(𝜆),

𝜆 ∈ [0,2𝜋). Assume λ1 < ⋯ < λJ are frequencies in 0,2𝜋). Then 

(i) 𝒇(𝜆) can be  asymptotically estimated by �̂�(𝜆): =
𝑰𝑋

𝑚(𝜆)

2𝜋
. 

(ii) 𝒅𝑋
𝑚(λj), 𝑗 = 1, … , 𝐽, have the asymptotic and independent m-variate complex normal 

distributions,  𝑁𝑚
𝑐 (0, 2𝜋𝒇(𝜆𝑗)). 

(iii) 𝑰𝑋
𝑚(λj), 𝑗 = 1, … , 𝐽, have the asymptotic and independent complex Wishart 

distributions, 𝑊𝑚
𝑐 (𝟏, 2𝜋𝒇(𝜆𝑗)). 

Proof: Mahmoudi et al. (2018a). ∎ 

Let 𝑌𝑗
(𝑘)

= 𝑅𝑒 (𝒅
𝑋(𝑘)
𝑚 (𝜆𝑗)) , 𝑗 = 1, … , 𝐽, 𝑘 = 1,2, … , 𝑙, and 𝑍𝑗

(𝑘)
= 𝐼𝑚 (𝒅

𝑋(𝑘)
𝑚 (𝜆𝑗)), 𝑗 =

1, … , 𝐽, 𝑘 = 1,2, … , 𝑙, such that  𝒅
𝑋(𝑘)
𝑚 (𝜆𝑗),   is the 𝒅𝑋

𝑇 (λj) corresponding to 𝑘𝑡ℎ time series. As a 

result of Lemma 3.1, it can be concluded that for 𝑘 = 1,2, … , 𝑙, the asymptotic distribution of  

𝑊𝑗
(𝑘)

= (𝑌𝑗
(𝑘)

, 𝑍𝑗
(𝑘)

)
′

 is 𝑁2𝑚(0, 𝚺𝑗
(𝑘)

), such that 𝚺𝑗
(𝑘)

= [
𝑽𝑌𝑗𝑌𝑗

(𝑘)
𝑽𝑌𝑗𝑍𝑗

(𝑘)

𝑽𝑍𝑗𝑌𝑗

(𝑘)
𝑽𝑍𝑗𝑍𝑗

(𝑘)
], 𝑽𝐴𝐵 = 𝐶𝑂𝑉(𝐴, 𝐵). 

Consequently, the asymptotic distribution of 𝑈(𝑘) = ∑ 𝑊𝑗
(𝑘)𝐽

𝑗=1  is  𝑁2𝑚(0, 𝚺(𝑘)), such that 

𝚺(𝑘) = 𝚺1
(𝑘)

+ ⋯ + 𝚺𝐽
(𝑘)

. 

 

3.1. Test of Hypothesis 

As previous discussion, usually, the researchers want to test the null hypothesis 𝐻0: 𝒇𝟏 =
𝒇𝟐 = ⋯ = 𝒇𝒍, that is equivalent to 𝐻0:  𝚺(1) = 𝚺(2) = ⋯ =  𝚺(𝑙). It can be concluded that the 



asymptotic distribution of 𝑈 = 𝑈(1) + 𝑈(2) + ⋯ + 𝑈(𝑙) is 𝑁2𝑚(0, 𝚺), such that  𝚺 = 𝚺(1) +
𝚺(2) + ⋯ + 𝚺(𝑙). 

Therefore the asymptotic distribution of statistic 

𝜒2 = (𝑈)′(𝚺)−1(𝑈),               

is chi-square with 2m degrees of freedom, 𝜒2(2𝑚). 

The asymptotic distribution of statistic 𝜒2 can be applied to establish test of hypothesis about the 

null hypothesis 𝐻0. As can be seen, the statistic 𝜒2 is related to the unknown parameter 𝚺. 

Remark 3.1: To produce a sample of size 𝑁𝑖 for the discrete Fourier transform of 𝑖𝑡ℎ process, 

different bootstrap approaches can be applied. In this research we used the moving block 

bootstrap (MBB) (more details are given in Synowiecki (2007)). 

Let  𝑺 =
(𝑁1−1)𝐒(1)+(𝑁2−1)𝐒(2)+⋯+(𝑁𝑙−1)𝐒(𝑙)

𝑁1+𝑁2+⋯+𝑁𝑙−𝑙
,  as the pooled covariance matrix of 𝐒(1), … , 𝐒(𝑙), such 

that 𝐒(𝑘) = 𝐒1
(𝑘)

+ ⋯ + 𝐒𝐽
(𝑘)

,  𝐒𝑗
(𝑘)

= [
�̂�𝑌𝑗𝑌𝑗

(𝑘)
�̂�𝑌𝑗𝑍𝑗

(𝑘)

�̂�𝑍𝑗𝑌𝑗

(𝑘)
�̂�𝑍𝑗𝑍𝑗

(𝑘)
], and  �̂�𝐴𝐵 = 𝐶𝑂�̂�(𝐴, 𝐵).  If the null 

hypothesis 𝐻0:  𝚺(1) = 𝚺(2) = ⋯ =  𝚺(𝑙), be true, then the covariance matrix 𝚺 can be 

consistently estimated by 𝑺, and consequently by using the WLLN (Weak Law of Large 

Numbers), the asymptotic distribution of the test statistic 

𝜒2∗
= (𝑈)′(𝐒)−1(𝑈), 

is 𝜒2(2𝑚). Therefore, for a given size 𝛼, H0 is rejected if 𝜒2∗
> 𝜒𝛼

2(2𝑚).  

 

4. Simulation Study 

To analyze the accuracy of proposed method, we generated  

(𝑛1, 𝑛2, 𝑛3) = {(100, 50,75), (150, 75,100), (200,150, 100), (500, 250,300)} 

observations from the ACS processes  

𝑋𝑡
(𝑖)

= (1 + cos(𝜔𝑖𝑡))𝑌𝑡
(𝑖)

, 𝜔 ∈ (0, ∞),    𝑖 = 1,2,3, 

where 

𝑌𝑡
(𝑖)

= 𝑍𝑡
(𝑖)

+ 0.5𝑍𝑡−1
(𝑖)

, 

and 𝑍𝑡
(𝑖)

, 𝑖 = 1,2,3, are independent sequences of IIDN(0,1). 

 



The spectral mass of 𝑋𝑡
(𝑖)

 is supported on the lines given by 

𝑇1(𝑥) = 𝑥, 𝑇2(𝑥) = 𝑥 + 𝜔𝑖, 𝑇3(𝑥) = 𝑥 − 𝜔𝑖, 𝑇4(𝑥) = 𝑥 − 2𝜔𝑖, 𝑇5(𝑥) = 𝑥 + 2𝜔𝑖. 

Figure 1 indicates the spectral plane[0,2𝜋)2, for  

𝜔𝑖 = {0.75,1.5,2.25}. 

  
Figure 1: The spectral square of the process, Left: 𝜔𝑖 = 0.5, Middle: 𝜔𝑖 = 1, and Right: 𝜔𝑖 = 2. 

First, we estimated the Type I error probability (�̂�) and power (�̂�) based on 1000 

replications and 1000 iterations. Then we graph Q–Q plot for the test statistic 𝜒2∗
based on the 

computed values of the simulation runs. 

Table1 report the values of �̂� (in rows: 1th, 14th and 27th) and �̂� (other rows). The results 

indicates that the values of �̂� is very close to the considered size (𝛼 = 0.05), especially when 
(n1, n2, n3) grows. Also the power studies show that the proposed method excellently 

discriminate H0 from H1.  

 

 
Table 1: The values of �̂� and �̂� for the introduced approach 

 (𝑛1, 𝑛2, 𝑛3) 

𝜔1 𝜔2 𝜔3 (100, 50,75) (150, 75,100) (200,150, 100) (500, 250,300) 

 

0.75 

0.75 

0.75 0.052 0.050 0.050 0.049 

1.5 0.736 0.845 0.909 0.976 

2.25 0.727 0.828 0.925 0.978 

1.5 

0.75 0.706 0.837 0.907 0.999 

1.5 0.760 0.864 0.959 0.994 

2.25 0.766 0.866 0.955 0.987 

2.25 

0.75 0.718 0.812 0.903 0.970 

1.5 0.758 0.889 0.969 0.985 

2.25 0.800 0.883 0.945 0.986 

 

 

 

 

1.5 

0.75 

0.75 0.772 0.864 0.969 1.000 

1.5 0.727 0.842 0.939 0.972 

2.25 0.760 0.861 0.946 0.989 

1.5 

0.75 0.741 0.842 0.917 0.996 

1.5 0.051 0.051 0.050 0.050 

2.25 0.725 0.845 0.906 0.970 



2.25 

0.75 0.782 0.897 0.963 0.983 

1.5 0.717 0.835 0.919 0.993 

2.25 0.790 0.880 0.943 0.997 

2.25 

0.75 

0.75 0.791 0.888 0.952 0.984 

1.5 0.777 0.857 0.963 0.999 

2 0.729 0.847 0.904 0.994 

1.5 

0.75 0.779 0.870 0.965 0.989 

1.5 0.797 0.871 0.959 0.989 

2.25 0.718 0.835 0.933 0.978 

2.25 

0.75 0.718 0.844 0.904 0.976 

1.5 0.724 0.844 0.933 0.973 

2.25 0.052 0.051 0.049 0.049 

 

 

5. Real Data 

 

This section is devoted to illustrate the ability of introduced approach in practical cases. 

The dataset includes the first difference of centered moving average filter 2×12 moving average 

(MA) applied for logarithm of industrial production index (IPI) in Poland (2005 = 100%) since 

January 1995 untile December 2009, Lenart and Pipien (2013b). We split this dataset in three 

parts with equal sizes. The spectral frequency squares of these parts are given in Figure 2. The 

results detect ACS time series with spectra on the lines 𝑇𝑗(𝑥) = 𝑥 ± 𝛼, 𝛼 ∈

{0.062, 0.153, 0.258}. This result verifies the given result in Lenart and Pipien (2013b). Then the 

introduced technique is used to test the the hypothesis  𝚺(1) = 𝚺(2) = 𝚺(3) (or equivalently, 𝒇𝟏 =

𝒇𝟐 = 𝒇𝟑). Table 2 summarizes the results. As can be seen, since the p value is more than 0.05, 

thus the null hypothesis can not be rejected and consequently the stochastic behaviours of all 

processes are similar. 

 

 
Figure 2: Spectral frequency square (Left: Part 1, Middle: Part 2, Right: Part 3) 

 

Table 2: Testing the equality of different parts  

Test Statistic P-Value 



𝜒2∗
= 4.193 

 

0.651 
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