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Abstract. We present a new time integrator for articulated body dynamics. We
formulate the governing equations of the dynamics using only the position vari-
ables and then recast the position-based articulated dynamics as an optimization
problem. Our reformulation allows us to integrate the dynamics in a fully implicit
manner without computing high-order derivatives. Therefore, under arbitrarily
large timestep sizes, we observe highly stable behaviors using an off-the-shelf
numerical optimizer. Moreover, we show that the accuracy of our time integrator
can increase by using a high-order collocation method. We show that each itera-
tion of optimization has a complexity of O(N) using the Quasi-Newton method
or O(N2) using Newton’s method, where N is the number of links of the artic-
ulated model. Finally, our method is highly parallelizable and can be accelerated
using a Graphics Processing Unit (GPU). We highlight the efficiency and stability
of our method on different benchmarks and compare the performance with prior
articulated body dynamics simulation methods based on the Newton-Euler equa-
tion. Using a larger timestep size, our method achieves up to 4 times speedup on
a single-core CPU. With GPU acceleration, we observe an additional 3− 6 times
speedup over a 4-core CPU.

1 Introduction

Numerical modeling of articulated bodies is a fundamental problem in robotics. It is im-
portant in the design and evaluation of mechanisms, robot arms, and humanoid robots.
Furthermore, articulated body simulators are increasingly used to evaluate a controller
during reinforcement learning [6, 23], to predict the future state of a robot during on-
line control [29], and to satisfy the dynamics constraints for motion planners [27]. In
all these applications, the underlying algorithms are implemented on top of dynamic
simulators and may invoke these simulators thousands of times for different parameters
and settings [29]. As a result, the performance of these applications is easily affected
by these simulators’ performances.

Many widely-used articulated body simulation packages [25, 29] are based on im-
plicit time-stepping schemes [26]. These methods model the articulated body’s govern-
ing equation as an ordinary differential equation (ODE) and then integrate the ODE
using high-order numerical schemes. These methods can be arbitrarily accurate but re-
quire small timestep sizes. One simple strategy to improve the runtime performance is to
use a large timestep size [24]. This strategy has proven successful in some applications,
such as controlling humanoid robots [28], where the timestep size used in a controller
can be larger than that used in the underlying simulator. A key issue in using a large



timestep size is ensuring that the time integrator is still stable. For example, the stable
region of a semi-implicit Euler integrator shrinks as the timestep size increases [4]. To
time integrate an articulated body under a large timestep size, a simple and widely-used
method is to use an unconditionally stable fully implicit Euler integrator [4]. However,
in a conventional articulated body’s governing dynamics equation, the use of a fully im-
plicit Euler integrator involves a costly O(N3) computation of high-order derivatives,
where N is the number of links in an articulated body.

Main Results: We present position-based articulated dynamics (PBAD), a novel
optimization-based algorithm for articulated body dynamics simulation. Unlike prior
method [26], which represents the velocity as a time derivative and evaluates this deriva-
tive analytically, our PBAD formulation represents this velocity using finite differences
in the Euclidean space. This Euclidean space discretization allows us to represent all
the physical variables as functions of positions. As a result, we can integrate the system
implicitly without high-order derivatives. In addition, we show that numerical simula-
tion under our PBAD framework can be recast as a numerical optimization. Therefore,
our time integrator is stable under an arbitrarily large timestep size because a numerical
optimizer can ensure that the energy value decreases during each iteration through line-
search [19] or trust region limitation [18]. Solving these unconstrained minimization
problems requires evaluating the energy gradient and/or Hessian and solving a linear
system of size O(N). To this end, we use techniques similar to well-known forward-
and inverse-dynamics algorithms [8] and show that the necessary energy gradient and
Hessian information can be computed within O(N) and O(N2). Finally, we show that
the accuracy of PBAD time integrator can be improved by approximating the velocity
using high-order polynomials, leading to a high-order collocation method [12].

We have implemented our algorithm and evaluated the performance on many artic-
ulated models with 10− 200 DOFs. Compared with a conventional semi-implicit Euler
integrator, our PBAD simulator achieves up to 4 times overall speedup with a serial
implementation running on a single-core CPU. Finally, all the operations in our uncon-
strained energy minimization are inherently parallel and we accelerate the simulation
on a GPU to obtain 3 − 6 times additional speedup over a 4-core CPU, as shown in
Section 5.2.

The rest of the paper is organized as follows. We first review conventional La-
grangian articulated body dynamics in Section 3 and then introduce our PBAD formula-
tion in Section 4. Next, in Section 5, we present some algorithmic and numeric analysis
of our method. Finally, we compare our method with an earlier method [26] on a set of
classic benchmarks used by [25, 29] in Section 6. We also show some applications in
online/offline control algorithms in Section 6.

2 Related Work

We give a brief overview of previous work in articulated body dynamics, time-integration
schemes, and position-based dynamics.



2.1 Articulated Body Dynamics

Articulated body dynamic simulation is a classic, well-studied problem in robotics.
Some methods [31, 5, 30] focus on articulated bodies with general constraints, where
the configurations of articulated bodies are represented using maximal coordinates.
However, tree-structured articulated bodies represented using minimal coordinates have
received the most attention. Very efficient algorithms [20, 8] have been developed for
forward/inverse-dynamics and these are key steps in a dynamics simulator. These algo-
rithms have been further accelerated using divide-and-conquer [7], adaptivity [11], and
GPU-parallelism [32, 33].

2.2 Time Integration Schemes

A time integrator predicts the future configuration of an articulated body given its
current configuration. Time integrators vary in their computational cost, stability, and
accuracy (see [4, 16] for a review). Widely-used integrators in articulated body sim-
ulators [25, 29], such as explicit high-order Runge-Kutta schemes, are linear multi-
step methods for ODE, which requires small timestep sizes. Compared with explicit
schemes, implicit Runge-Kutta schemes have better stability, some of which are also
known as collocation methods [1]. Collocation methods approximate the locus of con-
figuration using high-order polynomials. Unlike these general-purpose integrators, spe-
cial integrators such as Lie-group integrators [15] and variational integrators [17] can be
developed to respect the Lie group structure of articulated bodies, resulting in desirable
conservative properties in linear/angular momentum and the Hamiltonian.

2.3 Position-Based Dynamics (PBD)

Our method is inspired by the recent advances in PBD in computer graphics (see [2]
for a survey). PBD has been shown to be stable under arbitrarily large timestep sizes
and is preferred for interactive applications such as game engines. PBD algorithms have
been developed for various dynamics systems such as fluid bodies, deformable bodies,
and rigid bodies [5]. In computer graphics, however, rigid bodies are represented using
maximal coordinates while in our PBAD formulation, we use minimal coordinates.
We have also extended conventional second-order PBD discretizations to arbitrarily
high-order collocation methods. The connection between PBD and optimization-based
integrators is revealed in [3] and later refined in [10, 21].

3 Background: Lagrangian Articulated Body Dynamics

We briefly review the conventional articulated body dynamics formulation under gen-
eralized coordinates (see [20] for more details). Throughout our derivation, we assume
that there is only one rigid body. The more general case of multiple rigid bodies can be
derived by a concatenation of equations for each rigid body. The configuration of a rigid
body B is parameterized by generalized coordinates, q. |q| is the number of DOFs and



is proportional to the number of links,N . For an arbitrary point p ∈ B in the body-fixed
frame of reference, its corresponding position in a global frame of reference is:

P(q) = R(q)p+ t(q),

where R is a global rotation and t is a global translation. The dynamics of B is governed
by the following equation:∫

p∈B

∂P(q)

∂q

T [
ρP̈(q)− f

]
dp = 0, (1)

where f are the internal/external forces on p and ρ is the mass density. If we analytically
evaluate the second derivative in Equation 1, we arrive at the following well-known
equation:

JTMJq̈+

[
JTMJ̇+ JT

(
0
[ω]

)
MJ

]
q̇− JT f = 0, (2)

where we have Ṙ = [ω]R, J =
(
∂ω/∂q

T
∂t/∂q

T
)T

, M being the 6 × 6 mass
matrix. From Equation 2, we can formulate a discrete version to predict the next config-
uration

(
qk+1 q̇k+1

)
from the current configuration

(
qk q̇k

)
. Here we use subscript

to denote timestep index, i.e. qk is q at time instance k∆t. To this end, several widely-
used articulated body simulators [29, 25] use a semi-implicit Euler scheme:

q̇k+1 − q̇k

∆t
=
[
JT
k MkJk

]−1
[
JT
k fk −

(
JT
k MkJ̇k + JT

k

(
0
[ωk]

)
MkJk

)
q̇k

]
, (3)

where [ωk] is the 3× 3 skew-symmetric cross-product matrix. The above scheme usu-
ally works well for a small timestep size (usually smaller than 0.01s), but its stability
under large timestep size is not guaranteed. This is due to the explicit velocity update
in Equation 3, i.e. the right-hand side of Equation 3 is at timestep k. One common
method for achieving better stability under a large timestep size is to use the fully im-
plicit Euler scheme by replacing

(
qk q̇k

)
in the right-hand side of Equation 3 with(

qk+1 q̇k+1

)
and solving for qk+1 using an iterative algorithm. A widely-used iter-

ative algorithm is the (Quasi)-Newton method, which has been used to stably simu-
late deformable and fluid bodies [24]. However, there are two difficulties in using the
(Quasi)-Newton method for fully implicit integration:

– The (Quasi)-Newton method requires the derivatives of the right-hand side of Equa-
tion 3 with respect to qk+1, which involves third-order derivatives, ∂3R/∂q3 and
∂3t/∂q3, the evaluation complexity of which is O(N3).

– The implicit integrator solves a system of nonlinear equations for which even (Quasi)-
Newton method could fail to converge under large timestep sizes [10].

4 Position-based Articulated Body Dynamics

In this section, we present our PBAD formulation, which overcomes some of the prob-
lems found in prior time integrators. We notice that, from Equation 1, the acceleration



of P is evaluated analytically to derive Equation 2, which involves up to second-order
derivatives. However, if we use a finite difference approximation of P̈ directly from
Equation 1, the analytic derivatives can be eliminated, allowing us to perform a (Quasi)-
Newton method without evaluating ∂3R/∂q3 and ∂3t/∂q3. For example, if we use
second-order finite difference approximation, Equation 1 becomes:∫

p∈B

∂P(qk+1)

∂qk+1

T [
ρ
P(qk+1)− 2P(qk) +P(qk−1)

∆t2
− f(P(qk+1))

]
dp = 0. (4)

Corresponding to Equation 1 under the conventional formulation, Equation 4 is the
governing equation under our PBAD formulation. Note that Equation 4 converges to
Equation 1 as ∆t → 0. Equation 4 takes a similar form to the governing equations
in previous PBD methods [21, 13] for simulating deformable bodies but is expressed
for articulated bodies under minimal coordinates. We can now argue that Equation 4
overcomes the two difficulties. First, if we use the Newton’s method to solve Equation 4,
we only need to evaluate derivatives up to the second-order, i.e. ∂2R/∂q2 and ∂2t/∂q2.
Moreover, we will show in Section 5 that, if we use the Quasi-Newton method, only
first-order derivatives are needed without modifying the final solutions. Second, the
convergence difficulty of the (Quasi)-Newton method under a very large timestep size
can be fixed by reformulating Equation 4 as an energy minimization problem:

E(q) ,
∫
p∈B

[ ρ

2∆t2
‖P(qk+1)− 2P(qk) +P(qk−1)‖2 +Q(P(qk+1))

]
dp, (5)

where Q is the potential energy for a position-dependent conservative force f . Such a
reformulation allows us to use an off-the-shelf, gradient-based optimizer to solve for
qk+1 = argmin E(q). These optimizers use line-search [19] or trust region limi-
tations [18] to ensure that each iteration gets the solution closer to a local minima of
E(q), i.e. the correct qk+1. Although E(q) in Equation 5 still involves an integral over
B, we can derive its analytic form.

4.1 High-Order Position-Based Collocation Method

One advantage of using Equation 1 is that one could use a general linear multistep
method (see [4]) to achieve a variable-order of accuracy. We show that our PBAD for-
mulation can also have such flexibility by modifying a high-order collocation method
[1]. A collocation method approximates the locus of the configuration of B using high-
order polynomials. Note that, in Equation 4, we assume that, for any p ∈ B, its trajec-
tory in the period of time [(k− 1)∆t, (k+1)∆t] is determined by the three collocation
points P(qk−1),P(qk),P(qk+1) and a collocation method assumes that p follows a
polynomial curve passing through all the collocation points. For example, in Equation 5,
we can fit a quadratic curve from the three points so that it is a second-order collocation
method.

To develop higher-order methods, we introduce additional collocation points in be-
tween timesteps (P(qk+α1

), · · · ,P(qk+αN−2
)) for an Kth-order method, where 0 <

α1 < · · · < αK−1 = 1. We fit an Kth-order polynomial for any p ∈ B from the



K + 1 collocation points P∗ ,
(
P(qk−1+αK−2

) · · · P(qk+αK−1
)
)
. The Kth-order

polynomial takes the following form:

P(t) , P∗H
(
1 t · · · tK

)T
P̈(t) , P∗H

′′ (1 t · · · tK )T ,
where H,H′′ are the polynomial basis matrices. We call this a position-based collo-
cation method. A key difference between a position-based collocation method and a
conventional collocation method [1] is that we fit polynomials for P instead of q. In
other words, we assume that any p ∈ B follows a polynomial curve in the Cartesian
workspace instead of the configuration space. By plugging P(t) into Equation 1, we
obtain:∫

p∈B

∂P(qi)

∂qi

T [
ρP̈(i∆t)− f(P(qi))

]
dp = 0 ∀i = k + α1, · · · , k + αK−1. (6)

from which we can solve for q∗ =
(
qk+α1

· · · qk+αK−1

)
simultaneously. Given a set

of collocation points, we have completed our high-order formulation of PBAD. In prac-
tice, we follow [12] and use the roots of the Legendre polynomials as our collocation
points. In other words, suppose LK−2(x) is the (K − 2)th-order Legendre polynomial
of the first kind, then LK−2(2αi − 1) = 0 for i = 1, · · · ,K − 2. Note that, although
Equation 6 allows fully implicit integration without high-order derivatives, it does not
have a corresponding energy form like Equation 5. However, we can still govern the
convergence of a gradient-based optimizer using the following energy form:

E(q∗) =

i=k+αK−1∑
i=k+α1

‖
∫
p∈B

∂P(qi)

∂qi

T [
ρP̈(i∆t)− f(P(qi))

]
dp‖2, (7)

where we solve for all the q∗ from q∗ = argmin E(q∗). The high-order position-
based collocation method (Equation 7) is more general than its second order counterpart
(Equation 5) because f is not integrated to get Q, allowing f to be non-conservative.
Further, Equation 7 still allows simulation in a fully implicit manner without computing
third-order derivatives.

5 Optimization Algorithm

In this section, we introduce the algorithm that performs numerical simulations under
our PBAD formulation. During the timestep k, an implementation of our PBAD artic-
ulated body simulator calls a gradient-based optimizer to solve q∗ = argmin E(q∗),
where E takes the form of Equation 5 for second-order collocation methods and conser-
vative force models and E takes the form of Equation 7 for high-order collocation meth-
ods or non-conservative force models. Each timestep is an iterative algorithm whose
complexity is not a constant. However, we can analyze the complexity of each iteration
and profile the number of iterations empirically.

Our objective functions involve both inertial and potential energy terms. Since the
concrete form of potential energy Q is application-dependent, we focus on the inertial



Algorithm 1 Compute I(qa,qb),
∂I(qa,qb)
∂qb

using adjoint method withinO(N). Here A
is a 4× 4 matrix. Note that Line 12 is O(1) because ∂Ti

i−1(qb)/∂qb is non-zero only
at entries corresponding to the ith link.

1: T0(qa)← I,T1
0(qa)← I

2: T0(qb)← I,T1
0(qb)← I

3: I(qa,qb)← 0
4: for i = 1, · · · , N do . O(N) forward pass
5: Ti(qa)← Ti−1(qa)T

i
i−1(qa)

6: Ti(qb)← Ti−1(qb)T
i
i−1(qb)

7: I(qa,qb)← I(qa,qb) + Ii(qa,qb)
8: end for
9: A← 0, ∂I(qa,qb)

∂qb
← 0 .A is 4× 4 matrix

10: for i = N, · · · , 1 do . O(N) backward pass
11: A← A+ ∂Ii(qa,qb)

∂Ti(qb)

12: ∂I(qa,qb)
∂qb

← ∂I(qa,qb)
∂qb

+ (Ti−1 ∂Tii−1(qb)

∂qb
) : A . O(1)

13: A← ATi
i−1(qb)

T

14: end for

term. Values and derivatives of most widely-used potential energies, such as the gravi-
tational energy, can be evaluated in O(N) or O(N2) and the complexity of algorithm
is dominated by the inertial term. During each iteration, we evaluate the value and the
partial derivatives of E, which involve an integral over B. We can evaluate this integral
analytically. Note that E in Equation 5 is a linear combination of the following term:

I(qa,qb) =

∫
p∈B

P(qa)
TP(qb)dp, (8)

with different (a, b)-pairs, as shown in our extended report [22]. Similarly, E in Equa-
tion 7 is a linear combination of Equation 8’s partial derivatives. Equation 8 can be
evaluated analytically as:

I(qa,qb) =
[
T(qa)

TT(qb)
]
: M̃− 1 M̃ ,

∫
p∈B

(
p
1

)(
p
1

)T

dp,

where the integrals on the right-hand side (M̃) is related to the mass and inertia tensor
of B (not exactly the same). This matrix does not depend on qa,b and can be precom-
puted. We have also used contract symbols such that A : B = tr

[
ATB

]
and we have

used homogeneous coordinates:

T(q) =

(
R(q) t(q)

1

)
.

To solve q∗, we consider two optimizers, LBFGS [19] and LM [18]. Given an ob-
jective function E(q∗), each iteration of LBFGS computes a gradient, ∂E(q∗)/∂q∗,
and updates q∗ using a line-search along the gradient direction to ensure the decrease
of E(q∗). The cost of an LBFGS iteration is dominated by the computation of the gra-
dient which takesO(N2) in the case of Equation 7 andO(N) in the case of Equation 5.



Algorithm 2 Compute ∂2I(qa,qb)
∂qb2

using adjoint method within O(N2). Here A,B are
4× 4 matrices.
1: . Same forward pass as Algorithm 1.
2: A← 0, ∂2I(qa,qb)

∂qb
2 ← 0

3: for i = N, · · · , 1 do . O(N2) backward pass
4: A← A+ ∂Ii(qa,qb)

∂Ti(qa)

5: ∂2I(qa,qb)

∂qb
2 ← ∂2I(qa,qb)

∂qb
2 + (Ti−1 ∂2Tii−1(qb)

∂qb
2 ) : A . O(1)

6: B← A
∂Tii−1(qb)

∂qb

T

7: for j = i− 1, · · · , 1 do

8: ∂2I(qa,qb)

∂qb
2 ← ∂2I(qa,qb)

∂qb
2 + (Tj−1 ∂T

j
j−1(qb)

∂qb
) : B . O(1)

9: B← BTj
j−1(qb)

T

10: end for
11: A← ATi

i−1(qb)
T

12: end for

aaaaaaaaa
Optimizer

Objective
Equation 5 Equation 7

LM I(qa,qb),
∂I(qa,qb)

∂qb
, ∂2I(qa,qb)

∂qa∂qb

∂I(qa,qb)
∂qb

, ∂2I(qa,qb)

∂qb
2 , ∂2I(qa,qb)

∂qa∂qb

LBFGS I(qa,qb),
∂I(qa,qb)

∂qb

∂I(qa,qb)
∂qb

, ∂2I(qa,qb)

∂qb
2 , ∂2I(qa,qb)

∂qa∂qb

Table 1: The variables required by different optimizers using different objective functions. Since
high-order methods are more frequently used, we use Equation 7 as our objective function in
most cases.

Unlike LBFGS, each iteration of LM computes a gradient, ∂E(q∗)/∂q∗, and a JTJ-
approximate Hessian, JTJ(E(q∗)), and updates q∗ using the Newton’s method:

q∗ ← q∗ −
[
JTJ(E(q∗)) + λI

]−1 ∂E(q∗)

∂q∗
,

where λ is tuned to ensure the decrease of E(q∗). To compute the JTJ-approximate
Hessian, our objective function must be a sum-of-squares, as is the case with Equation 7,
or an integral-of-squares, as is the case with Equation 5. The cost of an LM iteration
is dominated by solving a linear system of size |q| × |q|, and is O(N3) assuming a
general linear solver.

The two optimization algorithms require different partial derivatives of I(qa,qb)
(up to second order) during each iteration, as illustrated in Table 1. The values and
derivatives of I(qa,qb) can be computed efficiently using the adjoint method, which
results in algorithms similar to the forward/inverse dynamic algorithms in [8]. To intro-
duce these algorithms, we need notations for multiple rigid bodies. We assume that we
have N rigid bodies B1, · · · ,BN , where the parent of Bi is Bi−1. We use superscripts
to denote body indices. For each Bi, we denote its transformation as Ti and we have
Ti = Ti−1i

i−1. With these notations, I(qa,qb) =
∑
i I
i(qa,qb) becomes the summa-

tion of all the bodies. We compute I(qa,qb) and ∂I(qa,qb)/∂qb within O(N) using



Algorithm 3 Compute ∂2I(qa,qb)
∂qa∂qb

using adjoint method within O(N2). Here E,F,G
are 4×4×4×4 tensors, A,B,C,D are 4×4 matrices, and we use double contraction
such that A : E : B =

∑
xyzw [ExyzwBwz] and we have A : CED : B = AC : E :

DB. Finally, we define Exyzw = ∂2I(qa,qb)/∂Txy(qa)∂Tzw(qb).

1: . Same forward pass as Algorithm 1.
2: E← 0, ∂2I(qa,qb)

∂qa∂qb
← 0

3: for i = N, · · · , 1 do . O(N2) backward pass
4: E← E+ ∂2Ii(qa,qb)

∂Ti(qa)∂Ti(qb)
,F← E,G← E

5: for j = i, · · · , 1 do
6: ∂2I(qa,qb)

∂qa∂qb
← ∂2I(qa,qb)

∂qa∂qb
+

7: (Ti−1(qa)
∂Tii−1(qa)

∂qa
) : F : (Tj−1(qb)

∂T
j
j−1(qb)

∂qb
)T+

8: (Tj−1(qa)
∂T

j
j−1(qa)

∂qa
) : G : (Ti−1(qb)

∂Tii−1(qb)

∂qb
)T . O(1)

9: F← FTj
j−1(qb)

T ,G← Tj
j−1(qa)G

10: end for
11: E← Ti

i−1(qa)ETi
i−1(qb)

T

12: end for

Algorithm 1. We compute ∂2I(qa,qb)/∂qb2 within O(N2) using Algorithm 2 and we
compute ∂2I(qa,qb)/∂qa∂qb within O(N2) using Algorithm 3.

5.1 Algorithm Complexity of High-Order Collocation Methods

Compared with second-order collocation method that only optimizes qk+1, high-order
collocation methods optimize multiple q in q∗. In addition, we can only use Equation 7
as the objective function. The cost of each iteration of the optimization algorithm is
dominated by computing the matrix ∂2I(qa,qb)/∂qa∂qb. This matrix has size |q∗| ×
|q∗| and can be decomposed into (K − 2) × (K − 2) blocks of size |q| × |q|. Each
block is computed using Algorithm 3 and takes O(N2), so that the computation of the
entire |q∗| × |q∗| matrix takes O((K − 2)2N2).

5.2 GPU Parallelization

Our PBAD formulation is designed to be GPU-friendly. Simulating rigid bodies on a
GPU has been previously studied [33, 32]. These methods formulate forward/inverse
dynamics algorithms as GPU-scan operations. Our GPU implementation deviates from
[33, 32] in two ways. First, our implementation is intended to be used for modeling
predictive control [28] and reinforcement learning [6], where we need to generate mul-
tiple trajectories at once. This fact provides more opportunities for parallelism. Second,
our algorithm is iterative and the number of iterations performed during each timestep
tends to be different. In practice, an implementation that runs each timestep in a sepa-
rate thread could result in starvation, where threads finishing early are waiting for other
threads. As a result, we parallelize each iteration of an optimization instead of each
timestep. This mechanism is illustrated in Figure 1.
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Fig. 1: An illustration of our GPU implementation. The GPU has M cores, each illustrated as a
gray box on the left. We use a workgroup of N cores (black arrow) to simulate one trajectory. In
this illustration, we compute 3 trajectories that each have 4 timesteps (q2, · · · ,q5). During each
call to the GPU, instead of finishing the entire LM optimization, we compute just one iteration
of the LM optimization (colored block on the right) so that all the workgroups are running the
same computation and no starvation will happen. Different timesteps are illustrated using blocks
of different colors. For example, it takes 2 iterations to compute q2 in the first trajectory and 7
iterations to compute q2 in the second trajectory (red block).

We choose the LM algorithm in our GPU implementation. Each iteration of LM in-
volves computing ∂I(qa,qb)

∂qb
, ∂2I(qa,qb)/∂qb

2, ∂2I(qa,qb)/∂qa∂qb according to Ta-
ble 1 and then using a linear system solver. The serial computation of ∂2I(qa,qb)/∂qb2

and ∂2I(qa,qb)/∂qa∂qb takes O(N2), which can be costly. We introduce an addi-
tional fine-grain parallelism by using a GPU workgroup of N cores to reduce the com-
plexity of computing the partial derivatives to O(N) using algorithms in our extended
report [22]. With the same workgroup of N cores, the complexity of the GPU linear
solver is reduced to O(N2) using parallel Cholesky factorization [9]. As a result, a
GPU with M cores can simulate bM/Nc trajectories in parallel and the complexity of
each iteration is dominated by the linear solver, i.e. is O(N2). This method is suitable
for modern commodity GPUs with the number of cores M � N .

Finally, in Section 6, we will show that widely used external force models such as
frictional contact forces and fluid drag forces can be formulated as integrable energies,
Q, whose values and derivatives can be computed in a similar manner to the inertial
terms computed in this section. Putting them together, our method can be used to model
the complex locomotion tasks in [6], such as swimming, walking, and jumping.

6 Results & Applications

6.1 Comparison

Throughout this section, we compare our formulation with conventional formulations
based on Equation 2 and integrated using the Runge-Kutta method [4]. The same al-
gorithm is implemented in [25, 29]. Note that the definition of order of integration is
different for the Runge-Kutta method and the position-based collocation method. The
position-based collocation method of orderK has accuracy similar to that of the Runge-
Kutta method of order K − 1. All experiments are performed on a single desktop ma-
chine with a 4-core CPU (Intel i7-4790 3.6G) and a 3584-core GPU (Nvidia Titan-X),
i.e. M = 3584.
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Fig. 2: (a): We plot the total kinetic+potential energy over time during a standard simulation of
a 10-link chain that swings downward. Each joint of this chain is a 2-DOF ball joint so that this
chain has 20-DOF. Forward Euler integrator for the Newton-Euler equation and semi-implicit
Euler integrator are not stable. Being fully implicit, our second-order PBAD solver is stable but
quickly loses energy. By increasing the order by one, both the second-order Runge-Kutta and
our third-order PBAD solver preserve energy very well. (b): For the more challenging task of a
100-link chain (200-DOF) that swings downward, even the second-order Runge-Kutta method is
not stable and we have to use the third-order Runge-Kutta method for better energy preservation.
Our second-order PBAD solver is stable but quickly loses energy. Our third-order PBAD solver
preserves energy very well. (c): We compare the total computational time for generating a 10s
trajectory of a 10-link chain swinging down using a second-order collocation method for PBAD
and a semi-implicit Euler integrator for a conventional formulation. PBAD is 1.5 − 2.1 times
slower at a small timestep size and up to 4 times faster at a large timestep size, such as 0.05s.

Energy Preservation: We compare the accuracy of time integrators for our PBAD
formulation and conventional formulation. In Figure 2 (a), we plot the total kinetic+potential
energy over time during a standard simulation of a 10-link chain (20-DOF) that swings
downward (the same benchmark was used in [11]). The timestep size is 0.0025s. We
can see that PBAD is very stable and continuously loses energy (Figure 2 (a) purple).
In contrast, low-order explicit integrators such as forward Euler and semi-implicit Eu-
ler are not stable. For better accuracy, we can increase the order of integration by one,
resulting in a much better performance in terms of energy preservation. In Figure 2
(b), we redo the experiment for a 100-link chain (200-DOF). This is more challenging
and low-order explicit integrators are more unstable. The Runge-Kutta method for the
Newton-Euler equation is stable at the third order. Although our second-order PBAD
solver suffers a fast energy loss, increasing the order by one can significantly improve
accuracy.

Timestep Size: In Figure 2 (c), we compare the total computational time for gen-
erating a 10s trajectory of a 10-link chain that swings downward using a second-order
collocation method for PBAD and a semi-implicit Euler integrator for a conventional
formulation. Each timestep of PBAD integration is costlier because multiple iterations
of computations are needed to ensure the optimizer converges. For example, when we
use timestep sizes of 0.001s and 0.0025s, the total computational time of the PBAD
integrator is 1.5−2.1 times that of the semi-implicit integrator. However, the PBAD in-
tegrator can be more efficient under a larger timestep size, while 0.0025s is the largest
timestep size that works for the semi-implicit Euler integrator. At a timestep size of
0.05s, the total computational time of the PBAD integrator is 0.21 times that of the
semi-implicit integrator, leading to a 4 times speedup.

Optimization Algorithm: We compare the performance of the two optimization
algorithms (LM and LBFGS) on CPU. Figure 3 (a, b) shows that, LBFGS generally
takes 10 times more iterations than LM. In addition, PBAD integration performed using
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Fig. 3: We compare the performance of the two optimization algorithms (LM and LBFGS) dur-
ing the simulation of a 10-link (20-DOF) (a) and a 40-link (80-DOF) chain (b) with a large
timestep size of 0.05s. The number of iterations used by LBFGS is much larger than that
used by LM, although each iteration of LBFGS is cheaper. In addition, the number of itera-
tions is almost independent of the number of links, N . (c): We plot the average time to finish
one step of the simulation against the number of links, N . LBFGS is comparable to LM in
terms of computational time and the computational time grows almost linearly with N in the
range of N = 10 − 40. (d): We plot the average time to finish one step of the simulation
against the timestep size, ∆t. PBAD can be used with very large timestep sizes and we tested
∆t = 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128s. The computation time for each
timestep is almost invariant to ∆t.
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Fig. 4: We compare the performance of CPU and GPU in simulating a chain swinging bench-
mark. (a): We plot the speedup against the number of links, N . The speedup increases with N
and the maximal speedup over a 4-core CPU is 6 times. (b): When N = 10, we plot the speedup
against the number of trajectories. The speedup also increases with the number of trajectories and
the maximal speedup is 4 times. (c): We plot the total computational time against the number of
links,N , for generating 100 trajectories of 10 timesteps each. WhenN = 40, the 100 trajectories
can be generated in less than 1s on GPU. (d): We plot the total computational time against the
number of trajectories.

Equation 7 as the objective function will require more iterations to converge than when
using Equation 5. Moreover, the numbers of iterations used by both algorithms are
independent of the number of links, N . Considering the number of iterations as an
invariant, the cost of LM grows as O(N3) and the cost of LBFGS grows as O(N)
on CPU. However, Figure 3 (c) shows that, when the number of links N < 40, the
total computational time grows almost linearly. In particular, using LM to optimize
Equation 7 is costlier than other choices. Figure 3 (c) also shows that the computation
times of LBFGS and LM are comparable. Finally, PBAD can be used with very large
timestep sizes, such as ∆t = 0.128s, shown in Figure 3 (d), and the average time to
compute each timestep is almost invariant to the timestep size. Therefore, large timestep
sizes lead to a reduction in total computation time but they also lead to a higher rate of
numerical dissipation.

GPU Acceleration: We compare the performance of our PBAD formulation on
CPU and GPU. Our GPU implementation only provides acceleration when multiple
trajectories are simulated simultaneously for different initial conditions, which is the
case with many online/offline control algorithms such as [6, 28]. In Figure 4 (a, b),
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Fig. 5: (a): A 4-linked swimmer is trained to swim forward using CMA-ES. Some optimized
swimming gaits and the locus of the center-of-mass are shown. (b): A 4-linked spider is trained
to walk forward. Some optimized walking gaits are shown. The notations used by our frictional
contact force model, Equation 9, are shown in (c). Our model is penalty-based. Both normal and
tangential forces are related to the penetration depth d (P(qk+1)) (blue). The tangential forces
(red) are modelled as a velocity damping term.

we show the speedup of our GPU implementation over a 4-core CPU. The speedup
increases with both the number of links and the number of trajectories to be computed.
The speedup is between 3-6 times. The total computational time for generating 100
trajectories of 10 timesteps each is plotted in Figure 4 (c). On GPU, generating these
trajectories takes less than 1s for N ≤ 40. Finally, in Figure 4 (d), we plot the total
computational time against the number of trajectories to be computed when N = 10.
Note that our GPU has 3584 cores and we can compute bM/Nc = 358 trajectories in
parallel. Therefore, when the number of trajectories increases from 100 − 300, more
GPU cores are used and the total computational time does not increase. Therefore, the
green curve in Figure 4 (d) is almost flat.

6.2 External Force Models and Applications in Controller Optimization

To build a complete robot simulation system, it is essential to model external forces.
In this last benchmark, we propose two force models that are compatible with PBAD
formulations and parallel GPU implementations.

Our first force model considers a 4-linked chain (9-DOF, including a 6-DOF rigid
transformation and 3 hinge joints) immersed underwater, which is under constant fluid
drag forces. To model these drag forces, we use the following formulation of potential
energy in Equation 5:

Qdrag(P(qk+1),P(qk)) = D‖P(qk+1)−P(qk)

∆t
‖2,

where D is the drag force coefficient. This term minimizes the velocity of p and can
be considered as a damping force model. An integral of Qdrag over B can be written as
a linear combination of Equation 8 with different (a,b)-pairs as shown in our extended
report [22] so that its value and derivatives can be computed using the techniques dis-
cussed in Section 5. We use CMA-ES [14] to optimize a controller for the swimmer to
move forward and the results are shown in Figure 5 (a).

Our second force model considers a 4-legged spider (18-DOF, including a 6-DOF
rigid transformation, 4 ball joints, and 4 hinge joints) trying to move forward on the
ground, which is under frictional contact forces. A previous method [26] handles fric-
tional contact forces using complementary conditions, which requires a sequential algo-
rithm. Instead, we use a penalty-based frictional contact model by using the following



potential energy in Equation 5:

Qcontact(P(qk+1),P(qk)) = D1‖d
(
P(qk+1)

)
‖2 +D2‖d

(
P(qk+1)

)
‖2‖Proj‖

(
P(qk+1) − P(qk)

∆t

)
‖2. (9)

Here D1 is the normal force penalty and d is the penetration depth, which is positive
when P is inside obstacles and zero otherwise, as illustrated in Figure 5 (c). D2 is the
frictional force penalty and Proj‖ is the projection matrix to the tangential directions.
The integral of Qcontact over B is replaced by a summation of a set of discrete contact
points. The second term on the right-hand side of Equation 9 approximates frictional
forces by requiring tangential velocities to be small when a point P is inside any of the
obstacles. We use policy gradient method [23] to optimize a controller for the spider to
move forward; the results are shown in Figure 5 (b).

7 Conclusion, Limitations & Future Work

In this paper, we present the PBAD reformulation of articulated body dynamics. Our
reformulation casts the simulation as an energy minimization problem. As a result, off-
the-shelf optimizers can be used to stably simulate articulated bodies under very large
timestep sizes. Although each timestep of our algorithm requires more iterations than
conventional methods, the overall speedup of our PBAD over conventional methods in
various benchmarks is up to 4 times under very large timestep sizes, e.g., ∆t = 0.1s.
Furthermore, our approach is GPU friendly and can be easily parallelized. We observe
an additional 3−6 times speedup on a commodity GPU over a 4-core CPU. The parallel
version of our PBAD solver can accelerate control algorithms such as model predictive
control and reinforcement learning by simulating multiple trajectories simultaneously.

Our current formulation still has some limitations. First, numerical dissipation can-
not totally be avoided, although we can reduce it using smaller timestep sizes or high-
order collocation methods. Second, to recast the articulated body dynamics as an opti-
mization problem and avoid high-order derivatives, we discretize the velocities in a Eu-
clidean workspace, instead of using a Lie-Group structure [17]. As a result, our PBAD
method can be less accurate compared with Lie-Group integrators. As part of future
work, we would like to study various external force models that are compatible with the
our PBAD formulation. A compatible force model should be stable under large timestep
sizes. To this end, one method is to formulate the external force implicitly as a function
of qk+1 Equation 9. However, the accuracy of these force models have not been well
studied.
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