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Abstract: Accurate measurement of flow rate of the multiphase flow of oil, gas and water from
the oil wells, is an important part of the oil and gas industry. This enables the safe operation
and proper optimization of the production. With the increasing availability of process data,
machine learning algorithms are used to create models for various applications. The application
of these algorithms for flow rate estimation provides a more accurate representation of the oil
and gas production process. In this paper, two oil wells and ten machine learning algorithms
are evaluated. Long Short-Term Memory (LSTM) provides the best results with Mean Absolute
Percentage Error of 1.96% for Well 1 and 1.56% for Well 2. In addition, the effects of noise on
the models are explored. Median filter with window size of three provides good noise reduction.
The uncertainty of the predictions are quantified using 95% confidence intervals in XGBoost

model.
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1. INTRODUCTION

The production of oil and gas requires measurements of
various process data. This process data is used to ensure
optimal production of oil and gas and the safe operation
of the production system. One of the most important
variables necessary for this is the accurate measurement
of oil, gas, and liquid flow rates from the oil wells. Since
there is multiphase flow from the oil wells, it is a challenge
to obtain the individual flow rates of oil and gas. Typically,
a separator is used as shown in Fig 1 to obtain an accurate
flow rate of oil, gas and water. Here to measure the
individual phases the multiphase mixture are separated
physically with a separators. Phase flow meters are used to
obtain accurate flow measurements, Bikmukhametov and
Jaschke (2020). This process requires a steady state flow
from the given oil well. In addition to this, the other oil
wells have to be shut down to avoid interference with the
results. This is a costly and time consuming process.

To estimate the flow rates without use of separators,
Multiphase flow meters (MPFMs) can be used. While
MPFMs has many advantages in measurement of multi-
phase flow, they are very expensive. Also, the accuracy of
them gets degraded over time. In addition maintenance
of these sensors are important to ensure good working
conditions. Oil and gas production systems will already
have many sensors installed which monitor certain physical
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Fig. 1. Example of sub-sea oil production

quantities. The use of data driven modelling (also called
machine learning modelling) in the oil and gas industry
has been increasing with the availability of and storage
of process data. As early as 1993, Qiu and Toral (1993)
have used neural networks to estimate the flow rates of
multiphase flow. Considerable research is ongoing to im-
prove the application of machine learning models in the
oil and gas industry. AL-Qutami et al. (2018) also uses
neural networks to estimate phase flow. They used feed
forward neural networks with k fold cross validation and
early stopping. A more advanced method using LSTM
has been used by Andrianov (2018) to forecast forecast
the rates for a series of future time instants in addition
to reliably estimating the multiphase rates at the current
time. For VFM the process data usually collected are:



Bottomhole pressure and temperature.

Wellhead pressure and temperature upstream of the

choke.

e Wellhead pressure and temperature downstream of
the choke.

e Choke opening values.

1.1 Objective

The main objective here is to assess the machine learning
algorithms for flow rate predictions in a sub sea oil produc-
tion system. The sub-tasks in this are 1) Data collection
and preprocessing, 2)Predictions of flow rates of oil, gas
using machine learning, 3) Evaluation of measurement
noise on machine learning algorithms performance and 4)
Quantification of the uncertainty in the predictions.

2. METHODS
2.1 Process Description

For the oil well, the simplified schematic is shown in Fig 2.
Through the gas lift choke valve, high-pressurized natural
gas is continually injected into the wells annulus in this
system, which is mostly utilised to extract lighter crude
oils. The injected gas finds its way into tubing at some
points located at proper depths and mixes with the multi-
phase fluid from the reservoir. As a result of this mixing,
the density of the fluid in the tubing will be reduced,
which means that the flowing pressure losses in the tubing
reduce. Consequently, the reservoir pressure will be able to
overcome the flowing resistance in the well and push the
reservoir fluid to the surface. Each well has its own inflow
characteristics. A graphical representation of this project
is shown in Fig 3.
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Fig. 2. Single oil well schematic
2.2 Machine learning algorithms

A brief description of the machine learning algoirthms used
in this paper are describe here
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Fig. 3. Process Flow of the Project

Multivariate Linear Regression  Linear Regression is the
simplest machine learning algorithm. It makes a prediction
by simply computing a weighted sum of the input features,
plus a constant called the bias term, as shown in equation

(1).

9 =00+ 0121 + Osxo + -+ - + Oy, (1)

Where,

7 - predicted value,

n - number of features,
x; - ith feature value,

6; - jth model parameter,
0o - bias term.

This can be modified to output multiple g values. Mul-
tivariate linear regression is a statistical technique that
models the linear relationship between multiple indepen-
dent variables and a single dependent variable. It extends
simple linear regression by allowing for the inclusion of
more than one predictor variable. The goal is to find the
linear equation that best predicts the dependent variable
based on the independent variables Zangl et al. (2014).

k-Nearest Neighbors Regression ~ The k-nearest neighbors
(kNN) algorithm is a non-parametric, supervised learning
method used for classification and regression tasks. It
works by identifying the k closest training examples to
a given data point and assigning a class or value based on
the majority vote or average of those neighbors. kNN is
a versatile algorithm that can handle both numerical and
categorical data without making assumptions about the
underlying data distribution. It is commonly used in appli-
cations like recommendation systems, pattern recognition,
and anomaly detection. The choice of k is important, as
lower values can lead to overfitting while higher values may
cause underfitting, Géron (2023).

Support Vector Regression  Support Vector Regression
(SVR) is a non parametric technique that uses kernel
functions to estimate a function from a set of training
data. The goal is to find a function f(x) that deviates
from the target values y by no more than e, while being
as flat as possible. This is achieved by solving a convex
optimization problem that minimizes the norm of w,
subject to the constraint that the regression errors are
within €. SVR can handle high-dimensional data and



nonlinear relationships by implicitly mapping the input
data into a higher-dimensional feature space using kernel
functions. Unlike other regression models that try to
minimize the error between the real and predicted values,
SVR tries to fit the best line within a threshold value
(distance between the hyperplane and boundary line).
The data points on either side of the hyperplane that
are closest to the hyperplane are called Support Vectors,
which are used to predict the output Xu et al. (2012).
SVR has several advantages, such as being robust to
outliers, having excellent generalization capability, and
easy implementation. However, it is not suitable for large
datasets, and its performance may degrade when the
number of features exceeds the number of training samples
Smola and Scholkopf (2004).

Decision Tree Regression A decision tree algorithm is
a supervised machine learning technique used for both
classification and regression tasks. It constructs a tree-
like model of decisions based on the data’s attributes. The
process starts at the root node and splits the data into sub-
sets using the most significant attribute based on selection
criteria like information gain or Gini impurity. Each inter-
nal node of the tree represents a "test” on an attribute,
each branch represents the outcome of that test, and each
leaf node represents a class label or a continuous outcome.
The paths from root to leaf represent classification rules or
regression paths. Decision trees handle both numerical and
categorical data and are intuitive, as they mimic human
decision-making processes. They are particularly useful in
scenarios where relationships between parameters are non-
linear or complex. However, decision trees can suffer from
overfitting, especially with very complex trees. Techniques
such as pruning are used to remove parts of the tree that do
not provide additional power in order to reduce overfitting
and improve the model’s generalizability. Decision trees
are foundational elements in more complex algorithms like
Random Forests and boosting methods, enhancing their
stability and accuracy Dayev et al. (2023).

Gradient Boosting Regression — Gradient Boosting Re-
gression is a powerful machine learning algorithm that
combines multiple weak models to form a strong learner.
It is particularly effective for regression problems where
the goal is to predict continuous values. The algorithm
works by iteratively training decision trees on the residuals
of previous predictions, which are the differences between
the actual and predicted values. Each tree is trained to
minimize the error of the previous tree, and the learning
rate determines the contribution of each tree to the fi-
nal prediction. The process begins with an initial guess,
typically the mean of the target variable. Then, at each
iteration, a new tree is trained to predict the residuals
from the previous tree. The residuals are the differences
between the actual and predicted values. The new tree is
added to the previous trees, and the process is repeated
until a stopping criterion is reached, such as a maximum
number of trees or a minimum improvement in the model’s
performance. The final prediction is the sum of the predic-
tions from all the trees, weighted by their learning rates.
This approach allows the algorithm to capture complex
relationships between the input variables and the target
variable, making it highly effective for regression problems
Kniazev et al. (2023).

XGBoost Regression  XGBoost is a powerful algorithm
for building supervised regression models. It was developed
by Chen and Guestrin (2016). It is an implementation of
gradient boosting that is designed to be highly efficient
and scalable. The algorithm is particularly effective for
regression problems where the goal is to predict contin-
uous or real values. XGBoost is based on the concept
of ensemble learning, where multiple base learners are
trained and combined to produce a single prediction. The
core components of XGBoost for regression include the
objective function, base learners, and regularization. The
objective function is responsible for defining the loss func-
tion and the regularization term. The base learners are the
individual models that are trained and combined to pro-
duce the final prediction. Regularization is used to prevent
overfitting by penalizing complex models. XGBoost uses a
unique approach to building regression trees. Each tree
starts with a single leaf and all residuals go into that leaf.
The algorithm then calculates a similarity score for this
leaf based on the residuals. The similarity score is used
to determine how to split the data into two groups. This
process is repeated recursively until a stopping criterion is
reached. XGBoost is widely used in various applications
due to its high accuracy and efficiency. It is particularly
effective for large datasets and can be easily integrated
with other tools and packages such as scikit-learn and
Apache Spark.

PC Regression  Principal component regression (PCR)
is a regression analysis technique that combines principal
component analysis (PCA) and linear regression. The key
idea behind PCR is to first perform PCA on the predictor
variables to obtain a set of uncorrelated principal com-
ponents, and then use these principal components as the
new predictors in a linear regression model, instead of the
original variables. The advantages of PCR are that it can
help address issues like multicollinearity and high dimen-
sionality in the predictor variables. By using a subset of
the principal components, PCR can reduce the number of
predictors in the regression model, which can improve the
model’s interpretability and generalization performance.
However, PCR does not perform feature selection, as each
principal component is a linear combination of all the
original predictors. While PCR can be a useful technique,
it has some limitations. It relies on the assumption that
the directions of maximum variance in the predictor vari-
ables are also the most predictive of the response variable,
which is not always the case. Additionally, PCR can result
in information loss, as it discards some of the principal
components during the regression step Bello et al. (2014).

PLS Regression  PLS regression is a powerful statistical
technique that is particularly useful for analyzing high-
dimensional data with many predictor variables. The key
idea behind PLS regression is to find a set of latent com-
ponents (linear combinations of the original predictors)
that maximize the covariance between the predictors and
the response variable. Unlike traditional linear regression,
PLS does not require the predictors to be orthogonal or
the number of predictors to be less than the number of ob-
servations. PLS regression works by iteratively extracting
latent components that explain as much of the covariance
between the predictors and response as possible. The re-
sulting PLS model provides both dimension reduction and



regression coefficients, allowing for accurate prediction of
the response variable from the original high-dimensional
predictors. PLS regression has several advantages over
other regression methods, including its ability to handle
multicollinearity, its robustness to noise, and its suitability
for datasets with more predictors than observations. As
a result, PLS is a widely used technique in fields such
as chemometrics, bioinformatics, and marketing research
Boulesteix and Strimmer (2006).

MLP Neural network A Multilayer Perceptron Neural
Network (MLPNN) is a type of artificial neural network
that consists of multiple layers of interconnected nodes,
or neurons. Unlike a single-layer perceptron, which can
only learn linearly separable patterns, an MLP can learn
more complex, non-linear relationships in data. The key
components of an MLP are the input layer, one or more
hidden layers, and an output layer. The input layer receives
the data, which is then passed through the hidden layers,
where the network learns to represent the data in a more
abstract way. Each hidden layer applies a non-linear acti-
vation function to the weighted sum of its inputs, allowing
the network to learn complex patterns. The final output
layer produces the predicted result.MLPs are trained using
a supervised learning algorithm, typically back propaga-
tion, which adjusts the weights of the connections between
neurons to minimize the error between the predicted and
actual outputs. This iterative process allows the MLP
to learn the underlying structure of the data and make
accurate predictions on new, unseen data.

LSTM  Long Short-Term Memory (LSTM) is a type of
recurrent neural network designed to address the vanishing
gradient problem in traditional RNNs. The key feature of
LSTMs is their memory cell, which can selectively retain
or discard information as it flows through the network.
LSTMs have three gates that control the flow of infor-
mation: the input gate, the forget gate, and the output
gate. The input gate decides what new information from
the current input and previous output should be added to
the memory cell. The forget gate determines what infor-
mation from the previous memory cell should be retained
or forgotten. The output gate controls what information
from the current memory cell and input should be used to
produce the output. This gating mechanism allows LSTMs
to learn long-term dependencies in sequential data, making
them well-suited for tasks like language modeling, machine
translation, speech recognition, and time series forecast-
ing. LSTMs have been widely adopted and have signifi-
cantly advanced the state-of-the-art in many sequence-to-
sequence learning problems.

Data driven VFM (also called machine learning VFM) is
the method where a model of the oil and gas production
system is created using the available sensor data. Here
in depth domain knowledge about the process is not
necessary to create a model. A typical schematic for a
sub-sea oil and gas production systems which used data
driven VFM is shown in Fig 4. Broadly, the steps involved
are as follows:

(1) Data collection.
(2) Data pre processing.
(3) Model development.
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Fig. 4. Data driven VFM

(4) Predictions of flow rates.
(5) Data reconciliation.

2.8 Data collection

The first step to creating a data driven model is the collec-
tion of relevant data. In Virtual Flow Metering systems,
information is transmitted from wells and processing facil-
ities and this includes sensor readings. This data may be
wireless transmitted using IoT systems or through physical
communication wires. It can involve different communi-
cation protocols to ensure proper transmission of data.
Historical data from the same or analogous fields may
also be used as a calibrating data set for fine-tuning the
model. Generally, the data collected tends to be unclean,
contaminated, and may have missing values, outliers and
redundant inputs. Here the data is obtained from the oil
well model described by Janatian et al. (2022). Using the
equations described in the paper, an open loop simulation
of the oil well is obtained. For the oil well 1 and 2, 5762
samples are obtained. These are split in 70% train and
30% test sets.

2.4 Data pre processing

Data filtering, where the removal of noise from raw data is
performed is part of this step. There exist many filters that
can be deployed to clean the raw data. In addition out-
lier detection, correcting missing values can be included.
Preprocessing can also involve data transformation, which
might yield new insights about the information the data
contains. Feature engineering is the common term for this
technique. Since the oil and gas production process is time
dependent, care should be taken when splitting the data
for training. Time series split from Sci-kit learn library
is used for this. Two splits are created as shown in Fig
5. Using this, data leakage in the training stage can be
avoided. A standard scaler is used on the inputs of the
train dataset. It involves re-scaling each feature such that
it has a standard deviation of 1 and a mean of 0. This
is necessary since the inputs have different ranges. It also
help to reduce training time in certain algorithms like SVR
and neural networks.

2.5 Model development

In order to create a model, an algorithm that can map
input features to output (target) variables must be de-
veloped. The mapping process, also known as training or
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learning, involves the algorithm modifying the parameters
so that it can precisely estimate the desired variables.
Depending on the algorithm being used, the parameters
must be changed. The weights that connect the neurons
in a neural network, for example, are the parameters. In
regression trees, on the other hand, the parameter may
be the tree depth. Reducing the difference between the
algorithm’s predicted values and the actual (measured)
values to minimise a cost function, is how training is ac-
complished. Mean squared error (MSE) is usually used as
a cost function to solve regression problems such as Virtual
Flow Metering. Here ten algorithms are used to create
models for Well 1 and Well 2. LSTM Regression, Multi-
variate Linear Regression, KNN Regression, Decision Tree
Regression, Gradient Boosting Regression, XGBoost Re-
gression, Principal Component Regression, Partial Least
Squares Regression, and MLP Neural Network Regression
are used.

2.6 Predictions of flow rates

Once the training and validation for the model is com-
pleted, the model is tested on unseen data. New pre-
dictions from this data are noted and the effectiveness
of model can be determined. For oil and gas flow rate
predictions the commonly used performance metric is the
Mean absolute percentage error (MAPE). With this the
performance across various algorithms can be compared.
It is easy to interpret and can be used across different
input data scales. MAPE can be found by:

Tlsamples —1

1

lyi — Uil

MAPE(y, j) = max(e, [y;])

100 (2)

Nsamples i—0

where ¢ is the predicted value of the ith sample, y; is is the
corresponding true value, Ngamples is number of samples, €
is an arbitrary small yet strictly positive number to avoid
undefined results when y is zero.

2.7 Data reconciliation

An optimization algorithm adjusts the model parameters,
for instance, flow rates, choke discharge coefficient, gas and
water fractions, and friction and heat transfer coefficients
such that the model outputs match the validated measured
data being constrained to process conditions, for instance,
the material balances. The reconciliation procedure in
virtual flow metering systems is frequently expressed in
the constrained least squares form.

3. RESULTS AND DISCUSSIONS
8.1 Predictions using algorithms

For Well 1 the Figures 6 shows the results of each algo-
rithm. Figure 7 shows the predictions for Well 2.

For LSTM model early stopping is used to prevent over-
fitting. This is implemented in Tensorflow. For well 1, 32
memory cells are used. For well 2, 40 memory cells were
used. The ’adam’ optimizer with loss function of mean
squared error is used for training both models. A linear
activation unit is used in the output layer.

In the Multi-layer perceptron neural network model, for
well 1, 2 hidden layers are used, ’identity’ activation
function, an optimizer in the family of quasi-Newton
methods (Ibfgs solver) is used, L2 regularization of 0.0005
and the maximum number of iterations is 1000. For well
2 only ’logistic’ activation function is changed and other
hyper-parameters are same as well 1.

In the Multi variate linear regression, for well 1 and
well 2 the intercept is calculated. The copy_X parameter
is true, which means the input features are copied, not
overwritten.

In the Support vector regression model, for well 1, radial
basis function is used as kernel, with kernel coefficient of
0.1, and regularization of 1 is used. For well 2, radial basis
function is used as kernel, with kernel coefficient of 0.01,
and regularization of 10 is used.

In the K nearest neighbors model, for well 1 and well 2,
8 neighbors were used. For well 1, the power parameter
for the Minkowski metric is used. For well 2, the power
parameter for the euclidean distance metric is used. These
metrics are used in distance computation.

For the Decision tree model, for well 1, the maximum
depth of the tree is 1, the minimum number of samples
required to be at a leaf node is 1, the minimum number
of samples required to split an internal node is 2 and the
number of features to consider when looking for the best
split is the sqrt of the number of features. For well 2, the
maximum depth of the tree is 10, the minimum number of
samples required to be at a leaf node is 1, the minimum
number of samples required to split an internal node is 10
and the number of features to consider when looking for
the best split is the log2 of the number of features.

For Gradient boosting model, for well 1 and well 2, the
loss function used is squared error for regression. The
maximum depth of the individual regression estimators is
3. For well 1, the learning rate is 0.1, and for well 2 the
learning rate is 0.05. With this algorithm it is possible to
find the importance of each input feature. Here P, the
wellhead pressure shows the maximum effect.

A more efficient and faster implementation of gradient
boost, XGBoost model Zheng et al. (2022) is developed
next. Here for well 1, the squared error is used as objec-
tive function, 300 estimators, maximum depth of 7 and
learning rate of 0.01 is used. For well 2, the number of
estimators are reduced to 100, maximum depth of 3 and
learning rate of 0.1.
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For the PLS and PCR models, the number of component
used in 1 in both wells. These models are useful when
dimension reduction of input feature space is needed.

The MAPE for each model is shown in Table 1
Table 1. MAPE for Well 1 and Well 2

Algorithm Well 1 (%) | Well 2 (%)
LSTM 1.96 1.53
MLP NN 2.43 5.49
MV Linear Regression | 2.14 7.57
SVR 5.04 4.31
KNN 8.05 5.41
Decision Tree 9.26 5.43
Gradient Boost 4.95 5.55
XGBoost 4.23 5.56
PLS 9.54 7.57
PCR 9.52 16.69

The LSTM model produces the best results. The disad-
vantages of using this is the training time is longer. Also
to find the proper parameters is a time consuming process.
It is observed that for each well the hyper-parameters
has to be tuned. GridSearchCV helps with this, but it
is still a complicated process. For the algorithms that are
generally used for classification tasks like SVM, kNN, some
modification is required to enabling its use for regression.
Many of these algorithms including linear regression, and
tree based, require modification to predict multiple out-
puts. With modifications it is possible to get the results,
but the downside is the hyperparameter tuning becomes
more complex. Neural networks and the LSTM model can
be made more complex, giving better results. This takes
more time and computation power. For finding the best
hyper-parameters multiple runs are required. Since the
programs were executed on a laptop, these take more time.
For decrease in computation time a sample size of 5762
was used. If more samples were used in the modelling the
results would probably be much better.

3.2 Effects of noise

The effect of random errors is tested on three machine
learning models: XGBoost, MLP NN and LSTM. Impulse
noise introduces sudden jumps or falls in the data values,
simulating real-world data with occasional spikes at ran-
dom locations. First a noise sample of 3% is created. The
values in the sample are uniformly distributed between
20% of the minimum value of the column and 30% of the
maximum value of the column. This ensures that the noise
added is relative to the range of the data in the column.
The noise is randomly distributed across the column and
added to the 3 input features. The 3 algorithms are trained
and tested. Here the figures are shown of only Well 1,
since the effects are can be similarly observed in Well 2.
Figures 8 and 9 show the effect of impulse noise on LSTM,
MLP NN and XGBoost models respectively. To solve the
problem of impulse noise, there are many filters that can be
used. For example Median filter, Order statistic filters, and
so on. Here the Median Filter is used to reduce the impulse
noise. SciPy is used, which has a median filter function that
is well-suited for removing impulse noise, as it replaces
each data point with the median of the neighboring data
points within a specified window size. The results of the
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Fig. 9. Median noise filter

median filter is shown in Fig 9. A window size of 3 is used.
Each data point is replaced with the median of itself and its
two neighbors. Most of the impulses are filtered out. The
prediction accuracy of the 3 models is improved. Tables 2
and 3 shows the effect of impulse noise on MAPE of the 3

models.

Table 2. Impulse noise effects

Well no. | LSTM (%) | MLP NN (%) | XGBoost (%)
Well 1 5.98 8.76 7.51
‘Well 2 4.67 5.13 5.77

Table 3. Median Filter effects
Well no. | LSTM (%) | MLP NN (%) | XGBoost (%)
Well 1 1.87 4.97 6.47
Well 2 2.86 5.51 5.29

3.8 Uncertainty quantification

Uncertainty refers to a state of limited knowledge or in-
formation, where it is impossible to precisely describe an
existing state, future outcome, or multiple possible out-
comes. There are two main types of uncertainty: Aleatory
and Epistemic Uncertainty Pelz et al. (2021). There are
many methods to quantify the uncertainty in predictions
for machine learning models. Some of them are: Confidence
intervals, Quantile regression, Bootstrapping, Ensemble
methods and Bayesian optimization.

Using XGBoost the confidence intervals can be added.
For other algorithms like LSTM it is a more complicated
process. Fig 10 and Fig 11 shows the confidence intervals
of 95% for XGBoost model for well 1 and well 2.
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Fig. 11. Confidence intervals for XGBoost model (Well 2)
4. CONCLUSION

Applying machine learning for flow rate estimation in oil
and gas productions is a complex process. From the data
collection to uncertainty quantification, considerable work
has to be done to obtain useful results. The applicability
of the results depends on the situation. Long short-term
memory (LSTM) provides the best results with Mean
absolute percentage error of 1.96% for Well 1 and 1.56%
for Well 2. It may be best to use the predictions from
the models as a backup for more robust systems. Since
each well has its own characteristics, they must be modeled
individually. In addition more process data would probably
improve the accuracy of the flow rate predictions.

More filters can be tested to remove measurement noise.
Different methods of uncertainty quantification can also be
tested. The outlier detection and correction can be added
in future. Unsupervised techniques like Local Outlier Fac-
tor, Isolation Forest, Kernel Density Estimation can be
tested. Data reconciliation can also be added. Here the
process flow diagram is necessary, the constraints of the
each well are also needed.
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Appendix A. PROGRAM CODES

The Matlab codes for the simulator and the python ma-
chine learning code can be accessed here:

https://github.com/dsouzaneville/FMHG606-1-Masters-Thesis



