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Energy Optimization in IoT Multi-Path Channels via Deep Learning on G6 Networks 

Abstract 

In this research, optimization methods for energy resource allocation are investigated to 

improve energy efficiency in 6G-IoT networks. By utilizing energy harvesting techniques from 

hybrid sources such as wind, water, and solar, efforts have been made to provide sustainable 

energy for IoT networks. However, uncertainty in variable temporal environments does not 

guarantee continuous connectivity and sustainable energy resources for all network nodes. This 

research addresses the problem of power allocation in multi-path channels with the aim of 

identifying influential parameters and employing an LSTM neural network for data-driven 

predictions based on historical data. The results indicate that the computational load of the 

algorithm is very low, and optimal responses are achieved by the fourth iteration. As the 

number of IoT devices increases, the response time grows, and an increase in the Signal-to-

Noise and Interference Ratio (SINR) leads to a decrease in energy efficiency. Additionally, an 

increase in the number of IoT devices results in higher power consumption and reduced 

efficiency. The average power for a maximum transmission power of 10 megabits per joule 

has been determined. 
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Introduction 

In recent years, the world has witnessed an unprecedented surge in global mobile data usage. 

According to projections by the International Telecommunication Union (ITU), global mobile 

data traffic is expected to reach 607 exabytes (EB) per month by 2025 and soar to 5016 EB per 

month by 2030 (Andrae, 2019; Shayea et al., 2019; Arifin and Habibie, 2020). Similarly, data 

traffic per subscriber is anticipated to climb to approximately 39 EB by 2025 and around 257 

EB by 2030 (Alsabah et al., 2021; Grasso et al., 2023). This explosive growth in data 

consumption is driven by the increasing number of mobile phone subscribers, projected to 

reach nearly 70% of the global population by 2025, with 60% utilizing mobile internet services 

(Martins and Wernick, 2021; del Portillo et al., 2021; Oughton et al., 2023). 

The burgeoning data traffic demands more than just an increase in bandwidth; it necessitates 

highly reliable, ultra-fast wireless communication systems with exceptionally low latency (Huq 

et al., 2019; Mumtaz et al., 2021). This demand is largely fueled by the proliferation of personal 

computers, laptops, tablets, smartphones, sensors, and Internet of Everything (IoE) devices 

(Masoud et al., 2019; Tyagi and Nair, 2020), which primarily consume data for video content 

rather than voice traffic (Morley et al., 2018). Furthermore, the anticipated rise in internet users, 

mobile subscribers, Machine-to-Machine (M2M) connections, and connected devices 

worldwide underscores the urgent need for advancements in wireless communication 

infrastructure (Sudarmani et al., 2022; Montori et al., 2018). 

The existing generation of wireless technologies is increasingly strained by the volume and 

complexity of data traffic and the emergence of new applications (Zhang et al., 2019). To 

address these challenges, the development of the next generation of wireless communication 

systems, commonly referred to as 6G networks, is underway (Alsharif et al., 2022). 6G 



networks promise to revolutionize communication through advanced physical layer solutions, 

novel modulation schemes, sophisticated multiple access techniques, energy harvesting 

capabilities, edge computing integration, exploration of new spectrum bands, and the 

incorporation of both terrestrial and non-terrestrial communications (Khalid et al., 2021; Lee 

et al., 2020). Moreover, 6G networks are expected to leverage blockchain technology, quantum 

technologies, and artificial intelligence (AI) to further enhance their capabilities. 

Despite these promising advancements, the implementation of 6G networks faces significant 

challenges. These include high processing power demands, limited frequency availability, 

elevated energy consumption, and substantial costs. As this technology is still in its early 

stages, developing nations, in particular, are striving to overcome these hurdles. In this context, 

the need to research and optimize energy efficiency in 6G networks becomes paramount. 

Artificial intelligence, especially entropy-based techniques, plays a crucial role in this 

optimization process, enabling self-sustaining and intelligent systems that enhance service 

quality (Behara and Saha, 2022; Singh et al., 2023). 

This study addresses the pressing need for efficient energy allocation and optimization in 6G 

networks by leveraging deep learning techniques. Specifically, it focuses on two key 

components: 1) elucidating the governing equations related to channel dynamics, power 

allocation strategies, and optimization problems, and 2) detailing the flowchart of deep learning 

methodologies for optimizing energy consumption. By addressing these aspects, this research 

aims to contribute to the development of more efficient and intelligent 6G communication 

systems, aligning with global advancements and supporting the progress of technology in 

developing nations. 

Material and Method 

In this study, we delve into power allocation and energy optimization utilizing deep learning 

techniques, particularly applied to 6G networks. The research problem is delineated into two 

components: 1) elucidating the governing equations in channels, power allocation strategies, 

and optimization problems, and 2) elucidating the flowchart of deep learning methodologies in 

optimizing energy consumption. Both aspects are comprehensively addressed in this chapter. 

IoT Network Model 

In our investigation, we scrutinize a downlink Internet of Things (IoT) system comprising a 

pool of Base Units (BUs) interconnected to N Remote Radio Units (RRUs), as depicted in 

Figure 1 (Gbadamosi et al., 2020). Each RRU is adequately equipped with an antenna unit to 

cater to K IoT devices for the transmission and reception of radio frequency signals (Bjering 

and Prasad, 2018). System resources are allocated orthogonally to IoT devices to mitigate 

interference among them. The maximum number of antennas on a large-scale RRU is denoted 

as Lmax, where RRU activation enhances the efficacy of communication among IoT devices 

(Kodheli et al., 2018). Resource allocation in IoT systems is enhanced by allocating power to 

different IoT devices based on channel conditions, prioritizing higher power allocation to IoT 

devices experiencing weaker channel conditions (Ramezani et al., 2018). Leveraging excellent 

Channel State Information (CSI) at the transmitter, RRUs temporally store energy for 

transmitting data to neighboring IoT devices. Additionally, an IoT device opportunistically 



senses the sub-channel via RRU while being assigned to an RRU. RRUs function as relay 

protocols, transmitting received signals from IoT devices to the Centralized Band Unit (BU). 

The uncertainties inherent in communication channels are independent and adhere to a uniform 

(Gaussian) distribution to meet fading requirements. Figure 2 shows the network model 

 

Figure 1. Internet of Things Systems Image (Ansere et al., 2023). 

 

Figure 2. Network model. 

 

 



Channel Model and Estimation 

Considering the downlink training phase, it is assumed that all IoT devices simultaneously 

transmit pilot signals for channel estimation in 𝜏 ≥ 𝐾, where the size of each pilot 𝜏 is identical. 

A set of orthogonal pilots 𝜑 = [𝜑1, 𝜑2, … , 𝜑𝐾]𝜖𝐶𝜏∗𝑘  autonomously assigned to IoT devices 

𝜑𝐻𝜑= 𝐼𝐾
  fulfills this, assuming all antennas are active in this phase. The received signal is 

provided at the nth Remote Radio Unit (RRU) (Rezaei et al., 2023). 

 

(1) 

The term “pk” in this context represents the power transfer capability of the k-th IoT device. 

𝐶𝐿𝑚𝑎𝑥 × 𝐾= 𝐼𝐾
   𝐻𝑛 = [ℎ𝑛,1, ℎ𝑛,2, … , ℎ𝑛,𝑘]𝜖 The channel matrix from the n-th RRU to the k-th 

IoT device is denoted by, and ZkT represents complex Gaussian noise with a distribution of 

𝐶𝑁(0, 𝜎𝐾
2). The communication channel is modeled as   , and the channel 

vector is depicted for the n-th RRU and k-th IoT devices. Additionally, both   and 

 respectively indicate the fading coefficients for large and small-scale fading 

channels between IoT devices n and k. 

The Path Loss Model helps IoT networks by predicting signal strength over distance, ensuring 

adequate coverage. The Fading Model maintains consistent signal quality despite 

environmental changes. The Multipath Model improves signal reception by managing 

interference from multiple paths. 

Assuming access to channel estimation gains, it is presumed that    is predicted as   

 

(2) 

By employing the Minimum Mean Square Error (MMSE) channel estimation method (Xia and 

Jorent, 2019), the estimated channel, hn,k, from the n-th RRU to the k-th IoT devices is 

provided. 

 



(3) 

Therefore, the channel estimation error, , is expressed as with a distribution of 

 

Data Transmission Model 

It can be assumed that each deployed RRU transfers data to connected IoT device 

and   , respectively, represent the RRU and the channel vector from the nth RRU 

to the kth IoT devices. However, denotes the signal sent to the kth IoT device, representing it 

as the kth IoT device. This is calculated using the following relationship (Etiabi and Amhoud, 

2024). Data Rate helps in optimizing the speed of data transfer, ensuring that large volumes of 

IoT data are transmitted efficiently. Latency is crucial for reducing delays in communication, 

which is essential for real-time applications. Error Rate aids in assessing and enhancing the 

reliability of data transmission by predicting and managing errors. 

 

 

(4) 

As a result, the received signal of the kth IoT device is calculated using the following 

relationship under the channel . 

 

(5) 

In which, Zn,k represents Gaussian noise with zero mean and unit variance, and Sn,l denotes 

the subchannel. The achievable rate for the nth RRU to the kth IoT devices is determined. 

 

(6) 

Where B represents the bandwidth,  and is the Signal-to-Interference-plus-Noise Ratio 

(SINR) [27].    is given in the following formula. 

 

(7) 



Therefore, the maximum achievable rate, Rn,k, for the nth RRU to the kth IoT devices is 

expressed in this formula. 

 

(8) 

Power Consumption Mode                                                                                                                       

Power consumption in RRUs and power amplifiers constitutes the majority of the total power 

consumption in the downlink system (Zhang et al., 2020). The total power consumption 

includes RF transmission power, constant power consumption for site cooling and load 

processing, and circuit power consumption from active RRUs. As a result, the total power 

consumption is modeled. The Power Consumption Model helps IoT by optimizing energy use, 

extending battery life, and reducing operational costs. It enables efficient management of 

device power modes to balance performance with energy consumption. This ensures that IoT 

devices and networks operate sustainably and cost-effectively. 

 

(9) 

Here  , ps represents circuit power consumption, and the cost of power is allocated 

for servicing deployed RRU units.    specifies that the deployed RRU units on a large scale 

are determinative. Pt =  equals transmission power, illustrating the power amplifier 

efficiency.  

power consumption in IoT networks 

In IoT networks, power consumption is a key factor that influences how effectively and 

efficiently devices operate. For many IoT devices, such as sensors and smart home gadgets, 

which typically run-on batteries, efficient power consumption directly affects battery life. 

Devices that use power more efficiently can operate for longer periods before needing new 

batteries or recharging, leading to reduced maintenance and lower operational costs. Moreover, 

managing power consumption can significantly impact overall energy costs. In large-scale 

deployments, such as smart cities or industrial IoT systems, reducing power usage translates 

into substantial savings on energy bills. Efficient energy use also helps in prolonging the 

lifespan of devices, as less power consumption generally results in less wear and tear on 

components. This extends the operational life of the devices, minimizing the need for early 

replacements and maintenance . 

 



Additionally, lower power consumption has positive environmental implications. By reducing 

the amount of energy required to run IoT networks, the environmental footprint of these 

systems is decreased. As the number of IoT devices continues to grow, managing power 

consumption becomes increasingly important for both economic and environmental reasons. 

Thus, understanding and optimizing power consumption is crucial for developing IoT systems 

that are cost-effective, sustainable, and reliable. 

Problem of Resource Allocation and Optimization 

This section endeavors to tackle the challenge of resource allocation by formulating an 

optimization problem aimed at maximizing the energy efficiency performance. 

Energy Efficiency Optimization 

Energy efficiency, denoted as h, is defined as the achievable rate Rn,k to the total energy 

consumption PT of the system (bits/Joule) (Tang et al., 2019). Therefore, energy efficiency h 

can be expressed in terms of power allocation P, active RRU selection A, user selection U, and 

subchannel allocation S (You et al., 2020). Energy Efficiency Optimization improves IoT by 

reducing power consumption, which extends device battery life and lowers operational costs. 

It enhances device longevity, reducing maintenance needs. Additionally, it supports better 

system performance and scalability by managing energy resources effectively. 

 

(10) 

Formulation of Optimization Problem 

The joint optimization of power allocation P, selection of active RRUs A, user selection UU, 

and subchannel allocation S has been elucidated. Mathematically, the formulated optimization 

problem for the system is represented as (Xia et al., 2022): 

 

(11) 

 

Formulating Optimization Problems helps IoT by defining clear goals and constraints, ensuring 

efficient resource allocation and system performance. It guides the system in balancing factors 



like energy use, throughput, and latency. This systematic approach leads to optimized and cost-

effective IoT solutions. However, the objective function in P1 presents a complex nonlinear 

optimization problem that is NP-hard, with constraints involving nonlinear functions, rendering 

it challenging to find an optimal solution. P1 entails a mixed-integer combinatorial 

optimization over multidimensional decision variables. Moreover, addressing P1 becomes 

increasingly difficult in polynomial time as the size of the optimization problem escalates. 

Consequently, achieving an optimal solution in dynamic and large-scale Internet of Things 

environments is computationally inefficient. Therefore, we opt to transform the considered 

system problem into a convex form and devise a novel dynamic resource allocation technique 

to efficiently address it. 

Deployment of Deep Learning Algorithm in Energy Optimization  

The efficacy of the "end-to-end learning" framework is contingent upon an extensive training 

dataset and substantial computational resources due to the multitude of parameters inherent in 

general-purpose neural networks (NNs), which function as global function approximators. The 

diminished training efficiency of general NNs poses a barrier to their application in dynamic 

wireless networks and large-scale scenarios. Moreover, in forthcoming 6G wireless networks, 

where high-quality training samples such as Channel State Information (CSI) may not be 

readily available, the performance of general deep neural networks (DNNs) may deteriorate 

significantly, potentially undermining conventional algorithms. Additionally, general NNs are 

often perceived as "black boxes," rendering it challenging to decipher the functionality of each 

layer and ensure NN performance. The lack of interpretability in black-box DNNs can pose a 

significant constraint in wireless network optimization endeavors, where reliability and 

predictability are paramount (Aklilu and Bounahmidi, 2024). 

To overcome these challenges, a novel algorithmic approach has surfaced, establishing a 

coherent and systematic linkage between classical iterative algorithms and deep neural 

networks. This approach involves unrolling an iterative algorithm and transferring its 

parameters to the training parameters of a neural network. Consequently, the unrolled neural 

network enables the interpretation of each layer and may even offer theoretical guarantees (Xu, 

2023). Given the potential to develop efficient neural networks with high performance and 

theoretical guarantees using reasonably sized training sets, the burgeoning adoption of 

unrolling algorithms in both theoretical research and practical applications is noteworthy (see 

Figure 2). 

 

 

 



 

Figure 2. Deep Learning-Based Algorithm Framework. 

The algorithmic framework, initially introduced by Gregor and LeCun (Zhou, 2020), opened 

up by accelerating ISTA to enhance the computational efficiency of sparse coding. 

The core concept revolves around mapping each iteration of Iterative Shrinkage-Thresholding 

Algorithm (ISTA) to a neural network layer and subsequently stacking these layers atop each 

other. This process can be perceived as the execution of multiple ISTA iterations by a layered 

neural network. Such techniques can be extended to encompass a broader range of iterative 

algorithms, particularly those where the update form is data-driven. 

 

(12) 

In this context, represents the vector of iterative variables (e.g., 

a signal to be reconstructed or a variable to be optimized denotes the 

iterative function of a specific iterative algorithm, and   

encompasses the trainable parameters (including model parameters and tuning coefficients) of 

the algorithm. The fundamental principle of unrolling the algorithm is to unfold a particular 

iterative algorithm into a deep network by mapping each iterative function (g) in a network 

layer and stacking a limited number of layers together. The forward process of the neural 

network corresponds to the execution of the iterative algorithm. Therefore, the unrolled 

network architecture depends on the underlying iterative algorithm (e.g., ISTA unrolled into a 

Recurrent Neural Network (RNN) (Zhou, 2020), as a single-layer network has a similar 

structure to the iterative function (g). The details of unrolling the algorithm are illustrated in 

the figure. The trainable parameters   can be learned through an 

end-to-end approach. 

 

(13) 

In which (L) is the loss function for training, represents all trainable 

parameters of the entire network with T layers, and  is the output function of the 



unrolled network. Given the custom structure of the neural network (NN), end-to-end training 

may suffer from local minima, gradient explosion, or vanishing during the training process. 

Instead of directly solving (2), a common training strategy adopted for unrolled networks is the 

layer-wise training method (Gesbert et al., 2007), which, due to better parameter initialization, 

can achieve more efficient training. This means the entire training process can be divided into 

consecutive training processes for each layer (t). For the (t)-th sub-training process, our goal is 

to adjust the trainable parameters specific to (t) using a two-stage method. The first stage is 

dedicated to optimizing the (t)-th parameters independently, while the second stage jointly 

optimizes all (t) by fixing the learned (t) as the initialization. During the evaluation phase, 

feeding data forward through the unrolled network with learned parameters is equivalent to 

executing the optimized iterative algorithm for a limited number of iterations.    

 Deploying deep learning algorithms for energy optimization in IoT networks involves several key steps. Here’s 

a step-by-step explanation, along with pseudocode and a flowchart to simplify the process: 

Step-by-Step Explanation 

1. Data Collection: 

Gather data related to energy consumption, such as power usage, device activity, and 

environmental conditions. This data forms the basis for training the deep learning model. 

Example Data: Sensor readings, device operational states, environmental factors (temperature, 

humidity). 

2. Data Preprocessing: 

Clean and preprocess the data to make it suitable for model training. This includes normalizing 

values, handling missing data, and splitting the dataset into training and testing sets. 

Tasks: Normalize values, remove outliers, handle missing values. 

3. Feature Selection: 

Identify the most relevant features (input variables) that will be used by the deep learning model 

to predict energy consumption and optimize usage. 

Example Features: Device type, usage patterns, time of day. 

4. Model Selection: 

Choose a suitable deep learning model architecture. Common choices for energy optimization 

include neural networks, convolutional neural networks (CNNs), or recurrent neural networks 

(RNNs), depending on the nature of the data. 

Example Models: Multi-layer Perceptron (MLP), Long Short-Term Memory (LSTM) 

networks. 

5. Model Training: 



Train the selected deep learning model using the preprocessed training data. This involves 

feeding the model with input features and adjusting weights based on the predicted versus 

actual outcomes. 

Tasks: Configure hyperparameters, train the model, validate performance. 

6. Model Evaluation: 

Evaluate the model’s performance using the testing data. Metrics such as Mean Absolute Error 

(MAE) or Root Mean Squared Error (RMSE) are used to assess accuracy. 

Tasks: Compute performance metrics, adjust model if needed. 

7. Deployment: 

Deploy the trained model into the IoT network environment where it can process real-time data 

and make predictions for energy optimization. 

Tasks: Integrate the model with IoT systems, ensure real-time data feeding, and monitor 

performance. 

8. Continuous Monitoring and Updating: 

Continuously monitor the model’s performance and update it with new data to maintain 

accuracy and effectiveness over time. 

Tasks: Collect new data, retrain the model periodically, adjust based on performance feedback. 

The codes of this method are: 

1 .Load and preprocess data 

data = load_data("energy_consumption.csv") 

data = preprocess_data(data) 

 

2 .Select features 

features = select_features(data) 

 

3 .Choose model 

model = choose_deep_learning_model("MLP") 

 

4 .Train model 

model.train(features, labels) 



 

5 .Evaluate model 

performance = model.evaluate(test_data) 

if performance < acceptable_threshold: 

model.adjust_parameters)( 

 

6 .Deploy model 

integrate_model_with_IoT_system(model) 

 

7 .Monitor and update 

while True : 

new_data = collect_real_time_data ()  

predictions = model.predict(new_data) 

monitor_performance(predictions) 

if performance_drops: 

model.retrain() 

Results and Discussion 

Essential Simulation Parameters 

To implement the proposed algorithm through computer simulations, it is imperative to define 

several variables, including the bandwidth of the wireless channel, operating frequency, signal-

to-noise ratio (SNR), and the number of Internet of Things (IoT) devices. The optimization of 

energy allocation revolves around IoT devices communicating with a base station, taking into 

account the impact on 6G mobile communication. For this purpose, a specific operating 

frequency of 36 gigahertz has been selected to represent the high-frequency bands 

characteristic of 6G communication systems. The placement of IoT devices serves as a 

parameter influencing power allocation and loss assessment. In this scenario, a total radius of 

1 kilometer is considered, with IoT users distributed randomly and uniformly within a distance 

of 40 meters from the reference signal. The spatial distribution of IoT devices in a two-

dimensional space is depicted in Figure 3. Moreover, the transmitting antenna is associated 

with a gain, which is set at 8 megahertz in this context. Path loss is another critical parameter, 

which is set at 4 in the threshold discussion. Additionally, the signal-to-noise threshold is 

adjusted to 2 decibels. Various other parameters are outlined in Table 1. 



 

Figure 3. Internet of Things Network with 30 IoT devices and a 6G mobile communication service 

provider center. 

Table 1. Configured Values for Simulation Parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Value 

Operating Frequency 3.8 Gigahertz 

Total Channel Bandwidth 8 Megahertz 

Transmitter Antenna Gain 12 Decibels 

Path Loss 4 

Back-off Constant 0.3 

Noise Power per Sub channel -167 dBm 

Power Amplifier Efficiency 0.2 

Number of Sub channels 32 

Power Consumption -50 dBm 

Minimum Data Rate 4.2 Megabits per Second 

SINR Threshold 2 Decibels 



Power Allocation Simulation Results 

Effects of Power Transfer on Energy Efficiency 

Figure 4 illustrates the energy allocation versus the maximum transfer power, denoted as Pmax. 

In this simulation setting, parameters such as Pmax = 80 dBm, 10 repetitions, Rmin = 2 bps/Hz, 

and 20 IoT devices are considered in the Pmax < 35 dBm regime. As observed in Figure 4, 

algorithms exhibit similar energy efficiency performance, linearly increasing with the rise in 

Pmax.  

 

Figure 4. Energy Efficiency versus Maximum Transfer Power. 

 

Impact of Transfer Power on Average Power Allocation                                                         
Figure 5 depicts the average system power for the Pmax scenario with 20 IoT devices at Rmin = 

3 bps/Hz and 10 repetitions. As expected, the operational system power increases with the 

growth of Pmax. Notably, beyond Pmax > 40 dBm, a significant stabilization of operational power 

is observed. Furthermore, at Pmax < 30 dBm, values uniformly increase, indicating the influence 

of signal-to-noise and interference on system performance.                                                                                         
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Figure 5. Average System Power versus Maximum Transfer Power. 

Effects of Power Transfer on Total Power Consumption                                                                       
Figure 6 shows the average energy consumption across a wide range of Pmax values with 20 

IoT devices and 10 repetitions. Results are divided into two sections: Pmax < 30 dBm and Pmax 

> 30 dBm. Before Pmax = 30 dBm, energy consumption decreases linearly. However, beyond 

30 dBm, energy consumption stabilizes.  

 

Figure 6. Average Power Consumption. 

Impact of the Number of IoT Devices on Energy Allocation                                                       
In general, the number of IoT devices significantly affects energy consumption and efficiency. 

This aspect is also examined in power allocation, and the results are presented in Figure 7. In 

this simulation with 10 repetitions, Pmax = 40 dBm, Rmin = 3 bps/Hz, and 20 IoT devices, an 

incremental increase in the number of IoT devices leads to a gradual improvement in energy 

efficiency performance. The performance gap among JEERA, JUSAP, and JPAUP algorithms 
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widens with increased minimum data rate requirements, providing degrees of freedom for 

effective resource allocation.   

 

Figure 7.  Energy Efficiency with the Number of IoT Devices. 

Convergence of the Proposed Iterative Algorithm                                                                      

As the number of repetitions increases, the obtained results tend to converge, demonstrating a 

convergence pattern. This convergence becomes apparent from repetition 4 onwards, where 

values exhibit minimal fluctuations with subsequent repetitions. Figure 8 visually represents 

this convergence phenomenon. The choice of the number of repetitions is crucial, and in this 

thesis, a repetition count of 4 is selected, yielding satisfactory results. Computational 

complexity also plays a pivotal role, favoring simpler algorithms with fewer calculations to 

achieve convergence within a shorter timeframe. 

 

Figure 8. Convergence of Energy Efficiency Results with Repetitions. 
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To further evaluate the proposed algorithm, Figure 9 illustrates the average response time as a 

function of the number of IoT devices, expressed in milliseconds. As depicted, there is a natural 

increase in response time with an increase in the number of IoT devices. Optimal allocation 

necessitates determining the ideal number of IoT devices for each network, ensuring both high 

convergence and timely responsiveness. Therefore, engineering parameters must be carefully 

adjusted to strike a balance between system requirements, performance indices, and variables. 

 

Figure 9. Average Response Time versus Number of IoT Devices. 

Impact of SINR Constraints on Power Allocation and Efficiency                                                  

Figure 10 illustrates the effects of threshold adjustment on energy efficiency. As evident, as 

the signal-to-noise ratio threshold increases, energy efficiency decreases. In a specific 

experiment, it is noted that initially, with an increase in Pmax, energy efficiency begins to 

decrease. In the g > 20 dB regime, baseline algorithms reduce energy efficiency. 

 

Figure 10. Energy Efficiency at Different SINR Thresholds. 
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Effects of Active 6G Radio Service Networks on Power Transfer                                                        
Figure 11 illustrates the influence of active 6G service provider networks on power allocation 

and energy efficiency. In other words, one of the variables influencing power allocation and 

energy efficiency is the number of service providers. This factor contributes to a reduction in 

the distance between the source and IoT devices, thereby minimizing losses and enhancing 

overall efficiency. However, excessive increases in the number of service providers may lead 

to undesired consequences. 

 

Figure 11. Performance of Active 6G Service Provider Count with Maximum Transfer Power. 

LSTM Neural Network Results in Power Allocation Estimation and Prediction                              

In this section, the Kaggle dataset is leveraged, containing power levels recorded at different 

hours. A Python-implemented Long Short-Term Memory (LSTM) neural network is utilized 

to explore the feasibility of predicting allocated power levels. This is paramount for attaining 

a deeper comprehension of IoT device consumption within a 6G network linked to a radio 

communication center and for optimizing resources effectively. The LSTM neural network 

represents a generalized version of the Recurrent Neural Network (RNN), equipped with both 

short-term and long-term memory capabilities. Memory retention is a critical aspect, and 

LSTM networks find application in various domains such as data prediction, text classification, 

and video classification. Multiple platforms, including Python and MATLAB, are available for 

implementing neural networks. However, this tutorial focuses on MATLAB implementation. 

Five distinct datasets were employed for this task of predicting energy levels. The workflow 

encompasses several steps, including: 

Data Preprocessing, Value Loss Management, Data Smoothing (Exponential Smoothing), 

Handling Outliers (Using Standard Deviation), Data Normalization (Scaling values between 

[0, 1]), Resampling of Data, Dataset Splitting, Training Set, Validation Set and Test Set 

Prediction results are performed hourly and for a 24-hour period, which can be observed in 

figures 12 to 16, respectively. 
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Figure 12. LSTM Results and Optimal Energy Allocation for the First Dataset. 

Figure 13. LSTM Results and Optimal Energy Allocation for the Second Dataset. 

Figure 14. LSTM Results and Optimal Energy Allocation for the Third Dataset. 

Figure 15. LSTM Results and Optimal Energy Allocation for the Fourth Dataset. 

Figure 16. LSTM Results and Optimal Energy Allocation. 

In Figures 12 to 16, it is evident that the allocated power exhibits variations at different time 

instances, taking into account the parameters investigated previously. This variability is 

influenced by factors such as the number of IoT devices, the number of 6G radio service 

providers, coverage radius, signal-to-noise ratio, and various other parameters. As a result, 



predicting the allocated energy and network conditions becomes crucial for optimizing power 

allocation. Essentially, predicting the required power in channels enables efficient power 

allocation. By understanding the energy requirements, coupled with prediction and determining 

upper and lower bounds along with error margins, power allocation can be optimized 

effectively. The obtained results also clearly highlight the efficacy of utilizing LSTM neural 

networks for this purpose in the field of electrical engineering. 

Rejeb et al. (2023) conducted a study on the Internet of Things in healthcare, focusing on both 

current advancements and future directions. The analysis of the co-citation network reveals 

other significant topics, including authentication schemes, fog computing, cloud-IoT 

integration, and cognitive smart healthcare. Overall, this review provides researchers with a 

better understanding of the current state of IoT research in healthcare and identifies knowledge 

gaps for future research. It also informs healthcare professionals about the latest advancements 

and applications of IoT in the healthcare sector. 

Qadir et al. (2023) conducted a study on the progression towards 6G IoT, highlighting recent 

advancements, use cases, and open challenges. While 5G networks show high potential for 

supporting various IoE-based services, they are insufficient for meeting the full requirements 

of emerging smart applications. Therefore, there is a growing demand for forecasting 6G 

wireless communication systems to overcome the major limitations of existing 5G networks. 

Additionally, the integration of artificial intelligence in 6G offers solutions to complex network 

optimization issues. The study also explores new technologies such as THz and quantum 

communications to add more value to future 6G networks. Future wireless communication 

requirements will need to support massive data-centric applications and an increasing number 

of users. Unlike existing works, this paper highlights recent activities and trends towards 6G 

technology, network needs, essential technologies for 6G networks, and a detailed comparison 

between 5G and 6G networks. Moreover, it examines emerging 6G connectivity solutions, such 

as holographic beamforming, AI-driven IoT networks, edge computing, and backscatter 

communications for smart communities. Several future research directions for implementing 

6G-based IoT networks are also outlined. The results of this research are in line with the 

mentioned researches 

Conclusion 

The continuous proliferation of interconnected devices, particularly within the Internet of 

Things (IoT), has catalyzed the evolution of novel Information and Communication 

Technologies (ICT). Recently, numerous IoT applications and businesses have expanded 

globally. In 2019, Ericsson’s Mobility Report projected a surge to 7.4 billion smartphone 

subscriptions and 8.9 billion mobile broadband connections by the culmination of 2025. It's 

noteworthy that ICT infrastructure currently accounts for approximately 3% of energy 

consumption and contributes nearly 2% of global carbon dioxide emissions, making the ICT 

industry a significant environmental factor. In addition to environmental considerations, 

telecommunications network operators encounter financial pressures associated with energy 

consumption, as these costs can substantially diminish overall revenue in operational and 

capital expenses. The advent of 6G, coupled with integration with IoT networks, promises 

extensive connectivity on a massive scale, ultra-low latency, and exceptionally wide 



bandwidth. Energy efficiency in the development of 6G-IoT networks is paramount, given that 

these ubiquitous IoT applications and services are anticipated to connect billions of devices 

and consume substantial amounts of energy. Therefore, the implementation of efficient IoT 

programs will not only have a discernible impact on the environment but also assist network 

operators in achieving long-term profitability. 

Typical IoT devices are systems with limited energy resources and batteries. However, 

managing battery replacement and charging, particularly in scenarios where IoT devices are 

deployed in remote or harsh environments, can present significant challenges and costs. To 

address this issue, energy harvesting techniques have been proposed as promising solutions to 

provide continuous energy to IoT networks on a large scale. These systems harvest energy from 

hybrid sources such as wind, water, and solar energy to activate independent power sources. 

However, due to uncertainties in time-variable environments, these methods cannot guarantee 

uninterrupted communication and a consistent power source for all nodes in an IoT network. 

Currently, there is a growing focus on the development of optimal energy resource allocation 

methods aimed at increasing energy efficiency for IoT systems. This thesis also tackled the 

power allocation issue in multipath channels, aiming to identify influential parameters and 

leveraging the LSTM neural network as a method capable of providing insights into the future 

based on past data. Various factors including computational problems, algorithmic complexity, 

the number of iterations, the number of followers, and the number of IoT devices were 

examined, and their results were presented. 

Overall, the results showed that the computational load of the algorithm is very low, achieving 

optimal responses by the fourth iteration. However, it was demonstrated that with an increase 

in the number of IoT devices, response time increases. Additionally, increasing the Signal-to-

Interference-plus-Noise Ratio (SINR) threshold results in a decrease in energy efficiency. 

Moreover, the increase in the number of IoT devices corresponds to an increase in power 

consumption, which subsequently reduces efficiency. The average power versus maximum 

transfer power was determined to be 10 megabits per joule. 

Based on the current research results and their alignment with broader studies, several avenues 

for future research emerge: 

Enhanced Energy Harvesting Technologies: Future research should focus on advancing energy 

harvesting techniques to address the limitations posed by environmental variability. This 

includes developing more reliable and efficient methods for harnessing renewable energy 

sources, such as integrating hybrid energy systems that can dynamically adapt to changing 

environmental conditions. 

Optimized Power Allocation Algorithms: While current research has demonstrated the 

effectiveness of LSTM neural networks in power allocation, there is room for improvement. 

Future studies should explore more sophisticated algorithms and hybrid approaches that 

combine different machine learning models to enhance accuracy and efficiency in predicting 

and managing energy consumption. 

Integration of 6G with Energy-Efficient Technologies: Investigating the intersection of 6G 

technology and energy efficiency is crucial. Research should focus on developing new 



architectural designs and protocols that maximize energy efficiency while supporting the high 

data rates and massive connectivity promised by 6G networks. This includes exploring novel 

materials and technologies that can reduce energy consumption in 6G infrastructure. 

Scalability and Performance Analysis: Future research should address the scalability of energy 

optimization solutions as the number of IoT devices increases. This involves examining how 

optimization algorithms perform under varying scales and conditions, and developing 

strategies to maintain efficiency and performance as networks grow. 

Real-Time Energy Management Systems: Developing real-time energy management systems 

that can adapt dynamically to network conditions and usage patterns is essential. Research 

should explore systems that can provide real-time feedback and optimization, integrating 

advanced analytics and AI to continuously refine energy usage strategies. 

Economic Impact Studies: Further studies should analyze the economic impact of 

implementing advanced energy optimization techniques in IoT networks. This includes 

assessing the cost-benefit ratios of various energy-efficient technologies and their effects on 

overall network profitability and sustainability. 

Environmental Impact Assessment: Comprehensive environmental impact assessments of 

different energy optimization strategies should be conducted. Research should focus on 

quantifying the potential reductions in carbon emissions and other environmental benefits 

resulting from the adoption of energy-efficient practices in IoT networks. 

Cross-Domain Applications: Exploring the application of energy optimization techniques 

across different domains such as smart cities, industrial IoT, and healthcare can provide 

valuable insights. Research should investigate how these techniques can be tailored to meet the 

specific energy needs and challenges of various sectors. 

By pursuing these research directions, future studies can build upon the current findings to 

develop more effective, scalable, and sustainable solutions for managing energy consumption 

in the rapidly expanding field of IoT and 6G networks. 
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