
EasyChair Preprint
№ 15953

Teaching Programming Logic for People with
Blindness or Visual Impairments: a Systematic
Mapping Study

Daniel S. dos Santos, Nina N. Shibata and
Victor Hugo S. C. Pinto

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 31, 2025



Teaching Programming Logic for People with Blindness or Visual
Impairments: a Systematic Mapping Study

Daniel S. dos Santos
Federal University of Pará

Belém, Pará, Brazil
daniel.santos@icen.ufpa.br

Nina Niwa Shibata
Federal University of Pará

Belém, Pará, Brazil
nina.shibata@gmail.com

Victor Hugo S. Costa Pinto
Federal University of Pará

Belém, Pará, Brazil
victor.santiago@ufpa.br

Abstract
Context: Teaching programming logic is a recognized challenge,
especially for people with visual impairment (PwVI) and blindness.
Problem: There is a knowledge gap regarding the most effective
methods and tools for teaching programming logic to PwVI. Addi-
tionally, the evaluation techniques used to assess the effectiveness
of these approaches, especially in the context of Human-Computer
Interaction (HCI), are little exploited in the literature. Solution:
This study systematically mapped the methods and tools used in
teaching programming logic to PwVI and the evaluation techniques
applied in HCI. The goal is to provide an updated overview and
guidance for educators and developers of educational materials.
Method: A systematic mapping of the literature was conducted,
and 13 relevant studies were selected to extract teaching methods,
such as tactile flowcharts and tangible programming kits. The pri-
mary evaluation techniques identified included user testing, ques-
tionnaires, and interviews. Summary of Results: The teaching
methods identified are diverse, emphasizing sensory resources. The
most common HCI evaluation techniques helped validate the usabil-
ity and effectiveness of these tools. Contributions: This study con-
tributes by mapping practices and techniques for teaching program-
ming logic to PwVI. The insights gained offer practical guidelines
for educators and developers, supporting more inclusive materials
and expanding accessibility within Computer Science.

CCS Concepts
• Human-centered computing→ Empirical studies in acces-
sibility.

Keywords
People with Visual Impairments, Programming Education, Accessi-
bility

ACM Reference Format:
Daniel S. dos Santos, Nina Niwa Shibata, and Victor Hugo S. Costa Pinto.
2025. Teaching Programming Logic for People with Blindness or Visual
Impairments: a Systematic Mapping Study. In Proceedings of Innovation and
Technology in Computer Science Education (ITiCSE’25). ACM, New York, NY,
USA, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE’25, Nijmegen, NL
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
According to Guzdial et al. (2019), computational thinking is essen-
tial for problem-solving through logical structures and algorithms.
Loksa et al. (2016) state that programming has become an essential
skill of the 21st century, and teaching algorithms is a challenge
due to the complexity involved in developing logical reasoning,
especially for beginners.

With the advancement of social inclusion in computer science
education, new challenges arise for educators to address the in-
creasing presence of people with visual impairments (PwVI) in
classrooms and learning environments. Furthermore, most of the
materials used for teaching computational thinking are still very
limited, as they emphasize the use of visual elements such as images,
symbols, letters, and numbers. As a result, PwVI students internalize
information during the knowledge acquisition process in a reality
filled with references and patterns that are predominantly visual,
which certainly places them at a disadvantage [10].

When discussing the teaching of programming logic to sighted in-
dividuals, numerous challenges arise within the classroom. Koliver
et al. (2004) suggest that students’ difficulty in algorithm courses is
related to their lack of preparation in dealing with the logical solu-
tion of problems. Wilson (2017) indicates that these students often
’memorize’ content rather than develop a deep understanding of
algorithmic logic, which can worsen their learning difficulties. Ar-
ruda et al. (2024) state that teaching programming to undergraduate
students often faces challenges related to their difficulty in under-
standing abstractions, logic, and fundamental concepts. Ribeiro
Filho et al. (2024) argue that teaching programming to students
with visual impairments requires adaptive strategies to overcome
accessibility barriers and promote inclusion. They emphasize the
need for practical methodologies, such as tactile activities, raised
flowcharts, and the use of screen readers, in addition to technical
and human support. Moreover, when students with visual impair-
ments are present in algorithm classes, the challenge becomes even
greater due to the students’ physical limitations, teachers’ lack of
preparation, and the lack of accessible teaching materials [35].

Several studies proposed in the academic literature attempt to
mitigate the difficulties faced by visually impaired students in al-
gorithm classes. Tools such as Emacspeak [39] and programming
systems with auditory feedback have been developed to make pro-
gramming environments accessible to blind users [43]. Capovilla
et al. (2013) and Papazafiropulos et al. (2016) propose the use of
haptic models and 3D printing to help visually impaired students
understand algorithms and data structures. Junior et al. (2009) and
Ferreira et al. (2016) explored the use of podcasts as a tool for teach-
ing algorithms, suggesting that alternative technologies, such as
audio, can increase motivation for students with disabilities. Finally,
Branham and Kane (2015) highlighted the importance of creating

https://orcid.org/0009-0007-7041-3854
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ITiCSE’25, Jun 30 – Jul 02, 2025, Nijmegen, NL Santos et al.

assistive technologies for visually impaired children, such as tactile
and auditory feedback, to support collaboration between peers with
different visual abilities.

Given the challenges and efforts to identify practical approaches
for teaching algorithms to visually impaired students, a systematic
literature mapping was undertaken to offer a broad overview of
this research field. From the collected studies, opportunities for
contributing to the improvement of algorithm teaching tools for
visually impaired students were identified. However, the field still
lacks more scientific evidence due to the very few works that have
been published.

Moreover, the main motivation for addressing evaluation tech-
niques in HCI in this work stems from their recognition as one
of the three fundamental principles of user-centered design and a
central activity in almost all design models [30]. Evaluation goes
beyond verifying system functionality, contributing to creating
more satisfying and efficient user experiences. Addressing system
evaluations based on HCI techniques is, therefore, an opportunity
to deepen the understanding of how these practices ensure usability
and shape the directions of human-centered design. This work aims
to explore how evaluations can be structured to promote systems
that are more accessible, intuitive, and aligned with the real needs
of people with visual impairments.

This study is structured as follows: section 2 presents the related
works. section 3 presents the methodology used to develop the
systematic literature mapping. section 4 presents the results found,
with the computational thinking teaching methods used in the
selected works, including the HCI evaluation techniques of these
tools, and a discussion to answer the research questions proposed
in section 3. Section 5 discusses the threats to study validity. Finally,
section 6 presents the final considerations of this paper.
2 Related Works
This section focuses on other systematic mappings/reviews of the
literature published over the past years by other researchers. In
contrast, this paper stands out for being a more recent mapping
(2014 to 2024) and for bringing the evaluation methods used for the
tools found based on HCI strategies.

The systematic literature review conducted by Robe et al. (2020)
aimed to identify scientific studies presenting the categories of ped-
agogical resources adopted in programming education for visually
impaired students. The authors identified five categories of peda-
gogical resources: (1) programmable devices combined with other
resources; (2) physical programming languages (PPL); (3) block-
based programming environments (BBPEs); (4) accessible program-
ming environments; (5) haptic resources. Furthermore, challenges
were identified, such as difficulties in navigating complex codes
with screen readers, the lack of tools for collaboration and code
sharing between visually impaired individuals, and the need to
integrate pedagogical resources with auditory and tactile feedback.

Hadwen-Bennett et al. (2018) conducted a literature review on
how tomake programming teaching accessible for visually impaired
students, evaluating different strategies used for this purpose and
identifying areas that require further research. The review classi-
fied the approaches into four main themes: (1) making text-based
programming languages accessible; (2) making block-based pro-
gramming languages accessible; (3) use of physical artifacts; and
(4) auditory and haptic feedback.

Oliveira et al. (2019) conducted a systematic literature review on
the use of robotics in programming education for visually impaired
individuals, covering the period from 2016 to 2019. The main goal
was to identify existing studies, the methodologies used, the robot-
ics and programming kits, and good practices and challenges faced
in teaching programming with robotic support for this population.
The review pointed out that many current programming tools and
robotic environments are inaccessible to visually impaired students
due to the predominant use of graphical interfaces.

The article by Al-Ratta et al. (2013) is a systematic literature
review of articles published between 1975 and 2013 on program-
ming education for blind individuals. The main objective was to
provide an overview of academic research on the topic, categorizing
it by areas of interest and conducting a quantitative analysis based
on type and year of publication. The article also explored future
research directions, identifying gaps in the reviewed studies. The
work aimed to highlight the specific needs of blind individuals to
learn programming and discuss whether there is a need to develop
specific programming languages for this population.

3 The Systematic Literature Mapping
This paper was constructed based on a systematic literature map-
ping, an appropriate method for mapping a specific topic when
there is limited evidence or the research topic is broad or dispersed.
Petersen et al. (2015) highlight that systematic mapping studies
structure a research area, while systematic reviews focus on gath-
ering and synthesizing evidence. In this paper, the guidelines pro-
posed by Kitchenham (2004) were followed to conduct the study.
Firstly, primary works were sought to synthesize the methods of
teaching programming logic to visually impaired individuals and
identify evaluation methods in HCI and gaps that have yet to be
explored by researchers. Furthermore, this study presented five
research questions, including selection, classification, and data ex-
traction protocols. The mapping was conducted by selecting studies
within eleven years, from January 2014 to December 2024.

3.1 Research Questions
In this work, five research questions were defined to be answered
to discover which algorithm teaching tools have been used by
researchers and which HCI evaluation techniques have been con-
ducted.

RQ1. What are the studies’ primary target audiences and
their main characteristics? Here, the goal is to understand the
group the work targets. This can include age range (children, young
people, adults, elderly), educational background (elementary school,
high school, undergraduate), or a combination of these groups.

RQ2. What are the main difficulties people report while
learning programming logic? It is important first to understand
the limitations faced by these individuals during the learning pro-
cess and how they react to these challenges.

RQ3. What teaching tools for programming logic have
been used? The aim here is to identify which methods, techniques,
and tools have been used by educators and researchers to assist in
teaching algorithms to people with visual disabilities.

RQ4. In which contexts have these programming learning
support tools for PwVI been used? The idea is to understand
the use context in which the method was applied.



Teaching Programming Logic for People with Blindness or Visual Impairments: a Systematic Mapping Study ITiCSE’25, Jun 30 – Jul 02, 2025, Nijmegen, NL

RQ5. Have these tools been evaluated? If so, have HCI
evaluation methods been adopted for these tools? Finally, the
aim is to understand the evaluation methods used for these teaching
tools and whether any HCI techniques were employed to analyze
the tools used.

3.2 Research Conduction
To conduct the systematic literature mapping, an extensive biblio-
graphic review was first carried out to identify relevant keywords
related to the topic in question. Then, three databases were selected:
ACM Digital Library, IEEE Xplore, and Springer. The choice reflects
these databases’ relevance for the computing field, including vari-
ous published studies on computing education. A specific search
string was also used, incorporating terms related to programming
logic and including visually impaired individuals. The search string
created and applied was:
(mentoring OR teaching) AND (programming OR "logical
reasoning") AND ("blind people" OR "visual impairment")
Table 1 presents the inclusion and exclusion criteria applied in

the research. Two inclusion criteria were used to select the articles
that would answer the research questions: (i) the article must fo-
cus on teaching methodologies for programming logic for visually
impaired individuals; (ii) the method used in the article was tested
and verified using HCI evaluation techniques. The search result
for articles in the three databases returned 1466 articles, with 955
from the ACM Digital Library, 40 from IEEE Xplore, and 471 from
Springer.

The careful analysis of the resulting articles focused on peda-
gogical strategies, assistive technologies, and inclusive practices
applied in the context of teaching programming logic. This specific
methodological approach allowed for a deeper understanding of the
academic contributions during the established period, guiding edu-
cators, researchers, and professionals in advancing digital inclusion
in computer science education for visually impaired students.

Table 1: Paper Selection Criteria

Inclusion Criteria

𝐼𝐶1: The article must focus on teaching methodologies for programming logic for
visually impaired individuals.

𝐼𝐶2: The method used in the article was tested and verified using HCI evaluation
techniques.

Exclusion Criteria

𝐸𝐶1: Lectures, tutorials, and any non-peer-reviewed studies;

𝐸𝐶2: Duplicated papers;

𝐸𝐶3: Duplicate studies (the most comprehensive article should be selected);

𝐸𝐶4: Secondary studies;

𝐸𝐶5: Studies where the full text is not in Portuguese or English;

𝐸𝐶6: Studies that were not related to the research questions (mainly RQ3 and RQ5);

After applying the inclusion and exclusion criteria, the number
of selected studies was 13 articles. Some studies presented methods
for teaching programming logic to visually impaired individuals,
but did not mention or apply any evaluation techniques for the
methods used. Figure 1 shows the stages of the article selection
process.

Use
r T

es
tin

g

Cogniti
ve

 W
al

kt
hro

ugh

Thin
k-

Alo
ud

Q
ues

tio
nnai

re
s

In
te

rv
ie

w
s

Focu
s 

G
ro

ups

Fie
ld

 S
tu

die
s

0

2

4

6

8

10

12

Paper
Selection

ACM DL
955

IEEE
40

Springer
471

1466
papers
found

17
papers

remaining

13
papers
selected

Application
of exclusion

criteria

Application
of inclusion

criteria

Figure 1: Selection and Extraction of Studies. Source: The
Authors.
4 Results and discussion
This section will discuss the analyses and reflections regarding
the results obtained from implementing the previous phases of
the selected research methodology. The selected articles can be
accessed through this link1. The five questions that guided our
investigation will be answered below:
RQ1. What are the studies’ primary target audiences and
their main characteristics?

Among the selected articles, some works focus on teaching logic
programming to children. The research by Thieme et al. (2017) is
aimed at children with and without visual impairments, mainly
aged between 7 and 11 years old. Pires et al. (2020) focus on children
with visual impairments, emphasizing ages 5 to 11. Utreras et al.
(2020) also focus on blind and low-vision children and children
without visual impairments. Finally, Barbareschi et al. (2020) define
the target audience as children with mixed visual abilities aged 6
to 11.

Furthermore, other articles target a younger audience. The work
by Papazafiropulos et al. (2016) focuses on students with and with-
out visual impairments, exceptionally high school students. Ludi
et al. (2014) direct the study toward blind and low-vision adoles-
cents participating in educational robotics programs. Kakehashi et
al. (2014) target individuals with visual impairments, specifically
elementary and middle school students.

Some articles do not focus on a specific age range but target
people with or without visual impairments. The research by Nasci-
mento et al. (2023) targets individuals with visual impairments,
particularly blind users wanting to learn programming. Pereira et
al. (2018) focus on students with visual impairments (total blindness
and low vision). Rong et al. (2020) direct the study to students with
visual impairments and sighted students. Oliveira et al. (2020) focus
on individuals with visual impairments, who may be either begin-
ners or experienced in programming. Konecki et al. (2016) target
students with visual impairments and those taking introductory
programming courses, as well as students with comorbidities such
as Attention Deficit Hyperactivity Disorder (ADHD) and Global
Developmental Delay (GDD). Finally, Lotlikar et al. (2020) focus on
students with visual impairments.

Based on the analyzed articles, it is evident that most studies
focus on children and adolescents, especially during the school
period, with approaches aimed at teaching programming to students
1https://bit.ly/4aG48hP

https://bit.ly/4aG48hP


ITiCSE’25, Jun 30 – Jul 02, 2025, Nijmegen, NL Santos et al.

with and without visual impairments. The predominant age groups
are between 5 to 11 years old and high school students, with a
significant emphasis on blind or low-vision children.

Despite studies that do not define specific age ranges, targeting
people with visual impairments in general, there is a noticeable ab-
sence of research focusing on higher education. This gap indicates
that the challenge of including visually impaired undergraduates in
advanced programming courses and related fields remains underex-
plored, requiring greater attention from the academic community
to expand inclusion and accessibility strategies in more complex
levels of education.
RQ2.What are themain difficulties people report while learn-
ing programming logic?

Blind or low-vision individuals face several barriers to accessing
programming curricula, such as the difficulty screen readers have
in dealing with complex graphical interfaces, which hinders access
to modern development environments for students with visual im-
pairments [25], the lack of accessibility in learning materials, and
inaccessible coding editors and environments, such as Scratch2,
Blockly3, and Alice4, which are widely used in teaching computa-
tional thinking but present accessibility barriers, especially for peo-
ple with visual impairments [11]. According to Ludi et al. (2014) and
Kakehashi et al. (2014), most current programming environments
are highly graphical and thus inaccessible for individuals with vi-
sual impairments. They mention these individuals’ difficulties, such
as the lack of audio correspondence for graphical information and
incompatibility with assistive technologies.

There is also a disconnect between teaching methods and stu-
dents’ needs, as they may have different learning styles and require
personalized methodologies [15]. Another recurring problem is the
excessive focus on syntax in general (Python, C++, Java, HTML,
etc), as many courses focus on programming language syntax rather
than problem-solving, which, according to Bergin et al. (1999) and
Kölling (2001), can be a flawed approach .

The analyzed articles converge on reflections about the lack
of accessible resources for programming education. Blockly and
Blocks4All attempt to create accessible versions of visual program-
ming systems but face difficulties related to reading blocks and
screen reader navigation [31, 33]. The standard software used to
program Lego Mindstorms robots uses icons and is inaccessible
to screen readers, making it difficult for blind students to use [7].
In Kakehashi et al. (2014), the paper cites other studies and tools
that use tangible interfaces, such as E-Block, Tern, and AlgoBlock,
which focus on teaching programming concepts to beginners. How-
ever, many of these applications heavily depend on visual elements,
such as buttons and line locators, making it significantly difficult
for visually impaired individuals to access the programming world.

The challenges faced by blind or low-vision individuals in access-
ing programming education are vast and still largely unresolved.
The predominance of graphical interfaces in modern development
environments, coupled with the lack of accessibility to educational
materials and tools such as Scratch, Blockly, and Alice, reveals a
significant gap in technological inclusion. Although initiatives such
2https://scratch.mit.edu/about
3https://developers.google.com/blockly
4https://www.alice.org/

as Blockly and Blocks4All strive to create more accessible solu-
tions, their practical limitations, such as difficulties in navigation
by screen readers, highlight how insufficient accessibility still is.
Furthermore, the excessive focus on syntax and the disconnect
between teaching methods and students’ needs only exacerbate the
problem. Thus, it is evident that accessible resources for teaching
programming are scarce.
RQ3. What teaching tools for programming logic have been
used?

Nascimento et al. (2023) present the IVProg4All tool, which uti-
lizes a visual programming system based on HTML/CSS to foster
interaction between students with and without visual impairments,
creating an inclusive learning environment. In the article by Pereira
et al. (2018), the use of physical flowcharts and screen readers (such
as DOSVOX, JAWS, and NVDA) combined with the Pascal pro-
gramming language represents a tactile and auditory approach to
understanding algorithms. This duality of methods allows students
with and without visual impairments to participate equally. In Ludi
et al. (2014), JBrick, designed for Lego Mindstorms NXT, is an ac-
cessible tool that enables visually impaired students to program
robots in a collaborative environment using screen readers and
Braille displays. These approaches facilitate collaboration between
visually impaired and sighted students, engaging them in shared
learning experiences and promoting a more interactive and flexible
educational environment.

Thieme et al. (2017) introduce the Torino language, which com-
bines physical pieces called "beads" with the cooperative inquiry
method to teach programming to children aged 7 to 11, includ-
ing those with visual impairments. Manipulating physical beads
to create programs is a central feature of this tool. In the work of
Rong et al. (2020), the CodeRhythm tool is presented as a set of
tangible blocks that teach programming through melodies. The
blocks, representing musical notes and control functions, provide
auditory and tactile feedback, making the experience accessible for
visually impaired individuals. Kakehashi et al. (2014) present the
P-CUBE system, which uses programmable blocks with RFID to
teach programming. Visually impaired students controlled a mobile
robot through sequential programming, loops, and conditionals.
In the article by Utreras et al. (2020), a tangible programming pro-
totype using Lego blocks and an Arduino Mega microcontroller
was tested with visually impaired adults, enabling the represen-
tation of programming instructions through a physical interface.
Barbareschi et al. (2020) introduced TIP-Toy, an open-source kit
combining physical blocks to teach basic programming concepts,
promoting fun and interaction among children with mixed visual
abilities. All these tools utilize physical components to facilitate
learning. This tactile approach is essential for including visually
impaired students, allowing them to manipulate tangible objects to
understand abstract programming concepts.

In the research by Oliveira et al. (2020), the Donnie programming
environment, featuring the GoDonnie language, was developed to
teach robot programming in virtual environments, focusing on de-
veloping orientation and mobility skills alongside computational
thinking. Pires et al. (2020) present a study on tangible program-
ming involving creating an educational environment where visually
impaired children learn programming using physical blocks and
robots. Practical activities and group discussions were crucial in



Teaching Programming Logic for People with Blindness or Visual Impairments: a Systematic Mapping Study ITiCSE’25, Jun 30 – Jul 02, 2025, Nijmegen, NL

understanding the students’ needs. In Papazafiropulos et al. (2016),
tactile models for teaching sorting algorithms, using 3D printing,
allowed students to manipulate physical data representations, fa-
cilitating understanding through touch. In Konecki et al. (2016),
the Audio-Based Programming Tutor (ABPT) system is a voice-
controlled tool that offers audio lessons and virtual assistance, en-
abling visually impaired students to learn programming without
relying on visual interfaces. Finally, in the article by Lotlikar et
al. (2020), a pilot study using tangible flowchart blocks was con-
ducted to develop logical thinking in visually impaired students.
The hands-on approach allowed participants to apply programming
concepts to everyday problems.

The analyzed tools reflect a diversity of innovative approaches to
teaching programming logic to visually impaired individuals. Many
employ tangible elements, such as physical blocks and robotics
kits, which transform abstract concepts into practical and tactile
experiences, essential for promoting inclusion and understanding.
Others invest in accessible technologies such as screen readers,
audio-based systems, and adapted programming environments,
fostering collaborative interaction between visually impaired and
sighted students. However, despite the progress represented by
these initiatives, it is evident that many of them still focus on the
early stages of education, indicating the need to expand these tools
to reach more advanced and diverse audiences. Thus, the studies
suggest that combining physical, auditory, and digital resources
has the potential to overcome accessibility barriers but requires
more significant investment to become more widely available and
applicable in different educational contexts.
RQ4. In which contexts have these programming learning
support tools for PwVI been used?
Based on the scenarios observed in the articles, we can identify
interrelations among them regarding usage contexts, pedagogi-
cal objectives, and inclusion for visually impaired individuals in
programming education.
Collaboration Between Visually Impaired and Sighted Stu-
dents. IVProg4All [11], Torino [44], CodeRhythm [41], 3D Haptic
Models [34], Tangible Programming with Lego Blocks [45], and
TIP-Toy [3]: These tools focus on creating inclusive learning envi-
ronments where visually impaired and sighted students can learn
together. For example, IVProg4All enables collaboration between
blind and sighted individuals, just as CodeRhythm aims to include
both groups. 3D models and tangible interfaces facilitate collabo-
rative teaching, allowing students to learn the same subject but
through different approaches tailored to their visual needs.
Use of Tangible Tools and Physical Components. Torino [44],
Physical Flowcharts and Screen Readers [35], CodeRhythm [41],
Programming Blocks and Robots [37], 3D Haptic Models [34], Tan-
gible Flowchart Blocks [28], P-CUBE [20], Tangible Programming
with Lego Blocks [45], and TIP-Toy [3]: These tools employ phys-
ical blocks or tangible elements, such as beads, blocks, or robots,
to teach programming. In the case of Torino, physical beads allow
children to create programs by manipulating these components.
Similarly, P-CUBE and TIP-Toy use physical blocks to promote
interaction with programming concepts. This approach helps over-
come reliance on digital visual interfaces, significantly benefiting
visually impaired students.

Application in Robotics and Virtual Environments. Donnie /
GoDonnie [9], Programming Blocks and Robots [37], JBrick [29],
and P-CUBE [20]: These tools focus on teaching programming in a
robotics context, providing a more practical and applied learning
experience. Tools like JBrick and P-CUBE concentrate on giving
students the experience of programming robots. At the same time,
the Donnie environment supports programming education and
aids in developing Orientation and Mobility (O&M) skills through
interaction with robots in a virtual environment.
Alternatives to Traditional Software Development Systems.
IVProg4All [11], Donnie / GoDonnie [9], Audio-Based Program-
ming Tutor [25], and JBrick [29]: The Audio-Based Programming
Tutor (ABPT), for example, focuses on overcoming the barriers
visually impaired individuals face in using software development
tools, which often rely heavily on graphical interfaces. It provides
an alternative for blind students to learn and use typically inacces-
sible tools, addressing a critical accessibility issue in professional
programming contexts.

These tools form an ecosystem of inclusive pedagogical solu-
tions that combine tangible interfaces, accessibility, and robotics to
teach programming to visually impaired individuals. Some focus on
creating collaborative environments for blind and sighted students,
others offer physical and tangible interfaces that bypass reliance on
visual interfaces, and many integrate robotics as a means to make
learning practical and enjoyable.
RQ5. Have these tools been evaluated? If so, have HCI evalu-
ation methods been adopted for these tools?
The HCI evaluation techniques used in teaching programming logic
to visually impaired individuals (PwVI) are listed in Table 2. The
most commonly used methods were user testing, questionnaires,
and interviews. Figure 2 presents the distribution of HCI evalua-
tions across the articles.

The Cognitive Walkthrough [38] is an incremental learning style
that allows a balanced and necessary effort tomaster a new function,
partly due to the immediate value that this function offers to the
user.

User testing, also known as usability testing, evaluates the ease
of use of interactive systems based on the direct experience of target
users [42].

The "think-aloud" method investigates mental processes, asking
participants to verbalize their thoughts while performing a task
[26].

A questionnaire, according to Gil (2008), is defined as an in-
vestigation technique consisting of a varied set of written ques-
tions directed at participants, aiming to gather information about
their opinions, beliefs, feelings, interests, expectations, experiences,
among other aspects.

According to Haguete (2001) , the interview values the use of
words as a symbol in human relationships, allowing participants
to build and understand the reality around them, as argued by
Jovechlovitch and Bauer (2002) .

Focus groups are a qualitative research technique that collects
information through group interactions, as defined by Morgan
(1997) and Kitzinger (1995) .
5 Threats to Study Validity
Primary Study Selection. To ensure impartiality in the selection
process, research questions were established, and inclusion and



ITiCSE’25, Jun 30 – Jul 02, 2025, Nijmegen, NL Santos et al.

Table 2: HCI Evaluation Techniques Used in the Selected
Articles.

Method Evaluation
IVProg4All [11] User Testing, Cognitive Walk-

through and Think-Aloud
Torino [44] User Testing
Physical Flowchartss e Screen
Readers [35]

Questionnaire

CodeRhythm [41] User Testing
Donnie / GoDonnie [9] User Testing, Questionnaire

and Interview
Programming Blocks and
Robots [37]

Focus Groups and User Testing

3D Haptic Models [34] User Testing
Audio Based Programming Tu-
tor (ABPT) [25]

User Testing and Question-
naire

JBrick [29] Field Studies, Questionnaire
and Interview

Tangible Flowchart Blocks
[28]

User Testing and Interview

P-CUBE [20] User Testing and Question-
naire

Tangible Programming with
Lego Blocks [45]

User Testing, Questionnaire
and Interview

TIP-Toy [3] User Testing

Use
r T

es
tin

g

Cogniti
ve

 W
al

kt
hro

ugh

Thin
k-

Alo
ud

Q
ues

tio
nnai

re
s

In
te

rv
ie

w
s

Focu
s 

G
ro

ups

Fie
ld

 S
tu

die
s

0

2

4

6

8

10

12

Figure 2: Distribution of HCI Evaluations Across Papers.
exclusion criteria were defined to identify relevant studies. Further-
more, the study screening was conducted independently by two
researchers, who later compared their results. In cases of disagree-
ment regarding the inclusion of an article, the researchers discussed
to reach an agreement. If consensus could not be reached, the final
decision was made by a third researcher.
Relevant Primary Studies Not Included.Although three sources
were used to select the primary studies, it is possible that some
were inadvertently overlooked. Tomitigate this limitation, we chose
sources that index studies from major scientific databases related to
"inclusive education in computing" and cover most of the relevant
articles on the topic.
Interpretative Validity. Interpretative validity is ensured when
the conclusions drawn are reasonable given the data, thus reflecting
the validity of the conclusion [36]. One of the major risks in data
interpretation is researcher bias, which was minimized by having

two co-authors review the study: a professor with a PhD and an
undergraduate student.
Repeatability. In this research, several steps were implemented to
maximize repeatability, including the clear definition of inclusion
and exclusion criteria, providing the list of selected articles along
with the criteria used for inclusion, and utilizing a structured data
extraction form.

6 Conclusions
The teaching tools identified in this research and their respective
HCI evaluation methods aim to improve the experience of visually
impaired users in learning programming logic, providing a more
accessible andmotivating alternative than traditional methods. This
study enabled the identification of educational tools designed for
visually impaired individuals and their respective HCI evaluations
using 13 articles collected from three relevant academic databases.

It is important to highlight that, in most cases, the evaluation
of the educational tools occurred after their implementation. In
contrast, assessments conducted during the development process
could ensure more effective results. Among the works identified in
the systematic mapping, few effectively addressed which aspects of
the tools should be improved or suggested solutions to the problems
found, limiting themselves to HCI evaluation.

As future work, it is suggested that studies be conducted propos-
ing a unified and more suitable method for evaluating educational
tools aimed at teaching programming logic to visually impaired
individuals, particularly in terms of their effectiveness in HCI.

References
[1] Nusaibah M. Al-Ratta and Hend S. Al-Khalifa. 2013. Teaching programming for

blinds: A review. In Fourth International Conference on Information and Commu-
nication Technology and Accessibility (ICTA). 1–5. doi:10.1109/ICTA.2013.6815285

[2] João Arruda, Pedro Henrique Rocha, Regiane Francês, and Victor Hugo Pinto.
2024. Explorando a Robótica para mitigar Desafios Comportamentais e de Apren-
dizado em Programação na Graduação. In Anais do XXX Workshop de Infor-
mática na Escola (Rio de Janeiro/RJ). SBC, Porto Alegre, RS, Brasil, 243–253.
doi:10.5753/wie.2024.242728

[3] Giulia Barbareschi, Enrico Costanza, and Catherine Holloway. 2020. TIP-Toy:
a tactile, open-source computational toolkit to support learning across visual
abilities. In Proceedings of the 22nd International ACM SIGACCESS Conference on
Computers and Accessibility (Virtual Event, Greece) (ASSETS ’20). Association for
Computing Machinery, New York, NY, USA, Article 21, 14 pages. doi:10.1145/
3373625.3417005

[4] Joseph Bergin, Viera K. Proulx, Alyce Faulstich Brady, Stephen Hartley, Charles
Kelemen, Frank Klassner, Amruth Kumar, Myles McNally, David Mutchler,
Richard Rasala, and Rocky Ross. 2023. Resources for next generation intro-
ductory CS courses: report of the ITiCSE’99 working group on resources for
the next generation CS 1 course. SIGCSE Bull. 31, 4 (Dec. 2023), 101–105.
doi:10.1145/349522.349555

[5] João Batista Bottentuit Junior and Clara Pereira Coutinho. 2009. Podcast : uma
ferramenta tecnológica para auxílio ao ensino de deficientes visuais.

[6] Stacy M. Branham and Shaun K. Kane. 2015. Collaborative Accessibility: How
Blind and Sighted Companions Co-Create Accessible Home Spaces. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems
(Seoul, Republic of Korea) (CHI ’15). Association for Computing Machinery, New
York, NY, USA, 2373–2382. doi:10.1145/2702123.2702511

[7] Kelly R. Cannon, Katherine A. Panciera, and Nikolaos P. Papanikolopoulos. 2007.
Second annual robotics summer camp for underrepresented students. SIGCSE
Bull. 39, 3 (June 2007), 14–18. doi:10.1145/1269900.1268791

[8] Dino Capovilla, Johannes Krugel, and Peter Hubwieser. 2013. Teaching Algorith-
mic Thinking Using Haptic Models for Visually Impaired Students. In Proceedings
of the 2013 Learning and Teaching in Computing and Engineering (LATICE ’13).
IEEE Computer Society, USA, 167–171. doi:10.1109/LaTiCE.2013.14

[9] Juliana Damasio Oliveira, Márcia de Borba Campos, and Vanessa Stangherlin
Machado Paixão-Cortes. 2020. Usable and Accessible Robot Programming System
for People Who Are Visually Impaired. In Universal Access in Human-Computer
Interaction. Design Approaches and Supporting Technologies, Margherita Antona

https://doi.org/10.1109/ICTA.2013.6815285
https://doi.org/10.5753/wie.2024.242728
https://doi.org/10.1145/3373625.3417005
https://doi.org/10.1145/3373625.3417005
https://doi.org/10.1145/349522.349555
https://doi.org/10.1145/2702123.2702511
https://doi.org/10.1145/1269900.1268791
https://doi.org/10.1109/LaTiCE.2013.14


Teaching Programming Logic for People with Blindness or Visual Impairments: a Systematic Mapping Study ITiCSE’25, Jun 30 – Jul 02, 2025, Nijmegen, NL

and Constantine Stephanidis (Eds.). Springer International Publishing, Cham,
445–464.

[10] Elizabet Dias de Sá, Izilda Maria de Campos, and Myriam Beatriz Campolina
Silva. 2007. Formação continuada a distância de professores para o atendi-
mento educacional especializado - Deficiência visual. Retrieved August 25,
2024 from https://observatoriodeeducacao.institutounibanco.org.br/api/assets/
observatorio/e20c71b2-19e0-49f5-bad1-278c0323fa63/

[11] Marcos D. Do Nascimento, Anarosa A. F. Brandão, Leônidas De Oliveira Brandão,
and Tiago Melo Casal. 2023. Towards iVProg4All: An Accessibility Test with
Blind. In 2023 IEEE Frontiers in Education Conference (FIE). 01–05. doi:10.1109/
FIE58773.2023.10343224

[12] Juliana Damasio e Darlan Jurak e Robson Bittencourt e Márcia Campos e Alexan-
dre Amory. 2019. Programming teaching with robotic support for people who
are visually impaired: a systematic review. Brazilian Symposium on Computers
in Education (Simpósio Brasileiro de Informática na Educação - SBIE) 30, 1 (2019),
1231. doi:10.5753/cbie.sbie.2019.1231

[13] Caique Ferreira e João Anjos e Joao Normando e Milton Castro e Valguima
Odakura e Rodrigo Sacchi e Carla Barvinski. 2016. Uso de podcast para apoio a
aprendizagem de algoritmos em curso de graduação em Computação. Anais dos
Workshops do Congresso Brasileiro de Informática na Educação 5, 1 (2016), 1208.
doi:10.5753/cbie.wcbie.2016.1208

[14] Antonio Carlos Gil. 2008. Métodos e técnicas de pesquisa social. 6. ed. Editora
Atlas SA.

[15] Anabela Gomes and António José Mendes. 2007. Learning to program-difficulties
and solutions. In International Conference on Engineering Education–ICEE, Vol. 7.
1–5.

[16] Mark Guzdial, Alan Kay, Cathie Norris, and Elliot Soloway. 2019. Computational
thinking should just be good thinking. Commun. ACM 62, 11 (Oct. 2019), 28–30.
doi:10.1145/3363181

[17] Alex Hadwen-Bennett, Sue Sentance, and Cecily Morrison. 2018. Making Pro-
gramming Accessible to Learners with Visual Impairments: A Literature Review.
International Journal of Computer Science Education in Schools 2, 2 (May 2018),
3–13. doi:10.21585/ijcses.v2i2.25

[18] T.M.F. Haguette. 2001. Metodologias qualitativas na sociologia. Vozes. https:
//books.google.com.br/books?id=eteVSAAACAAJ

[19] Sandra Jovchelovitch and Martin W Bauer. 2002. Entrevista narrativa. Pesquisa
qualitativa com texto, imagem e som: um manual prático 4 (2002), 90–113.

[20] Shun Kakehashi, Tatsuo Motoyoshi, Ken’ichi Koyanagi, Toru Oshima, Hiroyuki
Masuta, and Hiroshi Kawakami. 2014. Improvement of P-CUBE: Algorithm
education tool for visually impaired persons. In 2014 IEEE Symposium on Robotic
Intelligence in Informationally Structured Space (RiiSS). 1–6. doi:10.1109/RIISS.
2014.7009180

[21] Barbara Kitchenham. 2004. Procedures for performing systematic reviews. (2004).
[22] Jenny Kitzinger. 1995. Qualitative Research: Introducing focus

groups. BMJ 311, 7000 (1995), 299–302. doi:10.1136/bmj.311.7000.299
arXiv:https://www.bmj.com/content

[23] Cristian Koliver, Ricardo Vargas Dorneles, and Marcos Eduardo Casa. 2004. Das
(muitas) dúvidas e (poucas) certezas do ensino de algoritmos. Anais do XII
Workshop de Educação em Computação 24 (2004).

[24] Michael Kölling and John Rosenberg. 2001. Guidelines for teaching object ori-
entation with Java. In Proceedings of the 6th Annual Conference on Innovation
and Technology in Computer Science Education (Canterbury, United Kingdom)
(ITiCSE ’01). Association for Computing Machinery, New York, NY, USA, 33–36.
doi:10.1145/377435.377461

[25] Mario Konecki, Nikola Ivković, and Matija Kaniški. 2016. Making program-
ming education more accessible for visually impaired. In 2016 39th International
Convention on Information and Communication Technology, Electronics and Micro-
electronics (MIPRO). 887–890. doi:10.1109/MIPRO.2016.7522265

[26] C. Lewis. [n. d.]. Using the "thinking Aloud" Method in Cognitive Interface Design.
IBM Thomas J. Watson Research Division. https://books.google.com.br/books?
id=F5AKHQAACAAJ

[27] Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez,
and Margaret M. Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems (San Jose, California, USA) (CHI
’16). Association for Computing Machinery, New York, NY, USA, 1449–1461.
doi:10.1145/2858036.2858252

[28] Priya Lotlikar, Deepak Pathak, P. C. Herold, and chandanDasgupta. 2020. Tangible
Flowchart Blocks for Fostering Logical Thinking in Visually Impaired Learners.
In 2020 IEEE 20th International Conference on Advanced Learning Technologies
(ICALT). 266–268. doi:10.1109/ICALT49669.2020.00087

[29] Stephanie Ludi, Lindsey Ellis, and Scott Jordan. 2014. An accessible robotics
programming environment for visually impaired users. In Proceedings of the
16th International ACM SIGACCESS Conference on Computers & Accessibility
(Rochester, New York, USA) (ASSETS ’14). Association for Computing Machinery,
New York, NY, USA, 237–238. doi:10.1145/2661334.2661385

[30] Craig M. MacDonald and Michael E. Atwood. 2013. Changing perspectives on
evaluation in HCI: past, present, and future. In CHI ’13 Extended Abstracts on

Human Factors in Computing Systems (Paris, France) (CHI EA ’13). Association
for Computing Machinery, New York, NY, USA, 1969–1978. doi:10.1145/2468356.
2468714

[31] Lauren R. Milne and Richard E. Ladner. 2018. Blocks4All: Overcoming Accessi-
bility Barriers to Blocks Programming for Children with Visual Impairments. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–10. doi:10.1145/3173574.3173643

[32] D.L. Morgan. 1997. Focus Groups as Qualitative Research. SAGE Publications.
https://books.google.com.br/books?id=iBJZusd1GocC

[33] Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Ac-
cessible Blockly: An Accessible Block-Based Programming Library for People
with Visual Impairments. In Proceedings of the 24th International ACM SIGAC-
CESS Conference on Computers and Accessibility (Athens, Greece) (ASSETS ’22).
Association for Computing Machinery, New York, NY, USA, Article 19, 15 pages.
doi:10.1145/3517428.3544806

[34] Nicola Papazafiropulos, Luca Fanucci, Barbara Leporini, Susanna Pelagatti, and
Roberto Roncella. 2016. Haptic Models of Arrays Through 3D Printing for Com-
puter Science Education. In Computers Helping People with Special Needs, Klaus
Miesenberger, Christian Bühler, and Petr Penaz (Eds.). Springer International
Publishing, Cham, 491–498.

[35] Rodolfo M. Pereira, Felippe Fernandes da Silva, and Carlos N. Silla. 2018. Teaching
Algorithms for Visually Impaired and Blind Students using Physical Flowcharts
and Screen Readers. In 2018 IEEE Frontiers in Education Conference (FIE). 1–9.
doi:10.1109/FIE.2018.8658511

[36] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and Software Technology 64 (2015), 1–18. doi:10.1016/j.infsof.2015.03.
007

[37] Ana Cristina Pires, Filipa Rocha, Antonio José de Barros Neto, Hugo Simão,
Hugo Nicolau, and Tiago Guerreiro. 2020. Exploring accessible programming
with educators and visually impaired children. In Proceedings of the Interaction
Design and Children Conference (London, United Kingdom) (IDC ’20). Association
for Computing Machinery, New York, NY, USA, 148–160. doi:10.1145/3392063.
3394437

[38] Peter G. Polson, Clayton Lewis, John Rieman, and Cathleen Wharton. 1992.
Cognitive walkthroughs: a method for theory-based evaluation of user interfaces.
International Journal of Man-Machine Studies 36, 5 (1992), 741–773. doi:10.1016/
0020-7373(92)90039-N

[39] T. V. Raman. 1996. Emacspeak—a speech interface. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Vancouver, British Columbia,
Canada) (CHI ’96). Association for Computing Machinery, New York, NY, USA,
66–71. doi:10.1145/238386.238405

[40] Rafaela Robe, Bruna Poletto Salton, and Silvia Bertagnolli. 2020. RECURSOS
PEDAGÓGICOS PARA O ENSINO DE PROGRAMAÇÃO DE ESTUDANTES
COM DEFICIÊNCIA VISUAL: UMA REVISÃO SISTEMÁTICA DA LITERATURA.
Revista Novas Tecnologias na Educação 18, 1 (jul. 2020). doi:10.22456/1679-1916.
105922

[41] Zhiyi Rong, Ngo fung Chan, Taizhou Chen, and Kening Zhu. 2020. CodeRhythm:
A Tangible Programming Toolkit for Visually Impaired Students. In Proceedings
of the Eighth International Workshop of Chinese CHI (Honolulu, HI, USA) (Chinese
CHI ’20). Association for Computing Machinery, New York, NY, USA, 57–60.
doi:10.1145/3403676.3403683

[42] J. Rubin. 1994. Handbook of Usability Testing: How to Plan, Design, and Conduct
Effective Tests. Wiley. https://books.google.com.br/books?id=j-BQzDVsUGcC

[43] Andreas Stefik, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and Daniel
Garcia. 2009. SODBeans. In 2009 IEEE 17th International Conference on Program
Comprehension. 293–294. doi:10.1109/ICPC.2009.5090064

[44] Anja Thieme, Cecily Morrison, Nicolas Villar, Martin Grayson, and Siân Lindley.
2017. Enabling Collaboration in Learning Computer Programing Inclusive of
Children with Vision Impairments. In Proceedings of the 2017 Conference on
Designing Interactive Systems (Edinburgh, United Kingdom) (DIS ’17). Association
for Computing Machinery, New York, NY, USA, 739–752. doi:10.1145/3064663.
3064689

[45] Emmanuel Utreras and Enrico Pontelli. 2020. Design of a Tangible Programming
Tool for Students with Visual Impairments and Low Vision. In Universal Access
in Human-Computer Interaction. Applications and Practice, Margherita Antona
and Constantine Stephanidis (Eds.). Springer International Publishing, Cham,
304–314.

[46] Greg Wilson. 2017. How to Teach Programming (And Other Things). Lulu.com.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://observatoriodeeducacao.institutounibanco.org.br/api/assets/observatorio/e20c71b2-19e0-49f5-bad1-278c0323fa63/
https://observatoriodeeducacao.institutounibanco.org.br/api/assets/observatorio/e20c71b2-19e0-49f5-bad1-278c0323fa63/
https://doi.org/10.1109/FIE58773.2023.10343224
https://doi.org/10.1109/FIE58773.2023.10343224
https://doi.org/10.5753/cbie.sbie.2019.1231
https://doi.org/10.5753/cbie.wcbie.2016.1208
https://doi.org/10.1145/3363181
https://doi.org/10.21585/ijcses.v2i2.25
https://books.google.com.br/books?id=eteVSAAACAAJ
https://books.google.com.br/books?id=eteVSAAACAAJ
https://doi.org/10.1109/RIISS.2014.7009180
https://doi.org/10.1109/RIISS.2014.7009180
https://doi.org/10.1136/bmj.311.7000.299
https://arxiv.org/abs/https://www.bmj.com/content
https://doi.org/10.1145/377435.377461
https://doi.org/10.1109/MIPRO.2016.7522265
https://books.google.com.br/books?id=F5AKHQAACAAJ
https://books.google.com.br/books?id=F5AKHQAACAAJ
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1109/ICALT49669.2020.00087
https://doi.org/10.1145/2661334.2661385
https://doi.org/10.1145/2468356.2468714
https://doi.org/10.1145/2468356.2468714
https://doi.org/10.1145/3173574.3173643
https://books.google.com.br/books?id=iBJZusd1GocC
https://doi.org/10.1145/3517428.3544806
https://doi.org/10.1109/FIE.2018.8658511
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1145/3392063.3394437
https://doi.org/10.1145/3392063.3394437
https://doi.org/10.1016/0020-7373(92)90039-N
https://doi.org/10.1016/0020-7373(92)90039-N
https://doi.org/10.1145/238386.238405
https://doi.org/10.22456/1679-1916.105922
https://doi.org/10.22456/1679-1916.105922
https://doi.org/10.1145/3403676.3403683
https://books.google.com.br/books?id=j-BQzDVsUGcC
https://doi.org/10.1109/ICPC.2009.5090064
https://doi.org/10.1145/3064663.3064689
https://doi.org/10.1145/3064663.3064689

	Abstract
	1 Introduction
	2 Related Works
	3 The Systematic Literature Mapping
	3.1 Research Questions
	3.2 Research Conduction

	4 Results and discussion
	5 Threats to Study Validity
	6 Conclusions
	References

