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Abstract 

In this work, we utilized the high-performance computing (HPC) capabilities of the Vienna Scientific Cluster (VSC5) to develop 
and validate advanced AI models for oceanographic forecasting, with a focus on predicting Significant Wave Height (SWH).   
Using the computational power of VSC5, particularly its NVIDIA A100 GPUs, allowed us to process and analyze over 500 
million data points. The most promising model, a Graph Neural Networks - Gated Recurrent Unit GNN-GRU hybrid, was trained 
to generate six hourly forecasts for SWH and achieved a Mean Absolute Error (MAE) of 0.0071 and an R-squared (R²) value of 
0.98 against test data, demonstrating high accuracy and efficiency. The first validation results outside the training period are 
promising and efforts to refine the model are on-going. This work highlights the importance of HPC to the advancement of 
oceanographic forecasting, by enabling the processing of extremely large datasets and the creation of models that are up to the 
demanding standards of the marine sector. Subsequent efforts will center around enhancing these models, mitigating detected 
biases, and creating an operational deployment framework that can facilitate prompt decision-making in maritime operations. 
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1. Introduction 

Almost 3% of greenhouse gas emissions worldwide are attributable to maritime transportation, which is expected 
to quadruple in less than 30 years. By 2050, the International Maritime Organization (IMO) [1] wants to cut these 
emissions by 70%. Due to inaccurate weather forecasts, weather routing —a method of reducing fuel use and 
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emissions— has only succeeded in achieving 3–10% savings. The chaotic nature of physical processes in weather 
and climate systems, combined with the immense computational demands of traditional numerical forecast models, 
has made it challenging to improve the accuracy and resolution of these models. Despite significant research efforts 
over the past 50 years, these models still struggle to provide highly precise forecasts due to the inherent 
unpredictability of the systems they are trying to model and the limitations of current computing power.  

With the advancements in Artificial Intelligence (AI) methods and the services of Copernicus Marine Service [2] 
and Copernicus Data Store (CDS) [3], the time has come to develop new research and development processes, close 
to the private sector, which requires reliable products. The Copernicus Marine Environment Monitoring Service 
(CMEMS) is a crucial component of the EU Copernicus program, providing regular, systematic information on the 
physical, biogeochemical, and sea-ice conditions of the global ocean and European regional seas. CMEMS serves 
over 15,000 users and supports various applications, ranging from maritime safety to climate forecasting. The 
service's mission includes delivering short-term marine forecasts, analyzing past and present marine conditions, and 
providing data for climate change monitoring [4].   

It is apparent that there are on-going efforts of the research community to develop models to predict 
oceanographic parameters and an effort on how to combine different architectures and the wealth of data. The target 
variables, vital for ship routing, include the Significant Wave Height (SWH). Ocean waves with a high SWH may 
submerge ships and destroy ocean or coastal infrastructure [5]. It endangers human life, agriculture output, and the 
viability of aquaculture goods. As a result, precise forecasting of SWH is critical since it can assist in avoiding social 
and economic losses. Furthermore, SWH prediction can provide various benefits. For example, improving ship 
routes based on SWH predictions might help avoid rough seas, decreasing sailing time and fuel costs. Furthermore, 
SWH prediction can help organize military and amphibious operations [5]. As climate change is expected to 
influence oceanographic conditions, leading to more frequent and severe storms, the ability to accurately predict 
SWH will become increasingly important, and further emphasizing the need for ongoing research and innovation in 
the field. 

Due to the challenges in data collection and the limitations of computing power, Significant Wave Height (SWH) 
predictions were primarily based on empirical or numerical models ([5],[6],[7]).  These methodologies do not have 
leaning ability that leads to a low prediction accuracy [5]. With the advent of machine learning, Bayesian Networks, 
XGBoost, Support Vector Machines (SVM) and Artificial Neural Networks (ANN) have been utilized for SWH 
prediction [8].  A common setback of these models was the negligence of the temporal dependencies of the data that 
made the models sensitive to noise that consequently lowered their reliability [5]. To address this issue, many 
researchers have investigated with promising results the Recurrent Neural Networks (RNN) and Long Short Term 
Memory (LSTM) methodologies ([9],[10]).  

Following these efforts, a trend to use deep leaning approaches in SWH prediction emerged, taking advantage of 
the stronger feature extraction capacity compared to the machine learning methodologies. Convolutional Neural 
Networks (CNN) were found to outperform other deep-leaning approaches with works like [11] that extracted 
information from Synthetic Aperture Radar (SAR) images to predict SWH. Although CNNs are designed for visual 
data, promising results with CNNs resulted from a CNN-LSTM framework that used raw ocean images but with 
setbacks in night and foggy conditions [12]. Another promising and emerging application of CNNs is by correcting 
the predictions of numerical models [13].  

Despite the ongoing efforts, two key challenges are identified that remain unresolved for accurate SWH 
prediction: effectively capturing the relationships between various input types while learning the complex non-linear 
mapping and temporal dependencies with SWH data and distinguishing between occasional extreme sea conditions 
and seasonal variations in SWH, which involves understanding both short-term and long-term patterns [4]. To this 
end in the works of [4], that utilized a Wavelet Graph Neural Network (WGNN) showed in their experimental results 
better performance than other models, including some numerical models and other deep-learning methods.     

Understanding the computational limitations and the promising results of CNNs our first model was a CNN-based 
multi-stage model that predicts deltas instead of absolute values with noise in the input data to enhance the 
robustness. The validation of this model was done by comparing the model’s forecasts with satellite measurements 
of Significant Wave Height (SWH), against the CMEMS operational forecasts compared to the same satellite 
measurements. A sample size of 1.914 collocated points within the Mediterranean was collected and the comparison 
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demonstrated a better performance than the operational CMEMS forecasts, especially in the case of larger waves (>1 
m) and a better fitting of the regression line at about 7% for AlongRoute’s model.  

After the promising results of the first model, the team has sought ways to improve the in-house modelling 
framework to evaluate the product (i.e., operational oceanographic forecasts) with shipping companies. For the 
business model to work, it was crucial to develop more sophisticated models with:  

1. Extensive training on larger amount of input data and crucial variables, and 
2. Spatio-temporal characteristics that allow to extend the forecast horizon. 

It became apparent that the first requirement could be satisfied with computational power. To this end, starts-up 
that need access to GPUs and computational resources are benefited by EuroCC (European Competence Center), 
that is the European network of 33 NCCs (National Competence Centers) national HPC competence centers with the 
aim of bridging the existing HPC skills gaps and infrastructure while promoting cooperation across Europe [14]. To 
gain access to the resources, a short project proposal was submitted outlining the amount of computational power 
needed and the scope of the project to EuroCC Austria. This granted the team with 100.000 CPU-hours or ~4.500 
GPU-hours in the Vienna Scientific Cluster (VSC5) system. Utilizing supercomputer capabilities and offering 
technical support to its users, the Vienna Scientific Cluster (VSC) is an alliance of multiple Austrian universities. 
VSC-4 and VSC-5, the fastest supercomputers in Austria, are the flagship systems of the VSC family at the moment. 
Both systems are powering science and research at the leading academic institutions in Austria and fulfill the 
demand for high computing power in the areas such as physics, chemistry, meteorology, life sciences, and many 
others [15]. 

The second requirement was fulfilled by utilizing the most recent successful methodologies utilizing the 
computational power to process large data sets in HPC and perform training on extended data. To do so, we opted 
for a deep leaning methodology that is based in GNNs that have shown to be outperforming other deep learning 
methodologies while the temporal scale being resolved with Recurrent Gated Units, (GNU) a framework utilized in 
SWH predictions but in combination with a multivariate multi step time series forecasting [16].  This paper presents 
the usage of the VSC5, to train and validate models that can predict oceanographic parameters in extended temporal 
resolutions, the challenges faced in deploying the models, first validation results and future work both research-wise 
and business-wise. 

2. Materials and Methods 

To prepare a data driven model, our work was based on finding data that are significant and relate to the physics 
behind wave generation. This was achieved by utilizing reanalysis oceanographic data from the Copernicus Marine 
store (wave and physics related) as well as reanalysis atmospheric data from the Copernicus Data Store (CDS) [3]. 
In climate reanalysis, consistent time series of numerous climate variables are produced through the integration of 
past observations and models. Reanalysis are among the most frequently employed datasets in the geophysical 
sciences. They offer an extensive record of the observed climate as it has changed over the past few decades, with 
data collected on 3D grids at sub-daily intervals. This makes them suitable in our objective of training an Artificial 
Intelligence (AI) model that learns the relationship between the variables of interest and is capable to produce 
operationally forecasts of the SWH and wave direction given the previous state of the sea. The plethora of data 
availability and the access to VSC5 allowed as to investigate before the development of our model the most 
significant variables that did affect SWH. Feature importance algorithms (regression, Random Forest) combined 
with guidance from the experts, concluded into the set of the variables to train our model. The access to HPC 
facilitated the processing of all the variables included in the different data sets as well as the selection of the most 
important ones. This was extremely crucial for our model, considering that in an operational framework, we opt to 
retrain our model with up-to-date data that matter and enhancing the model accuracy. 

2.1. Variable Selection 

The data collection mechanisms to train the model were based on the offered mechanisms of CMEMS and CDS. 
Simple bash scripts were created to download the data for a full year from all three data sources and all their 
variables. The user must be registered in both CMEMS and CDS to obtain credentials. The data collection begun for 
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the Mediterranean Sea (Fig.1) for two reasons. Firstly, when compared to available data sets, higher spatial 
resolution is available for the Mediterranean, compared to the global data sets. Secondly, the Mediterranean Sea 
offers a closed boundary condition system that is easier to simulate compared to other seas. The year of 2014 was 
selected as was it was marked by several intense storms that generated high waves, especially in the western 
Mediterranean, complicating naval and commercial navigation. 

 
In Table 1, the three data sources considered to train our model are presented. The datasets were first carefully 

selected in terms of providing operational forecasts counterparts, so as to later set-up the model in operational mode, 
but also to have equivalent information at global scale. Nonetheless, it must be noted that moving outside the 
Mediterranean Sea comes with losing the higher spatial resolution data sets. As can be seen in Table 1, the data from 
CMEMS have the same spatial grid and temporal resolution, meaning that the UERRA data had to be re-mapped to 
the MEDSEA data grid spatially. On the other hand, the MEDSEA data had to also match the 6-hourly temporal 
resolution of UERRA.  

  One year of data occupied almost 80G storage in VSC5 and the regression/RF model to finalize the selection of 
data (see Table 1) was sent in the CPU nodes as it was not computationally intensive to run. This is because 
temporal and spatial aggregations were applied to the data to check temporal and spatial feature importance. These 
aggregations reduced the memory burden to handle this amount of data. Finally, 10 variables were selected to train 
our model. 

 

Fig. 1. Area of the Mediterranean Sea, used for training. 
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Table 1. Reanalysis data, their characteristics, and the number of selected variables to train the model. 

Reanalysis Data  Spatial Resolution Temporal Resolution Number of 

 total variables  

Number of selected 
variables  

MEDSEA_MULTIYE
AR_WAV_006_012 
(CMEMS) 

0.042° × 0.042° Hourly 18  5 

MEDSEA_MULTIYE
AR_PHY_006_004 
(CMEMS) 

0.042° × 0.042° Hourly 10 2 

UERRA (CDS) 5.5km x 5.5km 6-hourly 19 3 

2.2. Model Development 

In this work, we aimed to introduce an extended temporal forecast framework that meets both our scientific 
interests and the business perspective that demands forecasts for more than a few hours ahead in the future. Graph 
Neural Networks (GNNs) combined with Gated Recurrent Units (GRUs) offer a powerful approach for significant 
wave height forecasting. GNNs excel in capturing spatial relationships within complex oceanographic data, while 
GRUs effectively model temporal dependencies. By integrating these two models, the GNN-GRU framework can 
simultaneously analyze spatial and temporal patterns in wave data, leading to more accurate and reliable wave 
height predictions. This hybrid approach is particularly well-suited for handling the dynamic and interconnected 
nature of ocean environments.  

PyTorch [17] was used for building and training the model, with the Adam optimizer managing the learning 
process and Mean Squared Error (MSE) as the loss function. The data was preprocessed by normalizing it, using 
MinMaxScaler, and we created sequences of input data to feed into the model. The dataset was split into 60% for 
training, 20% for validation, and 20% for testing. To fine-tune the model's hyperparameters, including the hidden 
dimension size, learning rate and batch size, we utilized Optuna [18], an optimization framework that allowed the 
detection of the best settings for these parameters after 20 trials. Following the training process, we evaluated the 
model's performance on the test set, by calculating metrics such as mean absolute error, root mean squared error, 
and R-squared to assess accuracy. 

 The model was trained on an NVIDIA A100 GPU at the VSC, showing strong performance and efficiency 
(Table 2). The model was trained on a large dataset of about 559 million data points, completing the process in 
approximately 13h50min, which reflects the capability of the hardware used. It must be noted that in order to 
process this amount of data, the A100 GPU with 512GB RAM was necessary, otherwise memory issues rose during 
run-time. Moreover, the usage of data frames for each data source (three different reanalysis datasets) in python and 
their merging into one data frame, led to large amounts of memory allocation that in turn crushed our runs. This was 
overcome not only by using the GPUs with the largest amount of RAM memory but also cleaning from memory all 
data frames the minute they were no longer necessary in the processing chain.  The model achieved a Mean 
Absolute Error (MAE) of 0.0071, suggesting that its predictions are quite accurate with only a small average error. 
The R-squared (R²) value of 0.98 shows that the model effectively captures most of the variability in the data. 
Additionally, the Root Mean Squared Error (RMSE) of 0.015 further confirms the accuracy of the model's 
predictions. Overall, the model demonstrates good predictive accuracy and efficiency in training. We trained three 
separate models, the first one being able to predict 6 hours ahead, the second one 12 hours ahead and the last one 24 
hours ahead. The most stable and promising was the model built to forecast 6 hours ahead and our first validation 
results for this model are shown in the next section. 
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Table 2. Reanalysis data, their characteristics, and the number of selected variables to train the model. 

VSC Partition  Total data points  Training Time MAE   R2            RMSE  

zen3_0512_a100x2                     559.238.400  13h50min  0.0071         0.98 0.015 

 

3. Results 

The validation strategy we followed is running our models and making predictions outside of the training period 
focusing on challenging dates with high waves. The models are initialized with forecasts and analysis datasets to 
mimic an operational set-up. Then we opted to understand if the seasonality is captured by our models by running 
our model for a month’s period and comparing them to both reanalysis data and satellite SWH data from CMEMS. 
The reanalysis data, being gridded fields, can help us understand if the model is capturing the general circulation and 
the satellite data, as external validation, require also an extended period to collect a big enough size of overpassing 
satellite measurements.  

A selection of days with SWH above 1.5 m was first located through filtering the data from the CMEMS with a 
focus on dates outside the training period. The first validation results are shown here for our model predictions, 
outside the training period and for 14/01/2019, 00 UTC and compared to reanalysis data. As can be seen in Fig. 2(a), 
our models can forecast the general wave circulation quite well when compared to the reanalysis data, with an 
average MAE of 0.34 m.  The high waves seen near the coasts of France and cascading southwards are well 
captured in general by the GNN-GRU (Fig. 2(a)), although some local misalignments are seen west and east of the 
main event. Although this is a good result, we do have some overestimations by the model that we are seeking to 
understand. In Fig. 3(b), a scatter plot of model prediction versus reanalysis is given for the examined date, in which 
a lump is seen in low observed SWH that is overestimated by the model in the area of the Aegean Sea. Our first 
impression was that our model was not understanding well the coastlines and that it lets the SWH built up as if no 
land was there. This came apparent when creating a buffer zone around coastlines of around 4km (one grid box with 
regards to our spatial resolution), and the same plot was created as can be seen in Fig. 3(a) for all the Mediterranean. 
Although the bulk is gone, some points persist, and it is under investigation in our next steps. Here an extended 
validation that is undergoing will help us understand the model biases and its shortcomings. 

 

Fig. 2. (a) Model prediction on 14/01/2014; (b) Reanalysis data of SWH for the same time. 
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4. Discussion 

Utilizing HCP resources granted though EuroCC, we were able to train and work on validating AI models for 
oceanographic parameters prediction and built a set up for future operational workflows that will benefit the 
shipping operations value chain.  We have worked on the VSC5 cluster and it’s NVIDIA A100 GPUs in which we 
developed and deployed a GNN-GRU that can handle spatiotemporal data and showed good performance metrics 
against the test dataset. Given the enormous amount of data processed, the most challenging part was not the usage 
of the HPC itself but rather handling the pre-processing step of the data in terms of memory. This was achieved by 
utilizing the GPU with the 512 GB RAM but also by cleaning up the cache and freeing the memory from redundant 
data frames. The training of each created model took around 14 hours on two GPUs, covering the entirety of the 
Mediterranean Sea and for one year of data (2014) accumulating to more than 500 million data points.  

A significant advantage of having access to these HPC resources was the ability to perform hyperparameter 
tuning for the network with 20 trials, which consumed the majority of the total training time (about 90%). Without 
access to such computational power, we would have been forced to skip this critical step, likely resulting in the use 
of estimated configurations rather than the optimal ones. This would have negatively impacted the accuracy and 
reliability of our model's predictions. Thus, the HPC resources were instrumental in ensuring that our model was as 
well-tuned as possible, ultimately leading to better performance in predicting oceanographic parameters. 

The validation of the model begun with checking the ability of the model to understand the general circulation in 
days with challenging sea conditions, with our model scoring good average MAE but showing large overestimations 
of small observed SWH as well as underestimations of observed SWH between 2.5m and 4.5m. This was attributed 
to the challenges of small islands and coastlines that our model seemed to miss and was overcome by creating a 
buffer zone around the coastlines. Some points did persist even after the buffer zone and are under investigation. 
Future work includes validating our model against satellite and reanalysis data for extended period to understand the 
strength and weakliness and calibrate the model towards optimal performance.  

The access to HPC allows us to train the model with even more data, given the increase of data volumes increases 
the accuracy of our model or as an alternative to use simple bias correction in the output of the model.  Once we 
secure the best model configuration, the next step is to provide these data in inference mode, in our premises, for the 
interested shipping companies. 

 
 
 

Fig. 3. (a) Scatter plot of predicted versus reanalysis data for Mediterranean (with buffer zone round coastlines); (b) Scatter plot of predicted versus 
reanalysis data for Aegean (without buffer zone around coastlines). 
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