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Abstract—This paper considers approaches to partial eigen-
value assignment in second-order descriptor systems via pro-
portional plus derivative plus output feedback controller. The
impulse elimination approach by output feedback control is
addressed by combining the eigenstructure and the closed-loop
system’s finite eigenstructure. More precisely, based on the de-
sired eigenstructure, the gains controller’s parametric expressions
making the closed-loop system impulse-free and assigning the
finite eigenstructure are formulated. The simulation results are
provided to verify the effectiveness of the proposed method. This
study presents an approach to partial eigenvalue assignment
for the descriptor system where an algorithm is presented for
calculated the output feedback matrix by the Sylvester equation.
Sylvester equations present the theorems. Two algorithms are
implemented using the Sylvester equation, and examples were
presented with finally their conclusions.

Keywords: Impulse elimination, Second-order system,
Sylvester equation.

I. INTRODUCTION

Second-order linear systems have found wide applications
in many scientific and engineering fields, such as the control
of large flexible space structures, earthquake engineering,
robotics control, control of mechanical multibody systems,
and vibration control in structural dynamics. The model of
second-order system has aroused great interest and a wide
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variety of practical applications over the last few decades [1],
[2]. There are many mathematical methods for solving model
and designing controllers [3], [4], [5], [28], [9], [10], [11].
It is well known that the eigenstructure assignment (ESA)
and pole assignment are effective approaches to improve
the dynamic characteristics of singular second-order system,
including stabilisation, impulse elimination and decoupling
[5], [28], [9], [10], [11] [12], [13], [14] . The ESA based on
state and derivative feedback control for second-order systems
has many valuable results [5], [28], [9], [10], [11] [18], [15]
[19] [20].

A generalized Sylvester equation’s solution is associated
with a linear descriptor system and subject to some rank and
regional pole-placement constraints. Under the hypothesis of
strong-detectability of the descriptor system, a sequence of
coordinate transformations is proposed such that the consid-
ered problem can be solved through a Sylvester equation is
associated with a detectable reduced-order normal system [37].

The output regulation for second order system via feedback
is presented in [16] [17]. The eigenvalue assignment with
minimum sensitivity for second-order systems via propor-
tional–derivative state feedback is proposed in [21]. The para-
metric approach for ESA in second-order system via velocity
plus-acceleration feedback is presented in [28], [9], [10], and
then, the parametric expressions of gain controllers assigning
the eigenstructure via velocity-plus-acceleration feedback are
formulated. The partial pole assignment [22], [23] and partial
eigenstructure assignment [24] [25] are concerned by various
approaches. Impulsive behavior is an important characteristic
of descriptor systems. Impulse terms may destroy the sys-
tem and hence are expected to be eliminated in descriptor
systems. There are many approaches and results of impulse
elimination for descriptor systems [11] [26] [27] [28] . The
impulsive modes can be eliminated in descriptor systems via
state feedback and output feedback [11] [28]. The impulse
controllability and impulse observability are necessary condi-
tions for impulse elimination in descriptor systems [28] [29],
[31], [32]. The impulsive mode controllability is proposed
for descriptor systems in [30], and the criteria of impulsive
mode controllability are established. A structured output pro-
portional and derivative feedback approach is presented for the
problem of impulsive modes elimination in descriptor systems.
Disturbance impulse controllability for the descriptor system
is introduced in [32]. The controllability and observability
conditions of second-order linear systems are analyzed in [33].
The impulse elimination problems for second-order systems
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have not been investigated in the literature. In this paper, the
impulse elimination problem is investigated, respectively, via
a class of feedback controllers by the ESA approach for a
singular second-order system. The solvability of the proposed
problem is given by analyzing the desired eigenstructure. Un-
der solvability conditions, the complete parametric expressions
for controller gains of normalisation and impulse elimination
are derived, respectively. Finally, illustrating examples are
given.

Consider the control of the following second-order descrip-
tor dynamical linear system:

Mẍ+Dẋ+Nx = Bu (1)
y0 = C0x

y1 = C1ẋ

y2 = C2ẋ

where x ∈ Rn and u ∈ Rm are the state vector and
the control vector, respectively, and M,D,N ∈ Rn×n, and
B ∈ Rn×m, C0, C1, C2 ∈ Rp×n are the system coefficient
matrices. In certain applications, the matrices M,D, and N
being called the mass matrix, the structural damping matrix
and the stiffness matrix, respectively [10] [6], [7], [8] . We
know that singular system may contain impulse terms in its
state solution. Impulse elimination is to design a controller
such that the state solution of resulted closed-loop system
has no impulse terms. In [34] the condition for impulsive-
mode controllability is derived and proved to be necessary
and sufficient for the existence of admissible feedback controls
eliminating impulsive modes.

The article present in section II the problem formulation and
preliminaries, in section III present the impulse elimination, in
section IV present the problem eigenstructure assignment , and
the section V the conclusions.

II. PROBLEM FORMULATION AND PRELIMINARIES

These coefficient matrices satisfy the following assump-
tions.

Assumption 2.1: A1: rank(M) = q, 0 < q ≤ n, rank(B) =
m, and rank(C0) = rank(C1) = rank(C2) = p.

For the second-order descriptor dynamical system (1), by
choosing the following control law:

u(t) = −F0y0(t)− F1y1(t)− F2y2(t) (2)

with F0, F1, F2 ∈ Rp×n. For feedback controller in the equa-
tion (2), these conditions will no longer be needed. Besides,
the impulse elimination problem that we will study for singular
second-order system is not considered in [5] [28] [9] [10] [6],
[7] [8]. By feedback controller in the equation (2), the system
(1) can be transformed into the closed-loop system as follows:

(M +BF2C2)ẍ+ (D +BF1C1)ẋ+ (N +BF0C0)x = 0

(3)

The corresponding quadratic polynomial matrix is

P (λ) = λ2(M +BF2C2) + λ(D +BF1C2) +

N +BF0C0 (4)

The system (3) can be written in the first-order state-space
form

Ecż = Acz; (5)

with

Ec =

[
In 0
0 (M +BF2C2)

]
and

Ac =

[
0 I

−(N +BF0C0) −(D +BF1C1)

]
(6)

For feedback controller in the equation (2), these conditions
will no longer be needed. Besides, the impulse elimination
problem that we will study for singular second-order system
is not considered in [5] [28], [9], [10], [6], [7], [8].

Simultaneously, rewrite the equation (2) as

u = −
[
F0 F11

]
ż −

[
F12 F2

]
z

where F11 + F12 = F1. Substituting this into (2), we have

Ecż = Acz (7)

with

Ee =

[
In 0

BF12C1 M +BF2C2

]
;

Ac =

[
0 I

−(N +BF0C0) −(D +BF11C1)

]
(8)

ż =

[
ẋ
ẍ

]
and z =

[
x
ẋ

]
Definition 2.1: The second-order dynamical system (1), is

called S-controllable if and only if the corresponding extended
first-order state-space representation (5), (6), is S-controllable.
The objective is to design the feedback controller (2) such that
the closed-loop system has 2n eigenvalues. This implies

degdet[λ2(M +BF2C2) + λ(D +BF1C1) +

N +BF0C0] = 2n (9)

III. IMPULSE ELIMINATION

In [34] prove the equivalence between impulsive-mode
controllability and eliminating impulsive modes by feedback
control. After impulsive modes being removed by feedback
control, a nonsingular descriptor system has a unique smooth
solution for each initial admissible condition and hence is
free of impulse. Therefore, impulsive-mode elimination and
impulse elimination are two different problems. The latter is
equivalent to enabling the controlled system to have no im-
pulsive modes and be nonsingular. In [30], impulsive behavior
is an important issue in the descriptor system, and impulse
terms are not expected to exist. A system is called impulse-
free, or equivalently, having no impulsive modes if there is
no impulse term in the state solution. Similarly, the response
of the singular second-order system (1) may contain impulse
terms. Consider the problem of impulse elimination for system
(1) via feedback controller (2). By using the ESA method, we
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present the parametric expressions of gain controllers, ensuring
the closed-loop system impulse-free. The following lemma,
which is obtained directly by the results of [35], gives a simple
rank criterion for a second-order system to be impulse-free.

Lemma 3.1: [30] The system (1) is impulse-free if and only
if

rank

 M D N
0 M D
0 0 M

 = rank

[
M D
0 M

]
= n (10)

This result provides an approach to detect impulsive modes of
system (1). In this section, the impulse elimination problem is
investigated based on the following lemma instead of Lemma
3.1.

Lemma 3.2: If the system (5), (6) is impulse-free, then the
system (3) is impulse-free.
Lemma 3.2 is easy to prove by matrix decomposition. By
Lemma 3.2, in this section, we consider impulse elimination
in the system (5), (6) by feedback controller (2) . The
objective is to design the controller (2) such that system (5),
(6) is impulse-free. For the system (7), (8) we know that
rankE ≥ degdet(sE−A) and closed-loop system is impulse-
free if and only if rankE = degdet(sE −A) ,

E =

[
I 0

BF12C1 M +BF2C2

]
(11)

A =

[
0 I

−(N +BF0C0) −(D +BF11C1)

]
(12)

We assume that n1 = n+rank[M,B] is the number of desired
finite eigenvalues, and n2 = 2n− n1. Then

n1 = degdet(sE −A) ≤ rankE = n

+rank(M +BF2C2) ≤ n+ rank[M,B] (13)

Therefore, rankE = degdet(sE − A), and the closed-
loop system is impulse-free. Based on ESA approach and
Lemma 3.2, parametric expressions of gains controller making
the closed-loop system impulse-free and assigning the finite
eigenstructure (i.e. Jordan structure of finite eigenvalues) of
the closed-loop system are derived.

J1 = diag(J1, J2, J3, · · · , Jp)

Ji = diag(Ji1, Ji2, · · · , Jiqi)

Jij =


λi 1 · · ·
0 λi 1 · · ·
0 · · · λi 1
0 · · · · · · λi

 (14)

where Jij , j = 1, 2, · · · , qi, are the qi Jordan blocks associ-
ated with the eigenvalue λi. J is the Jordan matrix associated
with all the finite eigenvalues of closed-loop system.

The results are presented by the following theorem.
Theorem 3.1: Assume that system (1) is S−controllable.

Then based on the prescribed finite eigenstructure with the
form of (14), the controller gains for impulse elimination and
arbitrary finite ESA by feedback controller (2) are as

[
F12 F2

]
=
[
HfJ

−1 H∞
]
V −1[

F0 F11

]
=
[
Rf R∞

]
V −1 (15)

where V ≡
[
Vf V∞

]
, Vf ∈ C2n×n1 , Hf , Rf ∈ Cr×n1

V∞ =

[
0

Ṽ∞

]
∈ C2n×n2 (16)

H∞ ∈ Cr×n2 and[
Ṽ∞
H∞

]
∈ ker[M,B] (17)

R∞ ∈ Cr×n2 is any given matrix.
Proof:
Assume that system (1) is S−controllable. Based on the

finite ESA results in Theorem 3 in [30], where is considered
the equation (2) .

Write this as:

[
F12 F2

]
VfJ = Hf[

F0 F11

]
Vf = Rf (18)

Let [
F12 F2

]
V∞ = H∞ (19)

then H∞ ∈ Cr×n2 and
For given R∞, let

[
F0 F11

]
V∞ = R∞ (20)

Combining (18), with the equations (19), and (20), we
obtain

[
F12 F2

]
=
[
HfJ

−1 H∞
]
V −1[

F0 F11

]
=
[
Rf R∞

]
V −1 (21)

where

V ≡
[
Vf V∞

]
=

[
V̄f 0

Ṽf Ṽ∞

]
. (22)

The proof is therefore completed.

IV. PROBLEM EIGENSTRUCTURE ASSIGNMENT

Consider the following linear time-invariant descriptor sys-
tem

Eẋ(t) = Ax(t) +Bu(t); y(t) = Cx(t) (23)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and rankE =
q ≤ n. Assume that the matrix pencil(λE−A) is nonsingular,
i.e., rank(λE −A) = n.

Proposition 4.1: [39] The system (23) is controllable at
infinity if and only if

rank[E,B] = rank[E,A,B] (24)
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Proposition 4.2: [39] The system (23) is C-controllable if
and only if condition (24) is satisfied together with

rank[λE −A,B] = rank[E,A,B],∀λ ∈ C. (25)

Proposition 4.3: [39] The system (23) is I-controllable if
and only if[

E 0 0
A E B

]
= rank[E,A,B] + rankE. (26)

Proposition 4.4: [39] The system (23) is S-controllable if
and only if both the conditions (25) and (26) are satisfied.

A. Eigenstructure by equation Sylvester

The system (3) can be written in the first-order state-space
form (7) and (8). Thus for obtained the output feedback K
σ(Ed, Ad +BdKCd) ∈ C−, is used the Silvester equation in
[38], [36].

Consider the following linear time-invariant descriptor sys-
tem in [38], [36].

Edẋ(t) = Adx(t) +Bdu(t) (27)
y(t) = Cdx(t)

The Sylvester equations in [38], [36].

AdVd − EdVdHV = −BdWd, σ(HV ) ∈ C− (28)
PdAd −HPPdEd = −UdCd, σ(HP ) ∈ C− (29)

the theorem (4.1) is based , [38].
Theorem 4.1: Let (1), be S-controllable, and Vd ∈ R2n×p

and Wd ∈ Rm×p satisfy the equation (28). Then, the following
hold.

1) The matrices Vd and Wd given by (28),

[
Ad − λiEd Bd

PdEd 0

] [
vi
wi

]
= i = 1, 2, · · · , q. (30)

satisfy Sylvester matrix equation (28) for, i = 1, 2, · · · , q,
2) When

rank(

[
Vi
Wi

]
) = m i = 1, 2, · · · , q. (31)

hold, (30) gives all the solutions.
Proof Based in [38], [36].
The following basic procedure is proposed to calculate the

feedback controller that stabilizes the closed loop system,
when m+p > q. Closed loop eigenvalues are positioned arbi-
trarily close to the set ; they are symmetric sets of pre-specified
eigenvalues. The (Ed, Ad, Bd, Cd) system is considered to be
strongly controllable and strongly detectable.

Algorithm S1

Step 1: Choose an array HP ∈ <q−p×q−p such that
σ(HP ) = ΛP ∈ C− and Sylvester’s equation (29) is solved to
find a matrix
Pd ∈ <n+q−p×n+q such that

rank

([
PdEd

Cd

])
= q (32)

Step 2: Sylvester’s equation (28) is solved, for some

HV ∈ <p×p matrix such that σ(HV ) = ΛV ∈ C− taking
into account that the matrix Vd must taking into account that
rank (EdVd) = p (or Ker (PdEd) = Ker (Ed) ⊕ Im (Vd),
where ⊕ represents the direct sum).

Step 3: By construction, the matrix Vd must verify that rank
(CdVd) = p and the matrix K can be calculated by:

K = Wd(CdVd)−1 (33)

◦

Remark 4.1: steps 1 and 2 can be solved using standard
techniques for positioning the self-structure. Similar to the
previous case, the matrices Vd and Wd used for the cal-
culation of K can be constructed only with real elements.
In particular: if λi ∈ C, it is considered λi+1 = λ∗i e{

Vi = Re (vi), Vi+1 = Imag (vi)
Wi = Re (wi), Wi+1 = Imag (wi)

, where Vi and Wi

denote the columns of the matrices Vd and Wd, respectively.
In step 1, under the condition that the system is strongly ob-
servable (detectable). As will be seen later, degrees of freedom
existing in the choice of Vd that satisfy the coupling condition
PdEdVd = 0, can also be used to guarantee obtaining K such
that KCdVd = Wd in [38].

B. Example

Consider a simple linear dynamical system (1) in [30]

M =


3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0


D =


25 −15 0 0
−15 35 −20 0

0 −20 60 −40
0 0 −40 40


N =


15 −10 0 0
−10 25 −15 0

0 −15 35 −20
0 0 −20 20

 B =


1 0
0 0
0 0
0 1


C0 =

[
1 0 0 1
0 0 0 1

]
; C1 =

[
1 0 0 0
0 1 0 0

]
C2 =

[
1 0 0 1
0 1 0 1

]
.

Considered the system in the equations (7), (8)

Ed =

[
In 0
0 M

]
; Ad =

[
0 In
−N −D

]
;

Bd =

[
0
B

]
Cd =

[
B′ 0

]
Algorithm S1

Resolved the equation (28) for calculate the matrices Wd,
Vd, satisfies the equation (31) and the matrix K, such that
KCdVd = Wd:
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Vd =



0.0266594 0.012664
0.0532409 0.0292111
0.0526191 0.0275588
0.0428678 0.0204925
−0.0799783 −0.0506558
−0.1597228 −0.1168444
−0.1578572 −0.1102353
−0.1286034 −0.0819702


Wd =

[
0.9836714 0.9919888
0.9751273 0.9892803

]
K =

[
−172.58241 135.085
−173.19315 135.43792

]
where the eigenvalues

are λ1 = −3, λ2 = −4, λ3 = −5.261107, λ4 = −1.5034249,
λ5 = −0.509633, λ6 = −0.7730653, λ7 = −22.229984,
λ8 = −0.229984.

C. Numerical algorithm

We first present an approach to the general solutions for
F0, F1andF2. Let Q denote the matrix that its rows are
comprised of orthonormal basis vectors of the null space, we
have

[F0, F1, F2] = V Q (34)

where the parametric matrix V is to be determined based in
the sylvester equation (28).
F0, F1 and F2 must also implement some given eigenvalues

assignment.
The theorem 4.2 is based in , [40] [38].
Theorem 4.2: Let (1), be S-controllable, and Vd ∈ R2n×p

and Wd ∈ Rm×p satisfy the equation (28). Then, the following
hold.

1) The matrices Vd and Wd given by (35),

[
Ad − λiEd Bd

] [ vi
wi

]
= i = 1, 2, · · · , q. (35)

satisfy Sylvester matrix equation (28) for, i = 1, 2, · · · , q,
2) When

rank(

[
Vi
Wi

]
) = m i = 1, 2, · · · , q. (36)

3) F0, F1, F2 is such that it satisfies

(M +BF2C2)q̈(t) + (D +BF1C1)q̇(t) +

(N +BF0C0)q(t) = 0 (37)

Proof Based in [37], [36], [38] and [40].
The following basic procedure is proposed to calculate the

feedback controller that stabilizes the closed loop system,
when m+p > q. Closed loop eigenvalues are positioned arbi-
trarily close to the set ; they are symmetric sets of pre-specified
eigenvalues. The (Ed, Ad, Bd, Cd) system is considered to be
strongly controllable and strongly detectable.

Algorithm Z1 Input: M , D, N , B, C0, C1, C2 Output:
F0, F1, F2

Step (1) Compute the left null space Q of the coefficient
matrix in Equation (23).

Step (2) Compute vi, wi, i =, 01, 2 by Equations (28), (35),
(36) to form V0, V1, V2 and W0,W1,W2.

Step(3) With the matrices W0, W1, W2, V0, V1, V2, satisfies
the equation (35),(36) and the matrix F0, F1,F2 such that
F2C2V2 = W2, F1C1V1 = W1, and F0C0V0 = W0,

Step (4) Substitute V back into Equation (34) with (37) to
give F0, F1, F2.
◦

D. Example

Consider a simple linear dynamical system (1) in [30]

M =


3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0


D =


25 −15 0 0
−15 35 −20 0

0 −20 60 −40
0 0 −40 40


N =


15 −10 0 0
−10 25 −15 0

0 −15 35 −20
0 0 −20 20


B =


1 0
0 0
0 0
0 1

 C0 =

[
1 0 0 1
0 0 0 1

]
;

C1 =

[
1 0 0 0
0 1 0 0

]
; C2 =

[
1 0 0 1
0 1 0 1

]
.

Considered the system in the equations (4), (5)

Ed =

[
In 0
0 M

]
; Ad =

[
0 In
−N −D

]
;

Bd =

[
0
B

]
Cd =

[
B′ 0

]
Algorithm Z1
Step (1) Compute the left null space Q of the coefficient

matrix in Equation (23).
Step (2) Compute vi, wi, i =, 01, 2 by Equations (28), (35),

(36) to form V0, V1, V2 and W0,W1,W2.
Step(3) With the matrices W0, W1, W2, V0, V1, V2, satisfies

the equation (35),(36) and the matrix F0, F1,F2 such that
F2C2V2 = W2, F1C1V1 = W1, and F0C0V0 = W0,

Step (4) Substitute V back into Equation (34) with (37) to
give F0, F1, F2.

V0 = V1 = V2 =



0.0266594 0.012664
0.0532409 0.0292111
0.0526191 0.0275588
0.0428678 0.0204925
−0.0799783 −0.0506558
−0.1597228 −0.1168444
−0.1578572 −0.1102353
−0.1286034 −0.0819702


W0 = W1 = W2 =

[
0.98367140.9919888
0.97512730.9892803

]
F0 =

[
−6494.8334 10556.91
−6511.9614 10584.49

]
where the eigenvalues are
λ1 = −3, λ2 = −4, λ3 = −26.609165, λ4 = −0.4710995,

λ5 = −0.7617854.
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F1 =

[
−230.40991 133.84942
−231.41824 134.19385

]
where the eigenvalues are λ1 = −3, λ2 = −4, λ3 =
−22.523982, λ4 = −0.5, λ5 = −0.7672673, λ6 =
−2.7710422 + 0.7706989j, λ7 = −2.7710422− 0.7706989j.

F2 =

[
−172.58241 135.085
−173.19315 135.43792

]
where the eigenvalues are λ1 = −3, λ2 = −4, λ3 =

−22.229984, λ4 = −0.509633, λ5 = −1.5034249, λ6 =
−5.2611072, λ7 = −0.7730653.

V. CONCLUSIONS

This paper has addressed the approach to partial eigenvalue
assignment for the descriptor system with the condition of
S−controllability. The impulse elimination problems via a
class of feedback controllers for the second-order system using
the ESA approach and Sylvester equations were addressed.
Two theorems were presented using Sylvester’s equations. Two
algorithms were implemented based on the Sylvester equation,
and examples were presented with their conclusions.
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