
EasyChair Preprint
№ 15375

Putting Green Software Principals into Practice.

James Uther

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 6, 2024



Putting green software principals into practice.
James Uther

james.uther@oliverwyman.com
Oliver Wyman
London, UK

Figure 1: CO2 footprint of a system over time.

ABSTRACT
The need and theoretical methods for measuring and reducing CO2
emitted by computing systems are well understood, but real-world
examples are still limited. We describe a journey towards green
software for a live product running on a public cloud. We discuss
practical solutions found, in particular using the cost implications
of serverless systems to drive efficiency. We end with our summary
of ‘green software’ principals.

KEYWORDS
Cloud computing, Sustainability, Programming teams, IT Gover-
nance

1 INTRODUCTION
We recently built a mostly green-field product that involved sub-
stantial data processing, including developing and training various
models and running production data pipelines using those models.
Taking the advice “all jobs are climate jobs” we sought from the
outset to make the system as low-carbon as possible, given the
business constraints.

We entered the project with a good understanding of green
software principals, including the various sustainable architecture
guidelines published by major hyperscalers [3, 11, 15], a "Green
Software for Practitioners" [10] badge, and personal motivation to
make a difference where we were.

We started with some rough components that were running
on a well known public cloud, and we had fairly free access to
the cloud products as long as we coöperated with our corporate
IT organisation. There was a gap between the proof of concept
code and a system that could be run confidentially in production
with orders of magnitude more data, so we were free to rewrite as
necessary, within schedule constraints.

We now have a system and supporting infrastructure that could
be considered ‘green’. In Section 2 we will describe how we struc-
tured the project and systems, Section 4 will discuss how the team
found the process, and then we will offer some discovered princi-
pals in Section 5. Note that finding these principals and building the
system was an iterative process, with much learning and rebuilding.

LOCO ’24, December 3 2024, Glasgow, UK
2024.

2 BUILDING THE INFRASTRUCTURE
We took a pragmatic definition of green software as “Does the job
while producing minimal CO2e”. The ‘does the job’ part is impor-
tant, as it introduces other architecture drivers such as corporate
policies, security, reliability, schedule, budget, and team capabilities.
These are driven by business or institutional goals, and any green
software principals or actions that make these harder for the team
are likely to be ignored or resisted.

We could not identify any incentives to adopt green principals
beyond personal ethics. While we understand there may be legisla-
tion or accounting standards in the future, they did not exist at the
time of writing, which leaves green software in the odd space of
being both desirable and at the same time all but valueless by the
metrics of a company, and a distraction for most employees.

Thankfully, in the particular case of cloud computing the cost
of the service is a reasonable proxy for energy use, which can be
related through grid intensity to CO2 footprint, and cost is most
definitely a good incentive for most businesses and thus employees.
Low latency billing data from the cloud proved invaluable in driving
cost (and thus CO2) reduction.

2.1 The platform
We needed to provide good infrastructure [12, 13] that satisfies the
user, while operating in a way that fulfils broader goals. We are
used to compute infrastructure that allows us to get stuff done1
while transparently looks after security, IT policies, budget etc. We
needed to build infrastructure that supported these corporate goals
while producing as little CO2 as possible.

Our strategy was to use products that are charged by usage and
can automatically scale according to load (ideally to and from 0).
Such serverless products are becoming ubiquitous as the cost and op-
erational benefits can be considerable, particularly for spiky work-
loads. If the usage/billing data is available quickly they also give an
excellent feedback signal: Increased usage implies increased CO2
and that usage is quickly reflected in the billing console. Actions to
decrease cost involve reducing compute usage, which reduces CO2,
linking good CO2 management to good financial management.

1your mileage may vary



LOCO ’24, December 3 2024, Glasgow, UK James Uther

We found a managed spark [19] platform that fulfilled the busi-
ness requirements, offered auto-scaling clusters, and later a fully
serverless compute feature.

2.2 Software
The platform guided users to use pyspark [9], which transforms
python code into faster JVM operations [5] that can be distributed
on an auto-scaling cluster. We did need to optimise the logic of
the application itself, but could be guided by latency and cost con-
siderations, also reducing CO2. While there is scope for further
optimisation, the need to cater for diverse and unknown future
maintainers limited our appetite for rewriting business logic in
Rust.

We tried various ways of avoiding the thundering herd prob-
lem [20]. The argument is that if everyone starts everything all at
once (say 00:00 UTC), hyperscalers need to size capacity to those
peaks, leading to over-investment, higher embodied carbon, and
the use of gas generators. Some cron implementations have wild-
card values, allowing the data centre to schedule the job any time
within given bounds. Mobile platforms overcome a related issue
and save energy by providing a tolerance parameter within their
timer APIs [4]. Our platform provided only simple cron scheduling,
so we are simply staring jobs at a fixed arbitrary time that is not
on the hour2.

2.3 Feedback
We built dashboards to display daily costs associated with particu-
lar clusters and jobs, enabling us to highlight the need to further
optimise parts of the system. It also helped prevent inefficient algo-
rithms, architectures and libraries from gaining a foothold, as the
costs associated quickly became apparent.

Section 3 describes our attempt to measure actual CO2, but it
was not as effective to drive behaviour as cost. We also found our
ability to measure increasingly limited as some workloads were
moved to SAAS platforms and compute moved out of view.

2.4 Power
We were able to use a cloud zone that claimed to be carbon neutral.
We recognise that all hyperscalers make use of opaque carbon
credit schemes [6, 14] and a better assumption might be that the
carbon intensity closely follows the regional grid intensity [2]. Even
this assumption is now doubtful as data centres are installing gas
generators. Time-matched energy purchases (T-EACs) [1, 16] look
like a way forward here and we look forward to seeing hyperscalers
move in this direction.

3 MEASUREMENT
Measurement is a foundation of good engineering. While we as-
sumed the cloud bill was a reasonable proxy, we did try to get more
detailed and true measure of our CO2 footprint. There are now a
few tools available to measure the CO2 output of a system [7, 17]
and cloud providers also provide customers will carbon footprint
reports. We have noticed that it’s still unusual for SAAS platforms

2https://xkcd.com/221/

to do this, and estimating the footprint of their control planes and
serverless workloads becomes impossible.

Our cloud platform provides a carbon usage dashboard, although
the data trails by 3 months as electricity market intricacies are
settled making it unhelpful for optimisation.

We reverted to Cloud Carbon Footprint [17] which has a
methodology [18] for converting billing data to estimated CO2
footprint. Although usually used as an online system, we were
abled to instead generate a lookup table 3 that was imported into
our platform, and used to augment the billing dashboard with our
estimated footprint (see Figure 1).

4 PEOPLE
Having built foundations, we worked with others to build out the
product. In a busy project there is little appetite for introducing risk
and work for non-core goals. Thankfully the infrastructure of the
project guided work to be low carbon while comfortably fulfilling
the business needs. The data centre location (and grid intensity)
was transparent. The billing data was vital for cost management.
The platform scaled jobs to the lowest cost/CO2 configuration au-
tomatically, or warned via billing when not being used effectively.

The project became a good learning opportunity for many. Often
contributors were from a ‘data science’ background which does not
emphasise efficiency. Others were used to using on-prem hardware
where software efficiency has little impact on cost (which is carried
in the initial purchase and fairly constant power bill). Some had not
worked with data at this scale before. In all cases the move to a scal-
able serverless platform involved some learning around structuring
solutions to enable distribution, and some lessons in efficiency and
algorithm choice. It was not directly related to CO2 footprint, but
as the team learned the software improved and operating costs
dropped. CO2 dropped alongside.

5 SUMMARY
We would summarise the architecture principals and activities we
used as:

• Infrastructure which is intrinsically low carbon.
– Renewable electricity.
– #LightSwitchOps - switch off unused resources. [8]
– Select the right size of resources.

• Feedback by publishing usage (cost & CO2) data.
• Optimise the software.

These guided us to serverless solutions which was a new ap-
proach for some, but worth embracing for many reasons beyond
their green credentials.

In our case, further reduction in CO2 footprint is now largely
dependant on our platform providers and their choice of electricity
supply, cron services, scheduling algorithms, CO2 footprint dash-
boards, supported software, hardware, cooling, etc. We decided that
a large, dedicated organisation can build a more efficient platform
than us, but we recognise it has left near-term progress in the hands
of those organisations. In particular we would like to see better low
latency reporting of our actual CO2 impact.

3https://www.cloudcarbonfootprint.org/docs/creating-a-lookup-table/

https://xkcd.com/221/
https://www.cloudcarbonfootprint.org/docs/creating-a-lookup-table/


Putting green software principals into practice. LOCO ’24, December 3 2024, Glasgow, UK

6 CITATIONS AND BIBLIOGRAPHIES
REFERENCES
[1] EnergyTag 2024. Carbon accounting & tracking for 24/7 clean grids. EnergyTag.

https://energytag.org/
[2] Electricity Maps 2024. Climate Impact by Area Ranked by carbon intensity of elec-

tricity consumed (𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ). Electricity Maps. https://app.electricitymaps.
com/map

[3] Amazon. 2024. Sustainability Pillar - AWS Well-Architected Framework. Ama-
zon. https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/
sustainability-pillar.html

[4] Apple. 2024. Energy Efficiency Guide for iOS Apps - Minimize Timer
Use. https://developer.apple.com/library/archive/documentation/Performance/
Conceptual/EnergyGuide-iOS/MinimizeTimerUse.html

[5] Doug Bagley, Brent Fulgham, and Isaac Gouy. 2024. The Computer
Language Benchmarks Game - Python 3 versus Java fastest performance.
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/
python.html

[6] Anders Bjørn, ShannonMLloyd,Matthew Brander, andHDamonMatthews. 2022.
Renewable energy certificates threaten the integrity of corporate science-based
targets. Nature Climate Change 12, 6 (2022), 539–546.

[7] Huamin Chen and Chen Wang. 2022. Sustainability the Container Native Way.
In Open Source Summit.

[8] Holly Cummins. 2023. Why Cloud Zombies Are Destroying the Planet and How
You Can Stop Them. https://hollycummins.com/cloud-zombies-qcon-london/

[9] The Apache Foundation. 2024. PySpark Overview. https://spark.apache.org/docs/
latest/api/python/index.html#

[10] The Green Software Foundation. 2024. Green Software for Practitioners (LFC131).
The Linux Foundation. https://training.linuxfoundation.org/training/green-
software-for-practitioners-lfc131/

[11] Google. 2024. Design for environmental sustainability. Google. https://cloud.
google.com/architecture/framework/sustainability

[12] Saul Griffith. 2021. Infrastructure and Climate Change. https://longnow.org/
seminars/02015/sep/21/infrastructure-and-climate-change/

[13] Saul Griffith. 2022. Electrify: An optimist’s playbook for our clean energy future.
MIT Press.

[14] Lissy Langer, Matthew Brander, Shannon M Lloyd, Dogan Keles, H Damon
Matthews, and Anders Bjørn. 2023. Does the purchase of voluntary renewable
energy certificates lead to emission reductions? A review of studies quantifying
the impact. SSRN (2023). https://ssrn.com/abstract=4636218

[15] Microsoft. 2024. Well-Architected for Microsoft Cloud for Sustainability. Microsoft.
https://learn.microsoft.com/en-us/industry/well-architected/sustainability/

[16] Maud Texier. 2021. A timely new approach to certifying clean energy.
google. https://cloud.google.com/blog/topics/sustainability/t-eacs-offer-new-
approach-to-certifying-clean-energy

[17] Thoughtworks. 2024. Cloud Carbon Footprint. https://github.com/cloud-carbon-
footprint/

[18] Thoughtworks. 2024. Cloud Carbon Footprint - Methodology. https://www.
cloudcarbonfootprint.org/docs/methodology/

[19] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: cluster computing with working sets. In Proceedings
of the 2nd USENIX Conference on Hot Topics in Cloud Computing (Boston, MA)
(HotCloud’10). USENIX Association, USA, 10.

[20] Štěpán Davidovič. 2016. Distributed Periodic Scheduling with Cron. In Site
reliability engineering: How Google runs production systems. O’Reilly Media, Inc.

https://energytag.org/
https://app.electricitymaps.com/map
https://app.electricitymaps.com/map
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MinimizeTimerUse.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MinimizeTimerUse.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python.html
https://hollycummins.com/cloud-zombies-qcon-london/
https://spark.apache.org/docs/latest/api/python/index.html#
https://spark.apache.org/docs/latest/api/python/index.html#
https://training.linuxfoundation.org/training/green-software-for-practitioners-lfc131/
https://training.linuxfoundation.org/training/green-software-for-practitioners-lfc131/
https://cloud.google.com/architecture/framework/sustainability
https://cloud.google.com/architecture/framework/sustainability
https://longnow.org/seminars/02015/sep/21/infrastructure-and-climate-change/
https://longnow.org/seminars/02015/sep/21/infrastructure-and-climate-change/
https://ssrn.com/abstract=4636218
https://learn.microsoft.com/en-us/industry/well-architected/sustainability/
https://cloud.google.com/blog/topics/sustainability/t-eacs-offer-new-approach-to-certifying-clean-energy
https://cloud.google.com/blog/topics/sustainability/t-eacs-offer-new-approach-to-certifying-clean-energy
https://github.com/cloud-carbon-footprint/
https://github.com/cloud-carbon-footprint/
https://www.cloudcarbonfootprint.org/docs/methodology/
https://www.cloudcarbonfootprint.org/docs/methodology/

	Abstract
	1 Introduction
	2 Building the Infrastructure
	2.1 The platform
	2.2 Software
	2.3 Feedback
	2.4 Power

	3 Measurement
	4 People
	5 Summary
	6 Citations and Bibliographies
	References

