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Abstract

This paper is dedicated to dimension reduction techniques for multivariate spatially indexed functional data.

We introduce an innovative method named Spatial Multivariate Funtional Principal Component Analysis

(SMFPCA), which stands for principal component analysis for multivariate spatial functional data. Unlike

the conventional Multivariate Karhunen-Loève approach, SMFPCA excels at effectively capturing spatial de-

pendencies among multiples functions. SMFPCA conducts spectral functional component analysis on multi-

variate spatial data, encompassing data points located within a regular grid. The methodological framework

and algorithm for SMFPCA have been developed to address the challenges posed by the lack of suitable

methods for handling such data. The efficiency of the proposed methodology has been substantiated through

comprehensive assessments of its performance using and simulated datasets and sea-surface temperature,

providing valuable insights into the properties of multivariate spatial functional data within a finite sample.

Keywords: Spectral Analysis, Functional Data Analysis, Functional Principal Component Analysis,

Spatial-functional Principal Component Analysis, Multivariate analysis

1. INTRODUCTION

Analysis of complex data structures, such as multivariate and spatially indexed functional data, has

become more prevalent in recent years due to its significance and application across various fields. Functional

data constitute a distinct data type in which each observation is represented by a function rather than a

conventional vector of values. These data are of infinite dimension, as it is defined across the entire continuum

of points.

Functional Principal component analysis (FPCA) is a technique used for exploratory functional data

analysis. It is commonly employed to reduce the multidimensional space, where the information is not easily

interpretable, into a space of reduced dimension. Furthermore, FPCA allows us to derive more informative
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attributes from the data, identify hidden patterns in a dataset, and discover correlations among variables [1],

[2] [3], [4], [5].

Within the domain of spatially indexed functional data analysis, the data are measured over space. This

could include, for example, temperature measurements taken at different locations in a geographic region.

One of the most common uses of principal component analysis on functional spatial data (SFPCA) is in

studies where the functional spatial data consists of spatially distributed objects, such as environmental

measurement sampling sites, watersheds, administrative districts, etc. The value of spatial analysis is to

understand and explore the interrelationship between the spatial positioning of objects, phenomena, and

their characteristics [6]. The analysis of spatially indexed functional data serves two purposes. Firstly, it

enables the identification of spatial patterns inherent in the functional data, these patterns provide valuable

insights into the underlying spatial structure and dynamics of the phenomena being studied. Secondly, the

analysis enables the development of models that can be used for making predictions or drawing conclusions

about the spatial distribution of the data. In the literature, [7] provided a useful introduction to selected

methods for geostatistical functional data; [8] developed extending ANOVA techniques to analyze spatially

correlated functional data. [9] and [10] used a spatially indexed functional data framework to solve space

physics problems. [11] and [12] developed spatial-temporal separability tests for functional data. [13] consid-

ered tests of anisotropy using Karhunen-Loève expansion but with a semiparametric estimation procedure

custom-developed for their objectives. The work of [14] is an example of a substantive application of spatial

functional modeling to a problem of practical importance. [15] present a method that combines singular value

decomposition with penalized smoothing to avoid high-dimensional covariance estimation, with a focus on

brain image analysis. [16] proposed a dimension reduction technique suitable for functional data indexed by

spatial locations on a regular grid. They developed the mathematical foundations for the spectral analysis

of such data, including spectral theory for linear spatial filters. In our work, we focus on scenarios where

multiple variables are examined, defined within both the same and different spatial-temporal domains. For

instance, to study temperature co-variability in a specific region over a defined time span, we have positioned

ourselves within this framework and utilized a spectral analysis approach to seek viable solutions.

Multivariate functional data analysis is a statistical and mathematical approach designed for the analysis

of multiple dependent variables or functions within a one or multidimensional context. It involves studying

the relationships and interactions between multiple functional data sets, considering various variables or

dimensions simultaneously. In the literature, there are several approaches for multivariate functional principal

component analysis (MFPCA) that are restricted to functions observed on the same finite one-dimensional

interval ([3]; [17]; [18]), all rely on a multivariate functional Karhunen-Loève data representation. [17] also

discusses normalized versions of MFPCA based on a normalized covariance operator. A method [19] has been

proposed for conducting MFPCA for independent data and image. This approach is specifically designed

to explore patterns of joint variation in multivariate functional data. It can be applied to datasets where

the functional variables are observed on potentially different dimensional domains, enabling comprehensive
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analysis of their interdependence. The estimation algorithm is based on univariate FPCA. However, the

authors did not take into consideration spectral analysis of indexed spatial data when applying the FPCA,

which may yield better results.

The objective of this study is to introduce a novel approach that enables spectral FPCA on multivariate

spatial data, defined within both the same and different domains, all structured on a regular grid. We refer

to this approach as SMFPCA, with the aim of extending previous work related to MFPCA [19], which does

not consider spectral analysis, and SFPCA [16], which does not consider the multivariate aspect. To our

knowledge, no previous work has employed multivariate spectral FPCA on spatial and temporal variables

within the same and different domain. We apply spectral spatial univariate FPCA, and the results can

be used to estimate multivariate functional principal components, eigenvalues, and scores based on their

univariate equivalents. Spectral decomposition is a high-performance method for analyzing functional spatial

data. It is based on the spectral density operator, which describes the spatial dependence structure of

the data by separating it into distinct frequencies. The advantage of this approach is that it allows the

identification of dominant frequencies that drive the variation in the spatial dependence structure of the data.

These dominant frequencies can then be used to define the FPCA, providing insights into the underlying

stochastic processes contributing to the data variation. Thus, spectral decomposition is an excellent tool for

a better understanding of the complex spatial dependence structure. We conducted a test of our method on

multivariate and spatially indexed environmental data. SMFPCA facilitates the integration of this type of

data within a unified analytical framework. This approach effectively captures and elucidates the variations

between variables as well as the inherent spatial variations present in the data. The SMFPCA technique also

possesses the capability to extract latent information from functional multivariate spatial data, uncovering

previously unobserved latent dimensions. This, in turn, explains variations in the data and reveals spatial-

temporal patterns. As a result, SMFPCA provides valuable insights into the underlying mechanisms driving

the observed data.

The paper is structured as follows: In Section 2, we describe the SMFPCA methodology; in Section 3, we

present finite sample properties and analyze the findings. Section 4 give the conclusion and some perspectives.

2. SPECTRAL PRINCIPAL COMPONENT ANALYSIS OF MULTIVARIATE SPATIAL FUNC-

TIONAL DATA

This section describes the proposed methodology and the mathematical model for conducting a spectral

SMFPCA on multivariate spatial-functional data. The methodology is based on the principles of Karhunen-

Loève theory, incorporating spectral analysis and Functional Principal Component Analysis (FPCA). Ad-

ditionally, key properties and concepts are derived from the works of [16], [3], [4], and [19]. The approach

specifically targets a multivariate spatial-functional phenomenon observed on a regular grid and defined

within both the same and different domains.

In section 2.1, we delve into the mathematical model employed in our approach. We provide definitions for
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various components, including the spatial multivariate functional data model, covariance operator, spectral

density operator, eigenfunctions (representing functions that characterize significant variations or dominant

modes within the functional data), eigenvalues (corresponding to the weights assigned to each eigenfunction

and quantifying the total variance explained), and scores (representing the projections of the original data

onto the basis functions). Once these elements are clearly established, we proceed to outline the subsequent

steps of SMFPCA in section 2.3.

2.1. Multivariate Spatial Functional Data

We consider that at n spatial units located on a region D ⊂ ZN , N > 1, representing a rectangular grid,

we observe a multivariate spatial functional process {Xs(.) = (X
(1)
s (.), ..., X

(p)
s (.))⊤}, p ≥ 1, where s ∈ D,

X
(j)
s = {X(j)

s (tj), tj ∈ Tj}. For 1 ≤ j ≤ p, let Tj be a compact set in R, with finite (Lebesgue-) measure

and such that X
(j)
s : Tj −→ C is assumed to belong to L2(Tj ,C), the space of complex square-integrable

functions on Tj . In the following let L2(Tj ,C) = L2(Tj). Note that the special case p = 1 corresponds to the

univariate spatial-functional case [16].

We denote by T := T1 × · · · × Tp, the p-Fold Cartesian product of the Tj . So, Xs is a multivariate functional

random variable indexed by t = (t1, · · · , tp) ∈ T and taking values in the p-Fold Cartesian product space

H := L2(T1)× · · · × L2(Tp). Let the inner product ⟨⟨·, ·⟩⟩ : H×H → R, for f, g ∈ H:

⟨⟨f, g⟩⟩ :=
p∑

j=1

⟨fj , gj⟩ =
p∑

j=1

∫
Tj

fj(tj)gj(tj)dtj .

Then, H is a Hilbert space with respect to the scalar product ⟨⟨·, ·⟩⟩ [19].

For each component X
(j)
s , let’s define the functions observed on n sites s1, ..., sn ∈ D by:

X(j) =

(
X(j)

s1 , ..., X
(j)
sn

)
, j = 1, . . . , p.

2.2. Univariate spatial functional pca

We independently consider each of the spatial functional univariate sample X(j), to compute a univariate

SFPCA. To achieve this, we apply the univariate spatial FPCA [16]. Let X(j) ∈ L2(Tj) possesses a covariance

operator Cj := E[(X(j) − µj) ⊗ (X(j) − µj)] (where µj is the mean curve define by µj(t) = EX(j)(t) with

t ∈ Tj) with kernel cj(t, s) = cov(X(j)(t), X(j)(s)) (t, s ∈ Tj). Then, the integral operator Cj is defined by

(Cjf)(t) =

∫
Tj

cj(s, t)f(s)ds, f ∈ L2(Tj), t ∈ Tj .

Let’s suppose that each {X(j)
s } is a weakly stationary functional process. We have:

(i) E(X(j)
s (t)) = E(X(j)

0 (t)) = µj(t), t ∈ Tj with 0 the null vector in RN

(ii) for all s,h ∈ D, and t, s ∈ Tj ; cj,h(t, s) := Cov

(
Xj

h(t), X
j
0(s)

)
= Cov

(
Xj

s+h(t), X
j
s (s)

)
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The integral operator defined by the autocovariance kernel cj,h is denoted Cj,h and defined by

(Cj,hf)(t) =

∫
Tj

cj,h(s, t)f(s)ds, f ∈ L2(Tj), t ∈ Tj .

The following assumptions have been made about the process X
(j)
s i.e. it is weakly stationary and has mean

zero. We suppose the autocovariance operators are absolutely summable:∑
h∈D

∥Cj,h∥ <∞. (1)

Let us denote the spectral density operator of X
(j)
s by FX(j)

θ with the following kernel:

fX
(j)

θ (t, s) :=
1

(2π)N

∑
h∈ZN

cj,h(t, s) exp(−ih⊤θ) (2)

t, s ∈ Tj , θ ∈ [−π, π]N , i =
√
−1,

where θ is the spatial frequency. We define L2
U ([−π, π]

N
) as the space of measurable mappings x : [−π, π]N →

U satisfying
∫
[−π,π]N

∥x(θ)∥2dθ <∞, with U the Hilbert space of all Hilbert–Schmidt operators from L2(Tj)

to L2(Tj) (see [16] for further explanation). The operator FX(j)

θ is understood as element of the space

L2
U ([−π, π]

N
) and is defined by (

FX(j)

θ Gθ

)
(t) =

∫
Tj

fX
(j)

θ (s, t)Gθ(s)ds,

with Gθ ∈ L2
U ([−π, π]

N
) and t ∈ Tj .

Considering the condition (1) and the assumptions previously defined for the process weakly stationary

X
(j)
s , FX(j)

θ is a Hilbert-Schmidt operator (positive, self-adjoint) and admits a decomposition [16]:

FX(j)

θ =
∑
m≥1

λj,m(θ)φj,m(θ)⊗ φj,m(θ), (3)

where λj,m(θ) ≥ λj,m(θ) ≥ ... ≥ 0 are eigenvalues (continuous functions of θ), and φj,m(θ) are associated

eigenfunctions. Let φj,m(t|θ) be the value of the eigenfunction φj,m(θ) at t ∈ Tj . The Fourier coefficients are

ϕ
(j)
m,l(t) :=

1

(2π)N

∫
[−π,π]N

φj,m(t|θ) exp(−il⊤θ)dθ, (4)

t ∈ Tj and the corresponding expansion of φj,m(t|θ) is

φj,m(t|θ) =
∑
l∈ZN

ϕ
(j)
m,l(t) exp(−il

⊤θ). (5)

With the property (1) and the assumptions previously defined for the process weakly stationary {X(j)
s },

we define the mth spatial functional principal component (SFPC) score by:
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ξ(j)m,s :=
∑
l∈D

〈
X

(j)
s−l, ϕ

(j)
m,l

〉
(6)

where ϕ
(j)
m,l is defined by (4). The corresponding SFPC filter are (ϕ

(j)
m,l)l∈ZN .

We deduce that

• ξ
(j)
m,s converges in mean square with :

E[ξ(j)m,s] = 0, E[(ξ(j)m,s)
2] =

∑
l∈ZN

∑
k∈ZN

〈
CX(j)

l−k ϕ
(j)
m,l, ϕ

(j)
m,k

〉
.

• If X
(j)
s is real then ϕ

(j)
m,l and ξ

(j)
m,s are also real.

• if CX(j)

h = 0 then ∀ h = 0, ξ
(j)
m,s coincides with the scores of the FPCA.

• ∀ m ̸= m′ and s ̸= s′ ∈ D the SFPCA scores ξ
(j)
m,s and ξ

(j)
m′,s′ are uncorrelated.

The spatial Karhunen–Loève expansion of X
(j)
s is given by

X(j)
s (t) =

∞∑
m=1

X(j)
m,s(t) t ∈ Tj ,with (7)

X(j)
m,s(t) :=

∑
l∈ZN

ξ
(j)
m,s+lϕ

(j)
m,l(t).

In practice, the spectral density operator is unknown and has to be estimated using the sample X(j)

observed on the grid D = {s = (s1, ..., sN ), 1 ≤ si ≤ ni, i = 1, ..., N}, the sample size is then n =
∑N

i=1 ni,

and we use the notation n = (n1, n2, . . . , nN ).

The spectral density operator is estimated by:

F̂X(j)

θ :=
1

(2π)N

∑
|h|≤q

w(h/q)Ĉj,he
−ih⊤θ (8)

where w represents a weight function and the vector q = (q1, q2, ..., qN ) consists of positive coordinates, the

sample autocovariance operators are estimated as follows:

Ĉj,h :=
1

n

∑
s∈Mh,n

(
X

(j)
s+h − X̄(j)

)
⊗

(
X(j)

s − X̄(j)
)

(9)

with Mh,n =
{
s ∈ ZN : 1 ≤ si, si + hi ≤ ni ∀1 ≤ i ≤ N

}
. If the set Mh,n is empty, we set Ĉj,h = 0.

2.3. SMFPCA Methodology

In this subsection, we present the methodology for computing SMFPCA. The methodology is divided into

two parts.

The first part relies on the univariate SFPCA of [16]. This involves considering a spectral analysis on

X(j), following the subsequent steps:
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1. Compute the spectral covariance operator.

2. Decompose the spectral covariance operator to obtain the estimated eigenfunctions φ̂j,m(θ), involving

SFPC filters (ϕ̂
(j)
m,s)s∈D, and λ̂j,m(θ), the estimated eigenvalues associated with the spectral variability,

where m = 1, . . . ,Mj for suitably chosen truncation lags Mj .

The estimator of the filter function ϕ
(j)
m,s is given by

ϕ̂(j)m,s(t) :=
1

(2π)N

∫
[−π,π]N

φ̂j,m(t|θ) exp(−is⊤θ)dθ,

where the functions φ̂j,m(t|θ) are the eigenfunctions of the spectral density operator estimator F̂X(j)

θ .

3. Finally, the X(j) are projected onto the spectral eigenfunctions, yielding the estimated scores ξ̂
(j)
m,s,

defined by:

ξ̂(j)m,s :=
∑

∥l∥∞≤L

〈
X

(j)
s−l, ϕ̂

(j)
m,l

〉
,

assuming that 1+L ≤ si ≤ ni−L for all 1 ≤ i ≤ N , where L is an integer-valued truncation parameter.

In the second part, the scores and SFPC filters of X(j) are utilized to compute the multivariate eigen

elements, following the steps:

5. Define the matrix E ∈ Rn×M+ of rows (ξ̂
(1)
1,s , . . . , ξ̂

(1)
M1,s

, . . . , ξ̂
(p)
1,s , . . . , ξ̂

(p)
Mp,s

), s ∈ D consists of all the

scores estimated from the Spectral PCA on each X(j), with M+ =M1 + . . .+Mp.

Let’s consider the matrix Z ∈ RM+×M+ (Prop.5., p.7 [20]) consisting of blocks Z(jk) ∈ RMj×Mk with

entries

Z
(jk)
ml = Cov(ξ̂(j)m,s, ξ̂

(k)
l,s ),

m = 1, . . . ,Mj , l = 1, . . . ,Mk, j, k = 1, . . . , p.

An estimate Ẑ ∈ RM+×M+ of the matrix Z is given by Ẑ = (n− 1)−1ETE .

6. Perform a matrix eigen-analysis for Ẑ resulting in eigenvalues ν̂m and orthonormal eigenvectors ĉm.

7. The multivariate eigenfunctions applied for each operator of each variable are obtained as follows:

ψ̂(j)
m,s(tj) ≈

Mj∑
l=1

[ĉm]
(j)
l ϕ̂

(j)
l,s (tj), (10)

tj ∈ Tj , s ∈ D, m = 1, ...,M+

where [ĉm]
(j) ∈ RMj denotes the j-th block of the (orthonormal) eigenvector ĉm of Ẑ.

Furthermore, multivariate scores are calculated as:

ρ̂m,s =

p∑
j=1

Mj∑
l=1

[ĉm]
(j)
l ξ̂

(j)
l,s . (11)
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We can deduce a sample version of the spatial Karhunen–Loève expansion for each univariate component:

X(j)
s (tj) ≈

Mj∑
m=1

X̂(j)
m,s(tj), tj ∈ Tj ,

with X̂(j)
m,s(tj) :=

∑
∥l∥∞≤L

ξ̂
(j)
m,s+lϕ̂

(j)
m,l.

assuming 1 + 2L ≤ si ≤ ni − 2L for 1 ≤ i ≤ N .

3. NUMERICAL EXPERIMENTS

In this section, we applied the SMFPCA procedure to simulated and real data. We compare the results of

the proposed SMFPCA methodology with MFPCA results, the latter of which does not account for spatial

considerations.

3.1. Simulation Study

In this section, we extend the simulation context of (section 4.1., P.1452 [16]) to a multivariate case.

We consider N = 2 and simulate SFARMA process {Xj
s,t(.)} defined by:

Xj
s,t =A10X

j
s−1,t +A01X

j
s,t−1 + εs,t +B10εs−1,t

+B01εs,t−1 +B11εs−1,t−1, t = 1, 2, . . . 50,
(12)

where (Akl)k,l∈P and (Bkl)k,l∈Q are Hilbert–Schmidt operators, P and Q two finite index sets valued in ZN ;

the errors ϵt,s are i.i.d gaussian variables. To assess the effectiveness of integrating the spatial and multivariate

aspects through SMFPCA, it is common to reconstruct the original functional data from the already computed

scores and filters. For each instance, we employ both the novel SMFPCA and the conventional MFPCA. We

assess the effectiveness of dimension reduction using the metric known as the normalized mean squared error

(NMSE) for each univariate component, as defined by:

NMSE(Mj) =

∑
s∈Dn

∥∥∥X(j)
s −

∑Mj

m=1 X̂
(j)
m,s

∥∥∥2∑
s∈Dn

∥∥∥X(j)
s

∥∥∥2 , (13)

Dn represents a region where the average is calculated (Dn = {s ∈ ZN : 1 ≤ si ≤ ni 1 ≤ i ≤ n})

Another alternative is to compute the error defined in equation (13) using the component eigenvalues

λ̂j,m of the spectral density operator F̂X
θ :

NMSE∗
spat (Mj) = 1−

∑
m≤Mj

∫
[−π,π]N

λ̂j,m(θ)dθ∑
m≥1

∫
[−π,π]N

λ̂j,m(θ)dθ
(14)

This measure assesses the quality of the approximation without being influenced by grid’s boundary ef-

fects unlike the NMSE, where the approximation of X
(j)
s is less accurate at the boundary [16].
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The experiments are conducted in 4 setting:

1. The first setting involves generating within the same domain Tj ∈ [0, 1] and j = 1, 2, two simulated

functional variables following (12), denoted SIM1 and SIM2 with 10 and 14 Fourier basis functions

respectively.

2. In setting two, we simulate variables defined in the first configuration and introduce errors following a

normal distribution.

3. The third setting involves generating two SFARMA variables, denoted SIM1 and SIM2 in distinct

domains, with T1 ∈ [0, 1] and T2 ∈ [2, 4]. We use a set of 14 and 10 Fourier basis functions for SIM1

and SIM2 respectively.

4. In the fourth setting, we simulate two functional variables as in the third configuration and introduce

errors following a normal distribution.

After obtaining the spatial functional data, a centering step is performed, followed by the application of

univariate SFPCA for each variable. In the configuration utilized for each setting, we need to define two

tuning parameters q and L. These two parameters value are determined with the automatic routine function

established in the FSD package, as defined by ([16] and Supplemental material ), specifically, we assign

q = (18, 17) across the four settings, while the parameter L assumes distinct values of 12, 10, 12, and 10 for

each respective setting. Then we proceed with describing steps in procedure 2.3, and compute 4 multivariate

principal components to capture more than 80% of variability.

After performing SMFPCA, we conducted a comparative assessment of the reconstructed functional data.

We applied equations (13) and (14), and the corresponding results are shown in Tables 1, 2, 3, and 4. We

can observe the performance of SMFPCA compare to the conventional MFPCA approach, which does not

account for spatial considerations. Using the first configuration as an illustrative example, as depicted in

Table 1, the results emphasize that the enhancement in NMSE and NMSE∗ quality is linked to the number of

functional principal components. This phenomenon is attributed to the fact that when the first three FPCA

are considered, they collectively account for approximately 80% of the total variance. The measure NMSE∗,

which describes the quality of the approximation with no boundary effects, shows better result compare to

Table 1: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the variables SIM1 and SIM2 in different

domain [0,1] and [2,4].

Cumulative PCA PC1 PC2 PC3

Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE SIM1 0.5473 0.5877 0.3882 0.5807 0.2214 0.5659

NMSE∗ SIM1 0.4366 0.5811 0.2350 0.3924 0.1369 0.2425

NMSE SIM2 0.5448 0.9078 0.3798 0.6036 0.3621 0.3712

NMSE∗ SIM2 0.4253 0.6039 0.2336 0.3710 0.1303 0.2419

9



Table 2: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the variables SIM1 and SIM2 in different

domain [0,1] and [2,4] with introduced errors.

Cumulative PCA PC1 PC2 PC3

Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE SIM1 0.4500 0.4591 0.3359 0.4589 0.2006 0.4503

NMSE∗ SIM1 0.3617 0.4590 0.2007 0.2927 0.1193 0.1859

NMSE SIM2 0.5764 0.9882 0.3305 0.5005 0.3123 0.3137

NMSE∗ SIM2 0.3527 0.5005 0.1929 0.3136 0.1099 0.1941

Table 3: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the variables SIM1 and SIM2 in domain

[0,1].

Cumulative PCA PC1 PC2 PC3 PC4

Spatial considera-

tion

Spatial Ordinary Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE SIM1 0.6347 0.7171 0.4298 0.6040 0.4294 0.6034 0.2593 0.3840

NMSE∗ SIM1 0.4729 0.6040 0.2705 0.3844 0.1542 0.2481 0.0904 0.1631

NMSE SIM2 0.5566 0.7071 0.4465 0.6257 0.2645 0.4002 0.2643 0.3993

NMSE∗ SIM2 0.4702 0.6258 0.2340 0.4002 0.1330 0.2532 0.0788 0.1644

Table 4: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the variables SIM1 and SIM2 in domain

[0,1] with introduced errors.

Cumulative PCA PC1 PC2 PC3 PC4

Spatial considera-

tion

Spatial ordinary Spatial ordinary Spatial ordinary Spatial ordinary

NMSE SIM1 0.5753 0.8565 0.4199 0.6079 0.4174 0.5540 0.2526 0.3707

NMSE∗ SIM1 0.4612 0.6080 0.2618 0.3710 0.1517 0.2433 0.0896 0.1577

NMSE SIM2 0.5922 0.6404 0.4383 0.6234 0.2674 0.3932 0.2671 0.3897

NMSE∗ SIM2 0.4655 0.6247 0.2375 0.3903 0.1348 0.2456 0.0793 0.1629

NMSE. Regarding the outcomes depicted in Tables 2, 3, and 4, even when considering data defined in various

domains and adding errors measurements, a similar trend can be observed in the results.

3.2. Application to real data

Following the application of the SMFPCA method to simulated data, we proceed to assess its performance

on real data. The data we use in this paper concerns sea surface temperature (SST) data from the NOAA

Optimum Interpolation Sea Surface Temperature dataset (section 4.2., P.1453 [16]). The dataset exhibiting

typical spatial dependence characterized by an exponential decay.
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The SST dataset is obtained through the aggregation of satellite observations and in-situ measurements

from ships and buoys. It provides daily observations on a global grid with a resolution of 0.25, covering

the entire sea area. The temperature data has been recorded since 1982, spanning a period of 33 years.

The dataset exhibits annual quasi-periodicity and represents a spatially indexed functional random field.

A subset extracted from the Indian Ocean area (60 to 93E longitude and 15 to 44S latitude) is chosen

for its homogeneity and lack of significant oceanic currents. To address strong correlation among nearby

observations, the grid resolution is reduced to 0.75, reducing computational load and supporting condition

(1) where slight differences at the 0.25 grid lead to slow spatial autocorrelation decay. Figure 1 illustrates a

snapshot of this extensive dataset.

Figure 1: Indian Ocean ranging approximately from 60 to 93E longitude and 15 to 44S latitude.

For our analysis, we use two representative sea surface temperature variables, namely TMP − 2000 and

TMP −2001, which correspond to the years 2000 and 2001 respectively, and represent a multivariate aspect.

To verify the efficiency of our methodology, we aim to conduct a comprehensive evaluation and analysis with

three variables of TMP −1996, TMP −1998 and TMP −1999, which represent the sea surface temperature

data for the respective years 1996, 1998, and 1999.

We apply the SMFPCA and ordinary MFPCA on NOAA data, and illustrate the performance estimation

procedure in two setting:

1. Application SMFPCA and ordinary MFPCA on two NOAA variables TMP − 2000 and TMP − 2001.

2. Application SMFPCA and ordinary MFPCA on three NOAA variables TMP −1996, TMP −1998 and

TMP − 1999.

We begin with the first configuration. The starting step of the SMFPCA algorithm involves computing

the functional data. We transform the TMP − 2000 and TMP − 2001 into spatial function data using

15 Fourier basis functions, this projection yields functions denoted as X
(j)
s,u(.), where the indices s, u, and

11



j represent longitude, latitude, and year, respectively. The time domain is Tj , it represents the intra-

year time and is scaled to the unit interval [0, 1]. Then we perform univariate SFPCA on these variables

with a spatial parameter L = 22 and q = (18, 17) for the TMP − 2000 variable, and L = 22 and q =

(19, 19) for the TMP − 2001 variable. Similar to the approach applied in the simulated data, the values of

these two parameters are chosen using the automatic routine function. We estimate the first 15 principal

components to capture the total variation present in the functional data. Figures 2 and 3 show the first three

principal components, which account for more than 80% of the total data variation. Notice that the results

corresponding to position 0 represent an ordinary FPCA without considering the spatial parameter. At this

step, we have applied the initial part of the methodology, which involves conducting separate functional

spectral analyses on the TMP − 2000 and TMP − 2001. Once the functional spatial filters have been

computed, we obtain the resulting scores and spatial filter operators.

Subsequently, we proceed to the second part of the methodology, wherein the multivariate aspect is

considered, following the guidelines specified in procedure 2.3. We have chosen to compute 4 multivariate

spatial FPCA to capture more than 80% of the total variation. Table 5 displays the percentage of variance

explained by the principal components obtained through the application of SMFPCA to the variables TMP−

2000 and TMP − 2001. Additionally, Figures 4 and 5 show the filter operators presented in Table 5.

Table 5: Cumulative percentage (CP) of explained variance of principal components obtained by SFPCA considering the variables

TMP − 2000 and TMP − 2001.

CP PC1 PC2 PC3

TMP − 2000 56.43 74.02 83.34

TMP − 2001 49.38 72.89 83.20

Equivalently to the simulated section, we assess the efficacy of dimensionality reduction through the eval-

uation of the NMSE for each univariate component. We apply equation (13), and the outcomes are detailed

in Table 7. Additionally, we employ the NMSE∗ metric as defined in equation (14), which characterizes

the quality of approximation while accounting for boundary effects. Table 6 displays the explained cumu-

lative variance of the FPCA after applying SMFPCA to variables TMP − 2000 and TMP − 2001. The

SFPCA integrate functional, multivariate, and spatial information, effectively capturing variations between

TMP − 2000 and TMP − 2001 variables on marine surfaces and spatial models. We can observe that the

first FPCA accounts for the largest variation in the data, which represents 58.80%. Furthermore, the 4 first

FPCA capture a significant amount of the overall variation, which represents 87.33% of the total variation.

The results presented in Table 7 provide strong evidence that the incorporation of the spatial aspect

consistently leads to improved performance in terms of NMSE and NMSE∗. Both NMSE and NMSE∗ exhibit

a decreasing trend with an increasing number of cumulative principal components, which is consistent with

the cumulative variance explained by the FPCA. In other words, as more variance is accounted for by the

FPCA, the NMSE and NMSE∗ values decrease.
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Figure 2: Evolution of three functional spatial filters of TMP − 2000 variable over the lag.

Figure 3: Evolution of three functional spatial filters of TMP − 2001 variable over the lag.

Table 6: Cumulative percentage (CP) of explained variance of functional principal components obtained by SMFPCA and

MFPCA considering the variables TMP − 2000 and TMP − 2001.

CP PC1 PC2 PC3 PC4

SMFPCA 58.80 69.97 79.72 87.33

MFPCA 37.59 52.11 63.78 68.63
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Table 7: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the variables TMP−2000 and TMP−2001.

Cumulative PC PC1 PC2 PC3 PC4

Spatial consid-

eration

Spatial Ordinary Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE 2000 0.4796 0.5416 0.3396 0.5147 0.2103 0.3749 0.2090 0.3166

NMSE∗ 2000 0.4356 0.5156 0.2596 0.3342 0.1664 0.2695 0.1120 0.2086

NMSE 2001 0.5178 0.6016 0.3665 0.4121 0.3578 0.3627 0.2493 0.2707

NMSE∗ 2001 0.5061 0.6021 0.2709 0.3788 0.1678 0.2686 0.1129 0.2135

Figure 4: Evolution of three functional spatial filters of TMP − 2000 variable over the lag after SMFPCA Application.

In setting 2, supplementary tests were conducted using sea surface temperature data to examine the

performance of the SMFPCA algorithm on three variables. We randomly selected the NOAA variables rep-

resenting the years 1996, 1998 and 1999, considering both the spatial and non-spatial aspects. We projected

the data onto 15 Fourier basis functions, and we performed univariate SFPCA with the spatial parameters

L = 22 and q defined as:

• 1996 : q = (15, 14)

• 1998 : q = (22, 22)

• 1999 : q = (19, 18)

Then we proceed with describing steps in procedure 2.3 for both settings, and compute the first 4 multi-

variate principal components to capture more than 80% of variability.
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Figure 5: Evolution of three functional spatial filters of TMP − 2001 variable over the lag after SMFPCA Application.

After computing SMFPCA, we performed a comparative assessment of the reconstructed functional data

with ordinary MFPCA, and the corresponding results are shown in Table 8. We find the same trend in results

as in configuration 1, the NMSE and NMSE∗ results exhibit a decreasing pattern as the cumulative number

of principal components increases. This test confirms favorable outcomes, even when considering three or

more variables.

Dimensionality reduction of multivariate functional spatial data shown in Figures 4 and 5, is achieved

by identifying the principal directions of variation among the functional variables. Consequently, the data is

succinctly represented through a restricted number of FPCA, facilitating simplified analysis and interpretation

of two or more functional spatial variables. Additionally, this approach enhances the visualization and

comprehension of results by enabling the identification of spatial patterns, structures, and trends within the

data.
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Table 8: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the variables TMP − 1996, TMP − 1998,

and TMP − 1999.

Cumulative PC PC1 PC2 PC3

Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE 1996 0.5090 0.6364 0.5069 0.5215 0.3223 0.5029

NMSE∗ 1996 0.4523 0.5358 0.2786 0.3772 0.1794 0.2851

NMSE 1998 0.6980 0.7111 0.3418 0.5812 0.3026 0.5069

NMSE∗ 1998 0.4476 0.5791 0.2624 0.3855 0.1640 0.2837

NMSE 1999 0.4377 0.4762 0.3053 0.3941 0.2758 0.3237

NMSE∗ 1999 0.4254 0.4744 0.2739 0.3520 0.1889 0.2778

4. CONCLUSION AND PERSPECTIVES

In this paper, we are interested to dimension reduction for multivariate spatial functional data. We

have introduced a novel method known as SMFPCA (Spatial Multivariate Functional Principal Compo-

nent Analysis). In the literature, the majority of existing methods are primarily based on Karhunen–Loève

methodologies, however, there is an absence of methods for processing multivariate spatial data using spec-

tral functional analysis. In this context, we have developed methodologies and mathematical properties for

conducting spectral FPCA on multivariate functional spatial data sampled on a regular grid, both within

the same domain or different domains.

We initially conducted tests on simulated variables, implementing our methodology without considering

the spatial dimension. This allowed us to make a comparison with the results obtained from the data that had

spatial indexing. We evaluated our approach by using the Normalized Mean Squared Error (NMSE), which

involves reconstructing data based on the calculated scores and filters. Furthermore, we assessed the quality

of the approximation without any boundary effects using the NMSE∗ measure. The results for NMSE and

NMSE∗ presented in Tables 1, 2, 3 and 4, clearly demonstrating the substantial performance improvement

achieved through the inclusion of the spatial aspect.

Similarly, we conducted supplementary tests on NOAA data, this data showed a low spatial dependency.

We selected sea surface temperature variables for the years 2000 and 2001 as representative examples of

the spatially indexed multivariate aspect. Furthermore, we performed supplementary tests on data from

three NOAA variables taken from different years. Our findings in tables 7 and 8 mirror those obtained from

simulated data, reinforcing that the incorporation of spatial considerations leads to notably improved NMSE

and NMSE∗ outcomes. SMFPCA also enhances data visualization by revealing spatial patterns and trends.

This approach unveils spatial-temporal patterns, and provides valuable insights.

As we look forward, it’s worth considering the incorporation of additional functionality to handle irregular

data. Such an enhancement would significantly broaden the scope of feasible analyses across diverse data

structures.
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