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Abstract. The quest for accurate modelling and simulation of dynam-
ical systems is the Holy Grail of computational physics and numerical
engineering. In deep learning, main approaches proposed in the literature
include prediction by time series and modelling by Ordinary Differential
Equations (ODEs). The usual methods for learning optimal parameters
then consist of formulating the question as a reachability problem and
then optimizing some suitable cost function for this reachability problem.
However, these two approaches fail to model specific complex dynamical
systems. The presented work considers the case of modelling and predict-
ing the behaviour of beams in particle accelerators. The difficulty lies in
the associated dynamic, which is highly versatile and possibly discontinu-
ous. In order to extend the scope of dynamical system modelling to meet
the particle accelerator modelling challenge, we present a new approach
that can cover this context called implicit neural ODE (INode). It uses
the modelling of discontinuous behaviour through integral operators;
these operators are used to pre-process the data to get a more classical
regression problem. Finally, the global model of the dynamical system
is formulated as the solution of an ODE, which contains the solution of
the regression problem. INode thus enables the learning of a data-driven
ODE while removing the computationally heavy ODE resolution from
the training loop.
The formal analysis of the approach establishes its consistency and con-
vergence properties under moderate assumptions.

1 Introduction

Machine learning techniques have profoundly altered the field of dynamic system
modelling and numerical engineering, leveraging the data and/or prior knowledge
to meet the prediction challenge. Depending on the available knowledge, the
sought model can be specified to satisfy physical constraints and/or used to
generate new data consistent with the physics of the problem.



Two main approaches have been presented in the literature in the context of
deep learning. A first approach and a long-studied direction tackle the prediction
of time series forecasts. A second approach aims at identifying the ordinary
differential equation (ODE) underlying the observed data [5,30,19,22].4

From an abstract point of view, these (deep learning) methods consist of
formulating the question as a reachability problem and then optimizing some
suitable cost function on this reachability problem. Such parameters are obtained
using some descent gradient method. This leads to particular methods, such
as the adjoint method. These methods fit on methods trying to optimize the
reachability of some desired goal from some given initial data, in some incremental
manner, guided by the local optimization of some cost function: we provide a
concise review in Section 3.1 and how this approach relates to some reachability
question.

Our motivating application is modelling particle accelerators, where particles
are generated and submitted to diverse electromagnetic fields to deliver a beam
with a prescribed behaviour. Efficient simulators have been designed to predict
the beam behavior with the desired level of accuracy. Their limitation is that
they are too computationally heavy to support, e.g., the number of experiments
required to calibrate the accelerator and achieve the prescribed behavior with the
desired accuracy. Several approaches, centered on learning surrogate simulators
and inspired from time series forecasting, have been presented in the literature
[23,2,34,9,33,29].

However, it turns out from our experiments that the above existing approaches
cannot model the highly versatile behaviour of a particle accelerator in the
general case. The behaviour of the beam is controlled by the several dozen
electromagnetic fields involved in the accelerator chambers, referred to as particle
accelerator control settings in what follows, and control settings when there is
no confusion to be feared. Depending on the control settings in particular, a
significant fraction of the particles may be ejected and the behaviour of the beam
becomes discontinuous.

Consequently, the existing methodology must be adapted to cover these
highly versatile and possibly discontinuous behaviours. One of our key ideas is
not to work directly over the inputs but on their transformation by a smooth,
deterministic operator. This aims to reduce the versatility of the data involved.
An example of a considered operator is the integral of the inputs. Notice that
this is inspired by ideas coming from analogue computations [31,4,3], where,
for example, integration was considered as an operation far more stable than
derivative. This is especially true when the observable trajectory u experiences
a discontinuity at some time t∗, implying that the derivative is infinite at this
point, unlike the integral.

4 A third emerging direction involves generative modelling, where the generated exam-
ples are filtered using the prior knowledge to support the identification of the sought
system. This approach is outside the scope of the paper and will not be considered
in the remainder.



Indeed, a new methodology, enabling the modelling of dynamic systems with
highly diverse and possibly discontinuous behaviour, is presented in this article
and referred to Implicit Neural ODE (INode). INode works in four stages.

1. Firstly, the observed behavioral data of the dynamical system is transformed
using integral operators; a new, continuous-by-design trajectory is computed,
called implicit trajectory.
Notice that we use the vocabulary sequential data and trajectory interchange-
ably in the following.

2. Secondly, the implicit trajectory is used to define a classical regression problem
aimed to predict the observed trajectory from the implicit trajectory.

3. Thirdly, the implicit trajectory is by design solution of an ODE involving the
original trajectory. We then consider the implicit ODE where the original
trajectory is replaced by its approximation, learned in Step 2. The implicit
ODE is solved and yields an approximate implicit trajectory.

4. Lastly, the original trajectory is estimated from the approximate implicit
trajectory using the model learned in Step 2.

The main contributions of the approach are as follows. Firstly, INode aims
to characterize parametrized ODEs (one ODE for each control settings), while
prominent NODE approaches aim to characterize the ODE best fitting the data.
Secondly, the theoretical analysis of the approach shows that, under moderate
assumptions, i) the solution of the implicit ODE is unique (stage 3. above); ii)
the original trajectory can be approximated with arbitrary precision in the large
sample limit (universal approximation property). Thirdly, and importantly, the
ODE resolution is contained in Stage 3., thus outside of the learning loop (Stage
2. above), with a significant gain in computational complexity.

2 Related work

Neural ODEs Ordinary Differential Equations is a widespread tool to model the
evolution of systems over time [12]. The theory of dynamical systems, Ordinary
Differential Equations (ODEs), Partial Differential Equations (PDEs) and their
applications to various contexts is a common topic in mathematics, physics,
and, more generally, in every applied science. Their use and adequateness in the
context of deep learning have been pointed out recently [27]. In particular, neural
ODEs [5] have demonstrated their performance in various contexts, particularly
with respect to traditional approaches in deep-learning problems. Neural ODEs
are particularly suitable for contexts with temporal dependencies, providing exten-
sions of tools such as Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks [13], and hence refining traditional modeling methods
(see for an overview [8]). Research and applications involving Neural Ordinary
Differential Equations (Neural ODEs) are typically explored within two main
frameworks: Continuous-depth deep learning models [5] and Physics-Informed
Neural Networks (PINNs) [25]. PINNs leverage insights from the continuous



nature of physics underlying the differential equations, thereby aiding learnabil-
ity by incorporating pre-existing knowledge. By integrating physics-informed
principles with machine learning, as exemplified in PINNs, the learning process
is anchored in established physical laws that the neural networks must adhere
to. This approach assumes prior knowledge about the observed data, ensuring a
more robust and interpretable learning process. Achieving such promising results
involves a suite of techniques, including adaptive sampling methods [7], special-
ized neural network architectures [28], and dedicated optimization tools [14].
Applying them to high-dimensional problems remains a challenge.

The work considered here is more closely related to the continuous-depth
deep learning model approach and its variants [5,27]. Neural ODEs are often
associated with problems related to learning time series [17,5,26]. In particular,
an approach is to consider the learning of suitable latent variables using models
such as Latent ODEs. Some continuous-time extensions of (classical discrete-time)
transformers have been proposed. It has been demonstrated that many variants of
transformers can be extended to deal with irregular time series modeling [6]. Here,
we learn directly from some hyperparameters and from the initial data but we do
not work on time series. Learning a Neural ODE is classically based on techniques
such as the adjoint method, and this requires in practise some numerical methods.
Methods to reduce the practical costs have been proposed: [16] uses higher-order
derivatives of solution trajectories to improve the process. Some methods have
been proposed in constitutive equations by hardwiring some constraints from
physics to help the learning process in this specific context of mechanics [21].

The context of particle accelerators Building a surrogate particle accelerator
is a difficult task because the associated learning process requires to deal with
discontinuous inputs (trajectories) to be learned. This is a difficulty in ODE-based
approaches, as differentiability implies continuity. On the other hand, differen-
tiation is well-known from an engineering point of view as a very numerically
unstable operation. Our approach is based on not working with functions and
their derivatives but working with their integrals.

Concerning various approaches and practical models to deal with similar con-
texts, we can mention the following: investigations with discontinuous dynamics
resulted in the formulation of Neural Jump Stochastic Differential Equations, [15]
enabling the modelling of systems experiencing sudden shifts. This innovation
expands the utility of Neural ODE frameworks to represent diverse real-world
scenarios more accurately. In addressing practical challenges such as irregularly-
sampled data, the articles [26,19,20] showcased the adaptability of Neural ODEs
to real-world data collection scenarios, enhancing their utility in various applica-
tions.

The scope of Neural ODEs has been broadened by introducing a framework
for modeling systems ruled by integro-differential equations [35]. This seems to
be pivotal in areas where understanding cumulative effects over time is essential.
This progress diversifies the Neural ODE toolkit, accommodating a broader
spectrum of dynamic behaviours.



3 Problem Description

In supervised learning, we deal with a set of inputs X ⊂ Rn and corresponding
outputs Y ⊂ Rm, both subsets of Euclidean spaces. The aim is to accurately
approximate a ground truth function, depicted as a mapping F : X → Y.

Here, F is typically considered as the solution of a reachability problem: it is
assumed that there is some underlying Ordinary Differential Equation (ODE)
du
dt (t, c) = f (u (t, c) , t, c) so that F is the function that maps initial condition
u(0, c) = x to its value u(T1, c) at some given fixed time T1 (or possibly at a set
of given times (Ti)i, but for simplicity we consider here first the case of only one
measurement T = T1). In other words, F is the flow of some underlying ODE, or
if one prefers, the set of points reached from an initial condition x at some given
time T1.

To achieve this, we want to approximate the underlying ground truth function
f by a family of approximating functions fθ parametrized by θ ∈ Θ. The set of
parameters, Θ, typically resides within another subset of an Euclidean space.

In a generic view, this problem then comes back to tackle an optimization
problem generally expressed as infθ∈Θ Ex∼X [`(Fθ(x), F (x))], wherein ` : Y ×
Y → R serves as a loss function and the input distribution is represented by a
probability measure on X . In this work, the definition of the loss function is the
regression loss `(x, y) = ||x− y||2.

If one prefers, assume that F is some fixed function, T1 is some fixed parameter.
We search for the optimal θ minimizing the loss function, measuring the (square
of the) distance between F (x) and Fθ(x), where F is the flow associated to f , and
Fθ is the flow associated to fθ (both at time T = T1). As usual, in the context
of deep learning, the difficulty is that when we state that F and T1 are fixed,
we only know F on some input/output points, but we do not know explicitly
fully function F . We search for the best θ, minimizing the loss function on the
available data.

In the more general case of many time/parameters measurements (i.e; possibly
a set of given times (Ti)i), we consider an observable trajectory as a function
u : [t0, T ]×Rp → Rn. We may then have T distinct from a single point T1, but all
the (Ti)i: namely, supi Ti < T . We always assume a trajectory is L∞ (integrable
and bounded), representing the state trajectory of a system, where p denotes the
dimension of the state space. In practice, this trajectory is influenced by a set of
p control parameters c ∈ Rm which dictate the system’s dynamics. Our objective
is to learn an approximation for u based on known initial conditions u (t0, c) and
the control parameters c, with the available data.

3.1 Background in our context

This can be related to Recurrent Neural Networks (RNNs). In RNNs, the system’s
evolution from one time step to the next is described by the equation:

u (ti+1, c) = u (ti, c) + fθ (u (ti, c)) (1)



Here, f is a function parameterized by θ, representing the system’s behaviour
dynamics. θ corresponds to the weights.

The concept of NODE [5] can be interpreted as a continuous generalization of
the classical recurrent neural network by adding additional layers and progressively
decreasing the step size. NODE’s novelty lies in considering the function u as the
solution of an ODE:

du

dt
(t, c) = f (u (t, c) , t, c) (2)

A neural network fθ is employed to approximate the unknown f function.
The estimate function û is the solution to the initial value problem defined by fθ,
and u (t0, c).

dû

dt
(t, c) = fθ (û (t, c) , t, c) (3)

The state estimate at any time can thus be predicted by solving the ODE:

û (t, c) = ODESolve (fθ, u (t0, c) , t0, t) (4)

ODESolve(fθ, u (t0, c) , t0, t) serves as a black-box that solves Eq. (3), starting
with the value u (t0, c) at time t0. In summary, the NODE algorithm can be
formulated in our context as follows:

1. Initialize a neural network fθ (weights are randomly initialized)
2. For a control parameter c, and its associated trajectory u (t, c)

(a) Compute û (t, c) such that dû
dt (t, c) = fθ (û (t, c) , t, c) using an ODE

solver.
(b) Compute the loss L(û (T, c)) = `(û (T, c) , u (T, c)) = ||û (T, c)−u (T, c) ||2.
(c) Compute the gradient of the loss `(û (T, c) , u (T, c)) using the adjoint

method (see [5] or below).
(d) Update the network weights based on the gradient.

To calculate the gradient of the loss function L(û), the adjoint method is
classicalyutilized [5]: The adjoint state a(t) is defined as the gradient of L with
respect to the state u, i.e., a(t, c) = ∇u(t,c)L. The key insight of the adjoint
method is that the dynamics of a(t, c) is given by another ODE:

−da(t, c)

dt
= a(t, c)T

∂fθ(u(t, c), t, c)

∂u(t, c)
.

This ODE is solved backwards in time, from t1 to t0, with the initial condition
a(t1) = ∇u(t1)L, obtained from the derivative of the loss with respect to the
output of the ODE solver. The gradient ∇θL is then computed by integrating

a(t)T
∂fθ(u(t, c), t, c)

∂θ

over time from t0 to t1. Despite the efficient memory consumption of such a
method, the full differential equation must be solved at each training step, which



becomes particularly challenging when dealing with complex underlying neural
networks or extended sequences.

This method provides an efficient way to find (possibly locally) optimal
parameters θ, solving the associated reachability problem corresponding to the
considered supervised learning problem.

4 Our approach

We propose a new model, INode, inspired by NODE, aimed at learning the ob-
servable trajectory u. Our approach involves incorporating additional information,
referred to as integrated trajectory v, required to be a solution of a differential
equation (controlled by u). In other words, v is designed to fulfill the differential
equation:

dv

dt
(t, c) = g (u (t, c) , v (t, c) , t) (5)

where function g called driving function, defined as g : Rn×Rm×[t0, T ]→ Rm
if it satisfied the three properties:

1. Lipschitz Continuity in State Space: for every xv ∈ Rm and t ∈ [t0, T ],
the function g(·,xv, t) is ku-Lipschitz. This means there exists a constant ku ∈
R+ such that for all (xu,1,xu,2) ∈ Rn×Rn, ‖g (xu,2,xv, t)− g (xu,1,xv, t)‖ ≤
ku ‖xu,2 − xu,1‖.

2. Lipschitz Continuity in Integral State Space: for every xu ∈ Rn and
t ∈ [t0, T ], the function g(xu, ·, t) is kv-Lipschitz. Thus, for all (xv,1,xv,2) ∈
Rm × Rm, ‖g (u,xv,2, t)− g (u,xv,1, t)‖ ≤ kv ‖xv,2 − xv,1‖.

3. Continuity over the Time: the function g is continuous with respect to
time, meaning that for any ∀ (xu,xv) ∈ Rn×Rm the mapping t→ g (xu,xv, t)
is continuous over the interval [t0, T ].

Note that for a given integrated trajectory v, multiple potential suitable
functions g may exist, but we only require to know one. Inspired by analogue
computational methods [31], our focus will primarily be on the integral operator,
rendering the integrated trajectory as v (t, c) =

∫ t
t=t0

u (s, c) ds. In this case, v
corresponds to the integral.

Theorem 1 (Driving Function Existence). Let u : [t0, T ]× Rp → Rn be a
observable trajectory, let g be a driving function.

For any initial condition v0 (c), there exists a unique absolutely continuous
function v : [t0, T ] × Rp, such that for all c ∈ Rp, for all t ∈ [t0, T ], v (t, c) =

v0 (c) +

∫ t

t0

g (u (τ, c) , v (τ, c) , τ) dτ .

In other words, there exists a unique function denoted as F and referred to as
the integral operator, which maps observable trajectory u to integrated trajectory
v: v = F (u).



Assuming initial knowledge of the integrated trajectory’s value v (t, c) =
F (u) (t, c), we then proceed to train a neural network fθ to learn the observable
trajectory u (t, c) from integrated trajectory v (t, c):

u (t, c) = fθ (v (t, c) , t, c) . (6)

This neural network fθ can be seen as defining a new ODE gθ as follows:

dv

dt
(t, c) = g (fθ (v (t, c) , t) , v (t) , t, c)

= gθ (v (t, c) , t, c)
(7)

This ODE will be learnt in two ways. Either we solve the regression problem
defined by Eq. (6). Or we use the adjoint method to solve Eq. (7). Once we have
learned gθ, we might not have direct access to integrated trajectory v. However,
at any time step, integrated trajectory v can be estimated by solving the ODE:

v̂ (t, c) = ODESolve(gθ, v (t0) , t0, t, c) (8)

Under the same assumptions as [5], gθ fulfills the conditions of the Picard-
Lindelöf theorem since most neural networks architecture are Lipschitz continuous
functions, ensuring the unicity of the solution. For a formal proof and statement,
refer to Theorem 2.

Theorem 2. Let g be a driving function and f be a smooth estimator. For any
initial condition v0 (c), there exists a unique function v such that for all t ∈ [t0, T ],
for all c ∈ Rp,

∂v

∂t
(t, c) = g (f (v (t, c) , t, c) , v (t, c) , t) and v (t0, c) = v0 (c)

In other words, there exists a unique integrated trajectory that is the solution
to this new ODE defined in Eq. (7). Then, we can estimate observable trajectory
u by applying the following equation:

û (t, c) = fθ (v (t) , t, c) (9)

A key point of our approach is that we have access to additional information
v = F (u) during the training. This additional information is calculated from the
datasets in a preprocessing step (Step 1 below).

In summary, the INode algorithm can be described as follows:

1. Step 1: Operator preprocessing: Compute v = F (u) for training data.
2. Step 2: Learning the ODE

(a) Initialize a neural network fθ and consequently gθ (Refer to Eq. (7) for
understanding the relationship between the two networks)

(b) For a control parameter c, and its associated trajectory u (t, c)
i. Compute v̂ (t, c) such that dv̂

dt (t, c) = gθ (v̂ (t, c) , t, c) using an ODE
solver.



ii. Compute the loss L(v̂ (t, c)) = `(v̂ (t, c) , v (t, c)).
iii. Compute the gradient of the loss `(v̂ (t, c) , v (t, c)) using the adjoint

method.
iv. Update the network weights based on the gradient.

3. Step 3: Evaluation
(a) Compute v̂ by solving the ODE defined by gθ (see Eq. (8))
(b) Estimate u as û = fθ (v) (see Eq. (9))

The INode algorithm acts as a universal approximator for any observable
trajectory since this observable trajectory is integrable and essentially bounded.
In other words, it allows us to approximate the discrepancy between u and fθ (v)
to an arbitrary degree, given the value of v (see Theorem 3): given the function v,
there exists a neural network fθ that acts as a universal approximator for u (t, c)
(see. Step 2).

Following the notation from [18], we denote by NN ρ
m,n,k the set of multilayer

perceptrons that have m neurons in the input layer, n neurons in the output
layer and an arbitrary number of hidden layer each containing at least k neurons
each, using the activation function ρ.

Theorem 3 (Universal Approximation knowing the integrated trajec-
tory). Let u be a observable trajectory and g be a driving function. Let v be the
integrated trajectory of u guaranteed by Theorem 1: v = Fg,v0 (u).

For all ε > 0, for all k > 0, there exists a neural network

fθ ∈ NNReLU
m+p+1,n,max(m+p+2,n)

such that fθ is a smooth estimator with a uniform Lipschitz constant bounded by
k, and for all t, c ∈ [t0, T ]× Rp, ‖fθ (v (t, c) , t, c)− u (t, c)‖ < ε.

Then, having such an approximation, we can infer another approximation for
observable trajectory, this time without prior knowledge of the value of integrated
trajectory (see Theorem 4).

Theorem 4 (Universal Approximation). Let u be a observable trajectory
and g be a driving function. Let v be the integrated trajectory of u corresponding
to solution guaranteed by Theorem 1: v = Fg,v0 (u).

For all ε > 0, for all constant k > 0, there exists ε1 > 0 such that all
neural networks fθ ∈ NNReLU

m+p+1,n,max(m+p+2,n) that satisfies the two following
properties

1. fθ is a smooth estimator with a uniform Lipschitz constant bounded by k,
2. and for all t, c ∈ [t0, T ]× Rp, ‖fθ (v (t, c) , t, c)− u (t, c)‖ < ε1.

verify: ‖fθ (Gg,v0 (fθ) (t, c) , t, c)− u (t, c)‖ < ε where
Gg,v0 (fθ) (t, c) =

∫ t
t0
g (fθ (v (τ, c) , τ, c) , v (τ, c) , τ) dτ .



In other words, Theorem 4 says that if fθ is a universal approximator for
u (t, c), then the trajectory computed by Step 3 defines a universal approximator
for u (t, c).

We have outlined our method using a generic operator between u and v,
requiring only this operator to be differentiable. For example, we can outline
three specific operators:
– the integral operator that we call INode,
– the exponential smoothing (EXP-INode), inspired by the exponential smooth-

ing operator widely recognized in the literature,
– and a combination of the strategies of the first two approaches (Comb-INode).

INode: Case when v corresponds to the integral of u: v (t, c) =

t∫
t=t0

u (s, c) ds.

As previously mentioned, integration is known to be a numerically more stable
operation than differentiation, particularly in the context of analog computa-
tions [31]. It is especially true when the signal u experiences a discontinuity at
some time t∗, where the derivative would be infinite, unlike the integral. This
concept can be illustrated with the Heaviside function H whose derivative, in
the sense of distributions, is the Dirac delta distribution δ, whereas its inte-
gral is the ramp function R (also called ReLU function). When the observable
trajectory u is the Heaviside function H, the integrated trajectory v (t, c) is
continous (see Figure 1). Unlike NODE-based methods that must approximate
the Dirac delta function, our method is designed to learn a mapping from the
ramp function to the Heaviside function, which can be expressed in the following
way: H (t) = g (R (t) , t) = R(t)

t .

u (t, c) = H (t) v (t, c) =

t∫
t=0

H (s) ds
du

dt
(t, c) = δ (t)

Fig. 1: Function u whose its integral is more stable than its derivative. The red
point in the middle figure signifies the discontinuity.

Note that Step 3.(a) of INode, which involves computing an integral, can be
efficiently performed using simple numerical methods such as the Trapezoidal
rule.



EXP-INode: Case when v corresponds to the Exponential Smoothing of u:

v (t, c) = u (t0, c) e−λ(t−t0) +

t∫
t=t0

λe−λ(t−s)u (s, c) ds (10)

Where λ is a positive constant. The exponential smoothing (or exponential
moving average) results from averaging the past signal, but applying forgetting
weight exponentially decreases with time. This operator is also chosen for its
smoothing capability, acting as a low-pass filter inspired by signal processing
theory.

Note that v fulfills an (ODE): dv
dt (t, c) = λ (u(t, c)− v(t, c)). This equation

confirms that Step 3.(a) of Method INode can be implemented.
Similar to the previous case, calculating v (t, c) can be achieved by relying on

the dataset because it involves a composition of an integral and an exponential
function.

Comb-INode: Case when v (t, c) corresponds to a combinations of the two previ-
ous cases: Finally, the combination of these two approaches—integrating and
exponential smoothing—suggests a hybrid strategy where both operators are
employed to harness their respective advantages.

v (t, c) =

[
v1 (t, c))
v2 (t, c))

]
=

[ ∫ t
t0
u (s, c)) ds

u (t0, c) e−λ(t−t0) +
∫ t
t=t0

λe−λ(t−s)u (s) ds

]
(11)

Now, an integrated trajectory corresponds to u = fθ (v) = fθ

([
v1
v2

])
. We

then have a system of ODEs that we can also solve:

dv (t, c)

dt
=

[
dv1(t,c)

dt
dv2(t,c)

dt

]
=

[
fθ (v(t, c))

λ(fθ (v(t, c))− v2(t, c))

]
.

5 Experiments Results

We aim to create a surrogate for a part of the ThomX particle simulator [32]:
This accelerator began operation in 2021 and is currently in the commissioning
phase). We aim to focus on the linear accelerator section (corresponding to the
part where the electron beam accelerates from zero velocity to the speed of light).

Dataset The overall Linac dataset [11] includes 4000 simulations, computed by
Astra [10] and uniformly divided into a training set (80%), a validation set (10%)
and a test set (10%). The overall dimension of the control settings (c) is 36 [24].
It includes detailed simulation outputs of electron beams passing through a linear
accelerator, capturing a series of parameters that describe beam dynamics.



Each trajectory i is represented by 4000 points, denoted as (tj , u (tj , cj))1≤j≤4000
where tj are the time instances and u(tj , ci) are the corresponding values of the
trajectory under specific parameters ci. The time for each point tj is uniformly
drawn from the interval [0, 9.393].

Experiments Set-up We evaluate our three variant approaches alongside the
baselines (LSTM [13] and NODE [5]). Additionally, we explore two methodologies
to resolve Eq. (7): One approach employs a regression technique, and the second
refines the outcome of the first using the adjoint method. We will specify the use
of the adjoint method by incorporating the term "with finetuning".

All experiments, except LSTM, employ a Fully Connected Neural Network
(FCNN). The NODE is trained using the loss function defined in the seminal
paper [5]. The selection of hyperparameters, such as the optimizer, specifics
of the ODE solver, sampling points, method of normalization, learning rate,
and criteria for loss, is conducted through extensive testing using Optuna [1], a
hyperparameter optimization framework.

Performance Measurement To compare the performance of the different models,
we compare the predicted trajectory position with the trajectory from the dataset
(referred to as ground truth). We will use the coefficient of determination R2 to
compare these two trajectories. The R2 value is defined as:

R2 = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

where yi are the ground truth values, ŷi are the predicted values, and ȳ is
the mean of the actual values. The R2 value indicates how well the predicted
trajectory matches the ground truth, with a 1 indicating a perfect match.

Experiments Results This section aims to evaluate the capability of INode and
its variations to accurately represent a LINAC’s behaviour and compare their
effectiveness with conventional time series forecasting models.

Method LSTM NODE INode EXP-INode Comb-INode
R2 0.9588 0.9448 0.9911 0.9920 0.9944

Table 1: Comparison of Global Metrics Across Different Methods

The results presented in Table 1 highlight the superior performance of the
INode models over traditional time series prediction models such as LSTM and
NODE.

We aim to visualize the predicted beam properties compared to the ground
truth trajectory given by the Astra [10] beam tracking simulator. We focus on
three significant parameters to characterize the beam:



1. Emittance measures the spread of a particle beam in phase space, representing
the beam’s quality and tendency to diverge. It describes the size and angular
divergence of the beam, with lower emittance values indicating a higher
quality beam that is more focused and less prone to spreading out.

2. Average horizontal position-angle correlation in the beam transverse coordi-
nates (denoted by XX ′avr) is the covariance between the horizontal position
of particles within the beam and their horizontal propagation angles.

3. Horizontal angular spread in the beam transverse coordinates (denoted by
X ′ms) is a measure of the spread of particle angles in the horizontal plane,
quantified as the root mean square (RMS) of these angles. It indicates how
much the particles within the beam deviate from the average direction in the
horizontal axis.

Figures 2, 3, 4, 5 and 6 offer a visual comparison of model performance across
varying levels of sequence discontinuity in the dataset. Although the NODE model
achieves satisfactory R2 scores, its main strength lies in predicting the general
scale of the sequences rather than handling discontinuities. In contrast, even
the base INode model accurately captures these discontinuities or exponential
smoothing.

(a) Emittance over time (b) XX ′
avr over time (c) X ′

ms over time

Fig. 2: Performance of LSTM. The orange curve represents the ground truth
trajectory, while the blue curve represents the trajectory predicted by the model.

6 Conclusion

This article reviews the basic approach based on Neural Ordinary Differential
equations for time series prediction and ODE modelling. It consists of searching
from some underlying ordinary differential equation and searching for some
(possibly local) optimal of a cost function over the associated reachability problem.
This is done by using a gradient descent and requires the computation of the
gradient of this cost function. The adjoint method is a classical method for
evaluating this gradient, which solves another differential equation. This can be
seen as a continuous time version of the backpropagation algorithm [5].



(a) Emittance over time (b) XX ′
avr over time (c) X ′

ms over time

Fig. 3: Performance of NODE. The orange curve represents the ground truth
trajectory, while the blue curve represents the trajectory predicted by the model.

(a) Emittance over time (b) XX ′
avr over time (c) X ′

ms over time

Fig. 4: Performance of INode. The orange curve represents the ground truth
trajectory, while the blue curve represents the trajectory predicted by the model.

(a) Emittance over time (b) XX ′
avr over time (c) X ′

ms over time

Fig. 5: Performance of EXP-INode. The orange curve represents the ground
truth trajectory, while the blue curve represents the trajectory predicted by the
model.



(a) Emittance over time (b) XX ′
avr over time (c) X ′

ms over time

Fig. 6: Performance of Comb-INode. The orange curve represents the ground
truth trajectory, while the blue curve represents the trajectory predicted by the
model.

This study introduces the Implicit Neural ODE (INode) framework, extending
the approach in dynamical systems modelling, specifically tailored for applications
involving discontinuous behaviours, such as those observed in particle accelerators.
Unlike traditional methods, INode leverages integral operators to transform the
input data into a more manageable form, bypassing the discontinuities’ complexi-
ties. Our results demonstrate that INode not only addresses the challenges of
modelling systems with abrupt behavioural changes.

Through rigorous theoretical analysis, we have established the consistency
and convergence properties of the INode framework, validating its effectiveness
under moderate assumptions. Moreover, our approach’s ability to learn data-
driven ODEs without direct interaction with the heavy computational process of
ODE resolution, particularly when discontinuous are involved, marks a significant
advancement over existing techniques, offering improved efficiency and robustness.
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