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Abstract. This study investigates the water quality characteristics of pH, turbid-

ity, and KMnO4 at the Ngagel II water treatment plant operated by Surya Sem-

bada water treatment in Surabaya, Indonesia. Phase I and II analyses revealed 

that while the water quality parameters met established standards, the presence 

of autocorrelation compromised data reliability. To address this, a Generative 

Adversarial Network (GAN) model was developed and optimized to generate re-

sidual values capable of reducing autocorrelation. The performance of the GAN 

was evaluated using Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and Mean Absolute Error (MAE) metrics. The residual series was sub-

sequently monitored using a Moving Average Exponential Weighted Moving 

Average (MEWMA) control chart with a smoothing parameter λ of 0.4. Phase I 

analysis indicated a statistically controlled process after outlier removal. How-

ever, Phase II monitoring detected out-of-control signals, suggesting process in-

stability. The findings demonstrate the potential of GAN-based residual analysis 

in mitigating autocorrelation in water quality data. Nevertheless, the complexity 

of GAN training and the computational resources required for optimal model de-

velopment pose significant challenges. 

Keywords: Forecasting, Generative Adversarial Network, Control Chart, 

MEWMA. 

1 Introduction 

Surabaya, Indonesia, faces a growing challenge in ensuring sustainable clean water 

access for its expanding metropolitan population. Water is a critical resource, not just 

for basic needs but also for public health, economic activity, and urban development. 

Despite efforts by Surya Sembada, localized water scarcity persists in specific areas, 

including Wonokromo, Wonokusumo, Wonosari, and parts of North Surabaya. The 

water treatment process by Surya Sembada water treatment plant in Surabaya City is 

currently carried out at Ngagel and Karang Pilang installations. However, in its water 

treatment activities, Surya Sembada water treatment has not been able to implement 
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quality control over the water treatment process using statistical methods. Therefore, 

this study proposes a multivariate control chart, which handles multivariate data prob-

lems using residuals from time series-based machine learning methods [1, 2]. This ap-

proach involves predicting the water production data, assessing the residuals for auto-

correlation, and addressing potential problems [3, 4]. A variety of statistical and ma-

chine learning techniques can be employed to address this issue. Traditional time series 

methods such as Vector Autoregression (VAR) models [5], as well as advanced ma-

chine learning algorithms including Artificial Neural Networks (ANN) [6, 7], Multiout-

put Least Squares Support Vector Regression (MLS-SVR) [8], XGBoost [9], and Long 

Short-Term Memory (LSTM) [10, 11], offer potential solutions. To improve forecast-

ing accuracy, this research explores the Generative Adversarial Network (GAN) 

method, which is known for generating realistic synthetic data [12, 13]. The application 

of GAN in water quality forecasting, particularly in water production, offers the ad-

vantages of generating accurate synthetic or predicted data and overcoming data limi-

tations. 

This research proposes a novel framework that synergizes Generative Adversarial 

Networks (GANs) with Multivariate Exponentially Weighted Moving Average 

(MEWMA) control charts to enhance water quality monitoring and operational effi-

ciency in water production. By effectively addressing autocorrelation inherent in water 

quality data, the GAN-MEWMA model aims to revolutionize traditional monitoring 

systems. The fidelity of GAN-generated data is paramount in ensuring the accuracy and 

comprehensiveness of the overall monitoring process. This study seeks to demonstrate 

the potential of artificial intelligence in improving forecasting capabilities and enabling 

proactive responses to water quality fluctuations. Ultimately, the integration of this ad-

vanced monitoring system is expected to optimize water treatment operations by facil-

itating timely interventions and preventing quality deterioration. 

2 Literature Review 

2.1 Statistical Quality Control and Control Chart  

Statistical quality control (SQC) is a structured methodology employed to attain and 

maintain desired quality levels within a product or process by systematically reducing 

process variation [14] It constitutes a statistical framework for the continuous monitor-

ing, measurement, and enhancement of quality attributes [2]. Through the application 

of statistical tools such as control charts, hypothesis testing, and regression analysis, 

SQC enables the identification, quantification, and mitigation of process variability. By 

detecting anomalies, predicting trends, and implementing corrective actions in a timely 

manner, SQC optimizes operational efficiency, minimizes waste, and elevates customer 

satisfaction through continual quality improvement. Control charts are indispensable 

statistical process control tools employed in quality management to visually monitor 

process variation and identify anomalous shifts or trends [7]. By graphically represent-

ing process data relative to established control limits, these charts facilitate the mainte-

nance of acceptable quality levels through the detection of special cause variation [15].  
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2.2 Generative Adversarial Network Test 

Generative Adversarial Networks (GANs) are unsupervised learning models that gen-

erate indistinguishable synthetic data. Comprising of two components, the generator 

and discriminator [16]. The generator is tasked with creating synthetic data that is like 

original data, where previously generated data was from actual data, while the discrim-

inator tries to differentiate between real or fake data and data generated by the genera-

tor. GANs iteratively improve their performance in data creation and differentiation. 

Forecasting process with a Generative Adversarial Network (GAN) involves a complex 

series of steps to produce synthetic data. This process starts from collecting actual data 

as the input vector to producing synthetic data which can be depicted in the diagram 

below. 

 

Figure 1 Generative Adversarial Network Forecasting Process 

In the GAN model, synthetic data is produced from random or actual data. This is 

done by the generator, which uses an Artificial Neural Network (ANN) for processing. 

In time series forecasting, the generator applies mathematical transformations, using a 

weight and bias matrix for each layer and an activation function for each neuron’s out-

put to generate synthetic data. 

�̂�
𝑡
= 𝐺(𝑦

𝑡
)             (1) 

𝐺(𝑦𝑡) = 𝜎(ℎ𝑜𝑢𝑡)               (2) 

ℎ𝑜𝑢𝑡 = 𝑤𝑜𝑢𝑡 × ℎ + 𝑏𝑜𝑢𝑡             (3) 

where 𝑤𝑜𝑢𝑡 is the weight matrix in the generator output layer, ℎ is the value produced 

by generator hidden layer and bout is the bias vector in the generator output layer. While 

discriminator in GAN also uses a simple Artificial Neural Network (ANN) model that 

can be represented by equations below. 

𝐷(𝑦) = 𝜎(𝑤𝑜𝑢𝑡 × ℎ + 𝑏𝑜𝑢𝑡)          (4) 

𝐷(�̂�) = 𝜎(𝑤𝑜𝑢𝑡 × ℎ′ + 𝑏𝑜𝑢𝑡)              (5) 

σ is activation function, 𝑤𝑜𝑢𝑡  is output layer weight, 𝑏𝑜𝑢𝑡 is output layer bias, and ℎ′ 
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is transformation results from data produced by the generator. In GAN training, the 

goal is to optimize the weights and biases in the discriminator so that 𝐷(𝑦) close to 1 

for the original data and 𝐷(�̂�) approaches 0 for data generated by the generator. 

To optimize GAN models, select suitable generator and discriminator architectures 

based on task complexity and data type. Parameter tuning, like learning rate and latent 

vector size, is vital for stability and complexity. Utilize Batch Normalization and Re-

sidual Connections for training stability. Choose a balanced loss function for the gen-

erator and discriminator. Lastly, set batch size and epochs wisely to expedite conver-

gence and minimize overfitting, and ensure optimal GAN model results 

2.3 MEMWA Control Chart Based on Residual of Generative Adversarial 

Network Model 

The Exponentially Weighted Moving Average (EWMA) control chart is a statistical 

process control (SPC) technique that assigns exponentially decreasing weights to his-

torical observations [17]. To accommodate multivariate processes, the Multivariate 

EWMA (MEWMA) chart was developed [18]. By considering multiple quality charac-

teristics simultaneously, the MEWMA chart demonstrates enhanced sensitivity to small 

process shifts, enabling earlier detection of anomalies. Optimal performance of the 

MEWMA chart is contingent upon the assumption of independent and normally dis-

tributed data. While the MEWMA chart exhibits robustness to deviations from normal-

ity, its effectiveness can be compromised by autocorrelation in the data. 

MEWMA diagrams can be used with GAN models to monitor accuracy by focusing 

on residuals, the difference between original and GAN-generated data. MEWMA helps 

detect changes in synthetic data characteristics, providing early alerts for significant 

deviations. Therefore, the MEWMA equation can be formed as follows [14]. 

𝑀𝑡 = 𝜆𝑒𝑡 + (1 − 𝜆)𝑀𝑡−1         (6) 

𝑀𝑡 is  MEWMA value at 𝑡, 𝑒𝑡 is residual value at 𝑡, 𝑀𝑡−1 is MEWMA value at the 

previous time, and 𝜆 is the weighted exponential where define as 0 < 𝜆 < 1 and 𝑀0 = 0. 

Basically, 𝜆 could work well while in the interval 0.05 ≤ 𝜆 ≤ 0.25, with 𝜆 = 0.05, 𝜆 =
0.1, 𝜆 = 0.2 can be a popular choice. The observation points plotted on the control 

chart are as follows. 

𝑇𝑡
2 = 𝑀𝑡

′∑ 𝑀𝑡
−1
𝑀𝑡

           (7) 

 

where the covariance matrix is 

∑ =
λ

(2-λ)
[1-(1-λ)2t]Σ-1

Mt
          (8) 

Observations are said to be out of control when value 𝑇𝑡
2 > 𝐻, where 𝐻 is the upper 

control limit (UCL) which used for MEWMA control chart based on selected lambda 
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(𝜆) and number of quality characteristics, while the lower control limit (LCL) for 

MEWMA control charts is equal to 0 because the 𝑇𝑡
2 value is always positive. 

3 Methodology 

3.1 Data Source 

This research employed a secondary dataset comprising observational data on clean 

water production quality. The data was procured from the laboratory of Ngagel II Surya 

Sembada, encompassing the water filtration process from January 1, 2023, to October 

24, 2023. The investigation was divided into two phases: Phase I (January 1, 2023 - 

June 30, 2023) and Phase II (July 1, 2023 - October 24, 2023). Quality assessments 

were conducted for 296 days post-filtration, a process designed to eliminate fine parti-

cles from the previously treated water. Three key water quality parameters were ana-

lyzed: pH, turbidity, and organic matter content (measured as KMnO4). 

3.2 Research Variable 

The research variables used in this research are three quality characteristics which are 

explained in Table below. 

Table 1. Research Variables 

Quality 

Characteristics 
Description Unit Specification 

𝒚𝟏 pH - 6.5-7.5 

𝒚𝟐 Turbidity NTU Max 5 

𝒚𝟑 
Organic Substances 

(KMnO4) 
Mg/L Max 10 

3.3 Analysis Steps 

The research steps analysis taken in this research are as follows.  

1. Problem Definition and Data Collection: Identify and formalize the specific wa-

ter quality issues at Surya Sembada water treatment plant Ngagel II, Surabaya. 

Acquire comprehensive water quality data from January 1, 2023, to October 24, 

2023. 

2. Autocorrelation Analysis: Assess the presence of autocorrelation in the water 

quality time series using the Multivariate Cross-Correlation Function (MCCF) 

plot. Identify significant autocorrelation lags to inform subsequent modeling deci-

sions. 

3. Data Partitioning: Divide the dataset into training data (phase I: January 1, 2023, 

to June 30, 2023) and testing data (phase II: July 1, 2023, to October 24, 2023). 

4. GAN Modeling: Develop a Generative Adversarial Network (GAN) model to gen-

erate synthetic water quality data. Optimize GAN hyperparameters (layers, epochs, 
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batch size) on the training set to achieve optimal performance. Apply the trained 

GAN model to generate synthetic data for the testing set. 

5. Residual Analysis: Calculate residuals between the actual and synthetic water 

quality data for the training set. Assess the normality of residuals using the 

Shapiro-Wilk test and the presence of autocorrelation using the MCCF plot. 

6. Multivariate EWMA Control Chart: Develop a Multivariate Exponentially 

Weighted Moving Average (MEWMA) control chart using the residuals from the 

training set. Establish control limits based on in-control assumptions. Monitor the 

testing set residuals using the developed control chart to detect abnormal patterns 

or out-of-control signals. 

7. Conclusion and Recommendations: Findings and Implications: Summarize the 

key findings of the study, including the performance of the GAN model, the effec-

tiveness of the control chart in detecting anomalies, and the identified root causes 

of out-of-control signals. Provide actionable recommendations for improving wa-

ter quality management at Surya Sembada water treatment plant Ngagel II, Sura-

baya. This may involve process adjustments, data-driven decision making, or im-

plementation of advanced monitoring systems. 

4 Result and Discussion 

4.1 Autocorrelation Analysis 

To use control charts for analysis, observation data must be independent. If autocorre-

lation is detected, it must be addressed. Prior to autocorrelation checking, the three 

quality characteristics are standardized due to their different units. Autocorrelation is 

checked using the MCCF plot for each quality characteristic of water, as shown in Table 

2. 

Table 2. MCCF Result of Quality Characteristics 

Variable 

/Lag 
0 1 2 3 4 5 6 7 8 9 

pH ++- ++. ++. ++. ++. ++. ++. ++. ++. ++. 

Turbidity +++ +++ +++ +++ +++ ++. ++. ++. ++. ++. 

KMnO4 -++ ..+ -.+ -.+ -.+ ..+ ..+ ..+ ..+ ... 

Table 2. MCCF Result of Quality Characteristics (continue) 

Variable / 

Lag 
10 11 12 13 14 15 16 17 18 19 

pH ++. ++. ++. ++. ++. ++. ++. ++. ++. ++. 

Turbidity ++. ++. ++. ++. ++. ++. ++. ++. ++. ++. 

KMnO4 ... ... ... ... ... ... ... ... ... ... 
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Table 2 reveals a pronounced and persistent positive autocorrelation for pH and 

turbidity across nearly all lags, suggesting a strong temporal dependency in these 

parameters. This indicates that fluctuations in pH and turbidity tend to be correlated 

with their preceding values over extended periods. In contrast, KMnO4 exhibits a more 

erratic and inconsistent autocorrelation pattern, characterized by substantial 

fluctuations and a lack of discernible regularity. Collectively, these findings imply a 

higher degree of stationarity for pH and turbidity compared to KMnO4. The presence 

of autocorrelation in the clean water process data is attributable to the continuous nature 

of the production process. To address the challenges posed by autocorrelation in the 

observational data, the application of Generative Adversarial Network (GAN) 

modeling is proposed. 

4.2 Generative Adversarial Network’s Modelling 

GAN-based ANN is employed to address autocorrelation in clean water production. 

Optimal GAN architecture and hyperparameters are determined through hyperparame-

ter tuning to minimize model residuals. These optimized parameters will be applied to 

the modeling process in phase II. 

1. Phase I GAN’s Modelling 

Phase I of the GAN modeling process utilized clean water data spanning January 1 to 

June 30, 2023. The network architecture and hyperparameters employed are detailed 

in Table 3. 

Table 3. Architecture & Hyper-Parameter 

Component Hyper-Parameter 

Generator Layer 1 

Number of Neuron = 200 

Activation = LeakyReLu 

(Alpha 0.01) 

Generator Layer 2 

Number of Neuron = 600 

Activation = LeakyReLu 

(Alpha 0.01) 

Generator Layer 3 
Number of Neuron = 3 

Activation = Linear 

Discriminator Layer 1 

Number of Neuron = 600 

Activation = LeakyReLu 

(Alpha 0.01) 

Discriminator Layer 2 

Number of Neuron = 200 

Activation = LeakyReLu 

(Alpha 0.01) 

Discriminator Layer 3 
Number of Neuron = 1 

Activation = Sigmoid 

Discriminator Compile 
Loss Function = Binary 

Cross Entropy 
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Optimizer = Adam (Lr 

0.0001, Beta 0.3) 

Compile of Model 
Optimizer = Adam (Learn-

ing Rate = 0.0001, Beta = 0.3) 

 

Model training was conducted using the Adam optimizer with a learning rate of 

0.0001 and parameter β. A range of epochs were explored during training, and 

resulting loss values for each epoch are tabulated in Table 4. Training metrics were 

captured and stored within a history variable for subsequent analysis. 

Table 4 Loss Values for Generator and Discriminator 

Epoch 
Generator 

Loss 

Discriminator 

Loss 

600 0.3751 0.9538 

650 0.3748 0.9467 

700 0.3729 0,9443 

 

To optimize GAN model performance, a hyperparameter tuning process was con-

ducted, focusing on the epoch value. From three candidate epochs, the model trained 

for 700 epochs exhibited the lowest loss values, suggesting superior convergence and 

predictive accuracy. This outcome indicates the generator's effectiveness in producing 

highly realistic synthetic data, thereby challenging the discriminator's ability to distin-

guish between genuine and artificial samples. Model evaluation was conducted using 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute 

Error (MAE) metrics. These metrics quantified the discrepancy between predicted and 

actual values for the three quality characteristics generated by the GAN model. The 

resulting evaluation results are summarized in Table 5. 
 

Table 5 Evaluation Metrics 

Epoch 𝑀𝑆𝐸̅̅ ̅̅ ̅ 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅ 𝑀𝐴𝐸̅̅ ̅̅ ̅ 

600 0.0067 0.0822 0.0633 

650 0.0054 0.0738 0.0556 

700 0.0071 0.0846 0.0637 

The GAN model trained for 650 epochs exhibited the most promising performance, 

demonstrating superior predictive accuracy. The model achieved a MSE of 0.0054, in-

dicating minimal variance between predicted and actual values. Correspondingly, 

RMSE of 0.0738 suggests a relatively low average prediction error. Further, the MAE 

of 0.0556 quantifies the average absolute deviation between predicted and observed 

values. Collectively, these metrics underscore the model's strong predictive capabili-

ties. As visualized in Figure 1, a comparison of predicted and actual values provides 

empirical evidence supporting the model's reliability. 
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Figure 2 Time Series Plot of Actual Data and Predicted Data in Phase I 

Figures 2(a) and 1(b) show that the data pattern of the predicted values for the quality 

characteristics of pH and turbidity from GAN modeling has a pattern that is similar or 

follows the actual data values for phase I. Meanwhile, the quality characteristics of 

KMnO4 can be seen in Figure 1(c) has a predicted data pattern that tends to be on 

average or in the middle with actual data. This proves that predictions by modeling 

using GANs can be used because the patterns produced from predicted data tend to 

have the same patterns as actual data. 

 
Figure 3 Time Series Plot of Actual Data and Predicted Data in Phase II 
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2. Phase II GAN’s Modelling 

Phase II GAN modeling was conducted using identical architectural and 

hyperparameter settings as employed in phase I. The model was trained on clean water 

data spanning from July 1 to October 24, 2023. Subsequent to training, predicted 

values were generated and compared to corresponding actual data points, as visualized 

in Figure 3. An analysis of Figure 3 reveals that the predicted values for all three 

quality characteristics exhibit a pattern that deviates significantly from the observed 

trends in the phase II actual data. Nevertheless, the predicted data points are distributed 

within a range proximate to the mean of the actual data. These findings suggest that 

the GAN model’s predictive capabilities during phase II were suboptimal in capturing 

the specific nuances and fluctuations of the actual data. Consequently, the generated 

data displayed markedly different patterns compared to the ground truth. To 

quantitatively assess these pattern discrepancies, a control chart analysis will be 

performed. 

 

4.3 Control Chart Assumption Testing 

The residuals of the GAN-modeled water quality data from Phase I observations are 

assessed for autocorrelation using MCCF plots prior to multivariate normality testing, 

a prerequisite for control chart implementation. 

Table 6. MCCF Result Based on GAN Phase I Residuals 

Variable 

/ Lag 
0 1 2 3 4 5 6 7 8 9 

pH +-+ +-+ +.. ... ... ... ... ... ... ... 

Turbidity -+. .+. .+. ... ... ... ..+ ... ... ... 

KMnO4 +.+ +.+ ... ... ... ... ... ... ... ... 

Table 6. Result Based on GAN Phase I Residuals (continue) 

Variable 

/ Lag 
10 11 12 13 14 15 16 17 18 19 

pH ... .-. ... ..+ ..+ ... ... ... ... ... 

Turbidity ... ... ..- ..- -+- .+. ... ... ... ... 

KMnO4 ... +.. ... ... ... ... ... ... ... ... 

 

Analysis of Table 6 indicates that GAN modeling effectively mitigates autocorrelation 

present in Phase I observational data for the examined quality characteristics. The pH 

variable exhibited pronounced cyclical patterns, evidenced by significant and strong 

autocorrelation at initial and multiple higher lags. Turbidity data displayed higher 

variability and a more random structure, although significant autocorrelation was 

detected at specific lags. KMnO4 demonstrated strong autocorrelation at early lags, 

transitioning to a more stable pattern at subsequent lags. Subsequent to autocorrelation 

assessments of GAN model residuals, a Shapiro-Wilk test was employed to evaluate 

multivariate normality. Results are tabulated in Table 7. 
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Table 7 Normal Multivariate Test for Residuals Phase I 

Shapiro 

Wilk 
P-Value Decision 

0.86278 < 2.2e-16 
Not normally 

distributed  

Based on the multivariate normal distribution test reveals that the clean water quality 

data doesn’t follow a multivariate normal distribution, as the p-value is less than the 

5% alpha level. Despite this, the research can proceed with the MEWMA control chart 

for process control, as it’s robust to normality assumptions and is based on GAN model 

residuals. 

4.4 MEWMA Control Chart Based on Residual of GAN Models 

The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart 

extends the univariate EWMA to monitor multiple quality characteristics simultane-

ously. It excels at detecting small process shifts and is sensitive to changes in the pro-

cess mean. Control limits are determined based on Average Run Length (ARL) criteria, 

with a target ARL of 370 achieved through appropriate weighting (λ). 

1. MEWMA Control Chart Based on Residual of GAN Models Phase I 

 
(a)               (b)        

 
(c)               (d)        

Figure 4 MEWMA Control Chart Based on Residual of GAN Phase I 

(a) 𝜆 = 0.1, (b) 𝜆 = 0.2, (c) 𝜆 = 0.3, (d) 𝜆 = 0.4 
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Figure 4 indicates optimal MEWMA chart performance at λ = 0.4 with UCL = 13.99. 

However, 33 out-of-control points were detected, suggesting process instability in the 

GAN model during phase I. To address this, residual values were centered to zero, as 

depicted in the subsequent MEWMA chart. 

 
Figure 6 MEWMA Control Chart Based on Residual of GAN Phase I (In Control) 

Figure 6 depicts an updated MEWMA control chart for Phase I GAN model residuals 

(UCL=13.99, λ=0.4). No out-of-control signals were detected post-intervention (re-

moval of the highest outlier). The Phase I water production GAN model is now statis-

tically in-control and prepared for Phase II monitoring. 

2. MEWMA Control Chart Based on Residual of GAN Models Phase II 

 
Figure 7  MEWMA Control Chart Based on Residual of GAN Phase II 

Figure 7 depicts a Phase II Multivariate Exponentially Weighted Moving Average 

(MEWMA) control chart with λ = 0.4 and UCL = 13.99. The presence of eight data 

points exceeding the upper control limit indicates a statistically significant deviation 

from the process mean in clean water production. This suggests the process is out of 

control. To identify the specific factors contributing to this process shift, a detailed 

analysis of residuals from the Phase I Generative Adversarial Network (GAN) model 

is warranted. These residuals, representing the discrepancies between observed and pre-

dicted clean water quality characteristics, can provide valuable insights into the 
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underlying process dynamics. By examining combinations of these residual patterns, it 

is possible to pinpoint potential root causes of the process excursion. Such knowledge 

is essential for implementing corrective actions to restore the process to a state of sta-

tistical control and ensure the consistent delivery of high-quality clean water to custom-

ers. 

5 Conclusion 

This study introduces a novel approach to water quality monitoring by integrating Gen-

erative Adversarial Network (GAN) residuals into a Multivariate Exponentially 

Weighted Moving Average (MEWMA) control chart. Analysis of Surya Sembada's 

clean water production process revealed that current pH, turbidity, and KMnO4 levels 

are within specified limits, indicative of a controlled process. The proposed GAN model 

effectively mitigated autocorrelation in residuals and exhibited superior predictive per-

formance, as quantified by lower MSE, RMSE, and MAE compared to alternative 

methods. While the MEWMA chart effectively detected process deviations in Phase II, 

the computational demands of GAN training underscore the need for careful consider-

ation of computational efficiency and robustness to process shifts for practical applica-

tions. Future research should explore strategies to optimize computational performance 

and enhance the model's sensitivity to subtle process variations. Also, some robust ap-

proaches can be applied to the control chart. 
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