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Abstract. Bounded Model Checking (BMC) is a popularly used strat-
egy for program verification and it has been explored extensively over
the past decade. Despite such a long history, BMC still faces scalabil-
ity challenges as programs continue to grow larger and more complex.
One approach that has proven to be effective in verifying large pro-
grams is called Counterexample Guided Abstraction Refinement (CE-
GAR). In this work, we propose a complementary approach to CEGAR
for bounded model checking of sequential programs: in contrast to CE-
GAR, our algorithm gradually widens underapproximations of a pro-
gram, guided by the proofs of unsatisfiability. We implemented our ideas
in a tool called LEGION. We compare the performance of LEGION against
that of CORRAL, a state-of-the-art verifier from Microsoft, that utilizes
the CEGAR strategy. We conduct our experiments on 727 Windows and
Linux device driver benchmarks. We find that LEGION is able to solve
12% more instances than CORRAL and that LEGION exhibits a comple-
mentary behavior to that of CORRAL. Motivated by this, we also build
a portfolio verifier, LEGION™, that attempts to draw the best of LEGION
and CORRAL. Our portfolio, LEGIONT, solves 15% more benchmarks than
CORRAL with similar computational resource constraints (i.e. each ver-
ifier in the portfolio is run with a time budget that is half of the time
budget of CORRAL). Moreover, it is found to be 2.9x faster than CORRAL
on benchmarks that are solved by both CORRAL and LEGIONT.

Keywords: Verification - Bounded model checking - Underapproxima-
tion widening.

1 Introduction

Bounded Model Checking (BMC) [26l1T20l33] is a popular option for program
verification, primarily due to its ability of side-stepping the necessity of synthe-
sizing complex invariants. BMC harnesses the power of modern SMT solvers to
verify a bounded set of behaviors of a program. The user, if interested, may
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re-attempt verification with larger bounds once the program is proven correct
with small bounds.

BMC operates by constructing a logical formula that symbolically captures
all states reachable by a program under a user-provided bound. A query, referred
to as the verification condition (VC), is constructed as a conjunction of the
program semantics and the negation of the property, which is also expressed as
a logical formula. If the verification condition is satisfiable, it implies that some
program execution violated the property of interest, thus the program is faulty.
If unsatisfiable, the program satisfies the property, i.e. the program is safe under
the chosen bound.

However, for large programs, BMC faces scalability challenges as the ver-
ification condition for the program tends to grow large, posing difficulties for
the SMT solver. Prior work has answered this challenge by using the popu-
lar counterexample-guided abstraction refinement (CEGAR) strategy: start off
with the VC for an abstraction of the program, and incrementally refine the
abstraction until the program is decided as safe or faulty. The Stratified In-
lining (SI) [26] algorithm is an instance of this strategy. SI starts off with an
abstraction of only the entry procedure of the program, and then incrementally
inlines callees, guided by counterexamples. Not surprisingly, the dynamic inlining
strategy of SI has been found to be significantly more scalable than algorithms
that statically inline all procedures [25]. The ST algorithm is used in practice by
the CORRAL [24] verifier that powers Microsoft’s Static Driver Verifier (SDV) [4].

In this work, we propose a new algorithm that uses proofs of unsatisfiabil-
ity to widen underapproximate models of the program en route to verification
of sequential programs. Our algorithm starts off by constructing a partial ver-
ification condition for only the program entry procedure and blocks all paths
that invoke calls to procedures that have not yet been inlined. This constructs
an underapproximation of the original program (because paths are blocked). A
satisfiable result on an underapproximation will indicate the presence of a bug.
If the VC is unsatisfiable, we examine its proof of unsatisfiability in order to
guide the inlining of called procedures. The program can be declared safe when
the proof of unsatisfiability does not depend on any procedure call that has not
been inlined yet. We implemented our ideas in a tool called LEGION.

Further, we found that our underapproximation widening algorithm and the
abstraction refinement strategy (used by CORRAL) demonstrate complementary
behaviors—many programs that CORRAL struggles on, yield to the underapprox-
imation based technique, and vice-versa. This observation motivated us to build
a portfolio verifier, LEGIONT, that runs both these techniques in parallel. We
found that the portfolio is more effective than any of the tools alone (with simi-
lar computational resources, i.e. each verifier in the portfolio is run with a time
budget that is half of the time budget of CORRAL). Both LEGION and LEGION™
are available open-source at the legion branch of the corral repositoryﬂ

Our experiments are conducted on 727 Windows and Linux device driver
benchmarks on which CORRAL struggles, i.e., CORRAL is unable to solve any of

* https://github.com/boogie-org/corral .git| (branch: legion)
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these benchmarks in less than 200 seconds. We find that LEGION is able to solve

12% more instances than CORRAL with a time budget of 2 hours per instance.

Further, the portfolio verifier, LEGIONT, given half the time budget of CORRAL,

solves 15% more benchmarks than CORRAL, and it is found to be 2.9x faster

than CORRAL on benchmarks that are solved by both CORRAL and LEGIONT.
The primary contributions of this paper are as follows:

— We design a new algorithm, Underapproximation Widening guided Stratified
Inlining, that uses proof-based artifacts to widen underapproximate models
(in contrast to using counterexamples to refine overapproximate models).

— We implemented our ideas in a tool called LEGION for bounded program
verification.

— We also design a portfolio verifier, LEGIONT, that includes both overapprox-
imation refinement and underapproximation widening to verify a program
in an attempt to reap the benefits of both worlds.

— We evaluate both LEGION and LEGIONT on a set of 727 programs from
Windows Device Drivers [31] from the SDV test-suite and Linux Device
Drivers from SVCOMP [7] benchmarks.

2 Background

This section presents background material that we use in the rest of the paper.

A logical formula consists of literals. A literal is either a variable or the
negation of a variable. A logical formula expressed in a Conjunctive Normal
Formal (CNF) is a conjunction of clauses where each clause is a disjunction
of literals. Given a logical formula, a satisfiability solver returns whether the
formula is satisfiable (SAT) or unsatisfiable (UNSAT). If a formula is SAT, the
solver provides a model in the form of a satisfying assignment of the variables. If
a formula is UNSAT, the solver returns an unsatisfiable core (unsat core), which
is a subset of clauses of the input formula whose conjunction is still UNSAT.

2.1 Language Model

We consider a programming language that represents a passified form of Boo-
GIE programs [§]. A program consists of multiple procedures (Proc). We assume
an entry-point procedure called main where program execution starts. Each pro-
cedure can have any number of local variable declarations followed by a series
of basic blocks (BasicBlock). We assume that local variables are initially un-
constrained. A basic block is labeled by a unique identifier and consists of mul-
tiple statements (Stmt) followed by a single control statement (ControlStmt).
A control statement is either a goto, which takes a sequence of basic block la-
bels and non-deterministically picks one to jump to, or a return that returns
control back to the caller. Returning from main terminates the program ex-
ecution. A statement is either an assume command or a procedure call. The
statement (assume ¢) allows a feasible execution only if ¢ is satisfiable.
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procedure fool(int x, int y) {
procedure main() { L9: assume y =— x + 1;
int x, y, z; bool c; return; }
LO: assume x =— 0;
assume y — 0; procedure foo2(int x, int y) {
goto L1, L2; L10: assume y =— x — 1;
L1l: assume c; return; }
call foo(x,y);
goto L3; procedure bar(int x, int y) {
L2: assume !c; bool e;
call bar(x,y); L11: goto L12, L13;
goto L3; L12: assume e;
L3: assume y != 0 call barl(x, y);
return; } goto L14;
L13: assume !e;
procedure foo(int x, int y) { call bar2(x, y);
bool d; goto L14;
L5: goto L6, L7; L14: return; }
L6: assume d;
call fool(x, y); procedure barl(int x, int y) {
goto LS§; L15: assume y =— x + 10;
L7: assume !d; return; }
call foo2(x, y);
goto L§; procedure bar2(int x, int y) {
L8: return; } L16: assume y = x — 10;
return; }

Fig.1: A Passified Program

We leave the set of variable types ( Type) and expressions (Ezpr) unspecified.
In practice, we can use any expression language that can be directly encoded
in SMT. Our implementation uses linear arithmetic, fixed-size bit-vectors, un-
interpreted functions, and extensional arrays. This combination is sufficient to
realistically translate C programs into our language representation [24121].

Note that the programs that we consider do not have global variables, return
parameters of procedures, or assignments. These restrictions are without loss of
generality [23]. Conversion of these additional feature into our language repre-
sentation is readily available in tools like BOOGIE. A passified program makes it
easy to describe the verification-condition generation process.

Given a program P, we consider the verification question of whether there
exists a terminating execution of P. To be precise, we are interested in finding
out whether there is any execution of main that reaches its return statement.
If no such execution exists, then P is considered verified, or SAFE. Otherwise,
we say that P is UNSAFE and return the execution trace with concrete variable
values along the trace. Note that we consider a bounded version of the verification
problem, i.e., we require that P does not contain any loops or recursive procedure
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Fig. 2: Call graph of the program in Figure
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Fig.3: Partial VC of main()

calls. All such loops and recursive calls must be unrolled to a pre-determined
depth before proceeding with verification, and thus, the verification problem now
becomes decidable (if the expression language of the program is decidable) [23].

2.2 VC generation for a procedure

Consider a procedure baz that does not contain any procedure calls. This section
outlines one way of verifying baz, i.e., finding out if it has a terminating exe-
cution. We use a process called Verification Condition (VC) generation on baz
to construct a logical formula @ and feed it to an SMT solver. If @ is UNSAT,
then the return statement in baz is unreachable and baz is SAFE. Otherwise, we
extract the satisfiable model from the SMT solver, construct the execution trace
and return UNSAFE along with the trace. We now outline the VC-generation
process.

Suppose that baz takes input arguments &. For each basic block j in baz,
we define a boolean variable blk; that is termed as the control-flow variable.
Let st; denote the conjunction of all assume statements in basic block j. Let
successor(j) denote the targets of the goto statement in j, i.e., all the successor
basic blocks in baz, to which control may jump non-deterministically from j.
Let i; be a unique integer constant representing basic block j. We also define an
uninterpreted function flow : Z — Z that records the non-deterministic choice
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of the successor basic block of j. Given the above, we construct a logical formula
1; for each basic block j as follows:

blky = (st; A\ (blks A (is == flow(iy))))

s€successor(j)

If basic block j ends with a return statement instead of a goto, then 1); is:
blkj = Stj

Assuming the first basic block of baz, where procedure execution begin, is
labeled s, the VC of baz is constructed as follows:

kA N\

lebasicblocks(p)

In Figure we show the VC of main of the program in Figure [l| as
an example, where we ignore the procedure calls in main (i.e., treat them
as (assume true)). We term such a VC (of a procedure where its calls are skipped)
as the partial VC (pVC) of the procedure.

2.3 Static versus Dynamic Inlining

Given a program P with a starting procedure main, one simple way to verify P
would be to construct the VC of main by inlining all the procedure calls and
check the satisfiability of VC(main) with an SMT solver. However, employing
such a static inlining strategy can cause an exponential blowup in the size of the
VC. Hence, we instead make use of dynamic inlining algorithm, called Stratified
Inlining (SI) [26], that employs a Counterexample Guided Abstraction Refine-
ment (CEGAR) technique [14] to dynamically inline procedure VCs. It has been
shown that dynamic inlining scales better than static inlining [25]. Dynamic in-
lining produces more compact VCs during abstraction refinement which leads to
significantly faster program verification.

2.4 Verification with Stratified Inlining

The working of SI is shown in Algorithm [I] For the sake of simplicity, let us
assume that each basic block in P may contain only a single procedure call.
Every program point, from which a procedure is called, is termed as a callsite.
For example, main in Figure |1} has two callsites; foo and bar which are called
from basic blocks L1, L2 and L3 respectively. A static instance of a callsite is
denoted with a pair (I, ¢) where | denotes the basic block identifier from which a
call to the procedure ¢ is made. A dynamic callsite is defined as a stack of static
callsites which represents the runtime stack during a program’s execution with
main being present at the bottom of the stack. For example, the dynamic callsite
corresponding to the call foo from L1 in main is given by [main, (L1, foo)]. The
call graph of the program in Figure[l]is shown in Figure [2]
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Algorithm 1: Stratified Inlining (SI) algorithm.
Input: program P with starting procedure main
Input: An SMT solver &

Output: SAFE, or UNSAFE(T)

1 C <« {[main, s] | s € callsites(main)}

2 S.Assert(pVC(main, [main]))

3 while true do

4 outcome <+ OVERREFSTEP(P, C, S)

5 if outcome == SAFE V outcome == UNSAFE(7T) then
6 L return outcome

7 else

8 let NODECISION(-, C') = outcome

9 L C+C

The SI algorithm takes as input a program P with a starting procedure main
and an SMT solver S. Initially, we add the dynamic callsites in main to a list C
(Line|l)) and then inline main, i.e., assert the pVC of main (Line . The callsites
in C are termed as open callsites because they have not yet been inlined. The
above steps construct an abstraction of P. The SI algorithm then iteratively
calls the OVERREFSTEP routine on this abstraction (Line[4]) to perform gradual
refinement until we can reach a decision about whether P is SAFE or not. Each
invocation of OVERREFSTEP can potentially inline more procedures by asserting
their partial VC to the solver S. Thus, the state of the solver, as well as the set
of open callsites C' change across invocations of OVERREFSTEP. We discuss the
Overapprozimation Refinement Guided Stratified Inlining (OverRefST) strategy
used by the OVERREFSTEP routine in Section [2.5]

2.5 Overapproximation Refinement Guided Stratified Inlining

The OVERREFSTEP routine given in Algorithm [2] demonstrates the inner work-
ings of the OverRefSI strategy at each verification step. The OverRefSI strat-
egy [26] for verifying a program works by iteratively firing overapproximation
queries and gradually refining the abstraction of P. If the query returns UNSAT,
then we can conclude that P is SAFE with respect to the given property. Other-
wise, we extract all the open callsites that appear on the counterexample trace
and refine the abstraction of P by inlining these callsites. If the counterexample
trace contains no open callsites, then P is UNSAFE and we return the verdict
along with the counterexample trace.

The OVERREFSTEP routine takes as input a program P, a set of open call-
sites C' and an SMT solver §. The OVERREFSTEP routine is called iteratively
in order to verify the safety of P. We demonstrate the working of OverRefSI to
verify the pVC of main of Figure[l|in Table[l] At the beginning, the SI algorithm
asserts the pVC of main to S and adds [main, (L1, foo)] and [main, (L2, bar)] to
the list of open callsites C' in step 0.



8 Chatterjee et al.

Algorithm 2: OVERREFSTEP(P, C, S)
Input: procedure P, set of callsites C, SMT solver &
Output: SAFE, UNSAFE(trace), NODECISION(T, C)
// Overapprozimate check

if S.Check() == UNSAT then

L return SAFE

else
L T < opencallsites(S.Model())

gk W N

6 if 7 == 0 then

7 | return UNSAFE(S.Model())
8 else

9 C'+0
10 forall c € 7 do

11 | ¢« INLINE(P, ¢)
12 C+ (C-1yuc’
13 return NODECISION(T, C)

Next, the SI algorithm calls OVERREFSTEP with P, C' and S as arguments.
OVERREFSTEP fires an overapproximation query in Line[2} If the query is unsat-
isfiable, we return the SAFE verdict. If the query is satisfiable, we get the coun-
terexample trace and extract all the open callsites on the trace in 7 (Line [5)).
If 7 is empty, i.e., the counterexample trace contains no open callsites, then
the trace is not spurious and we can return an UNSAFE verdict with the trace
(Line . Otherwise, we inline all the callsites in 7 and add all the new callsites
that opened up due to the inlinings in C” (Line . Inlining a callsite ¢ consists
of asserting the partial VC of the procedure that was invoked from c.

Subsequently, the inlined callsites are removed from the list of open callsites C
and new callsites that opened up due to the inlinings are added to C' (Line .
For example, in step 1 of Table [l OVERREFSTEP fires an overapproximation
query that returns SAT with a counterexample trace that contains the callsite
of foo, i.e., [main, (L1,foo)]. This callsite is then inlined by asserting the pVC
of foo to the solver. This opens up the callsites of fool and foo2. Since we have
not been able to arrive at a decision regarding the safety of P at this step, a
verdict of NODECISION is returned along with the list of inlined callsites 7 and
the new list of open callsites C' (Line [L3).

Next, the SI algorithm calls OVERREFSTEP again and in step 2, it fires an
overapproximation query again, which returns SAT with the counterexample
trace containing the open callsite of fool that we inline by asserting the pVC
of fool. The verification process continues in this way by inlining the open
callsites on the counterexample trace in every step, which gradually refines the
pVC of main. Finally, in step 7, the overapproximation query returns UNSAT
from which we can conclude that main is SAFE.
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Table 1: Execution of OverRefSI on the program of Fig. |T|
STEP Action Open Callsites
0 Assert pVC(main) [main, (L1,fo0)]
[main, (L2,bar)]

1 Overapprox check: SAT
Assert pVC(foo) [main, (L2,bar)]
[main, (L1, foo), (L6, fool)]
[main, (L1,fo0), (L7, f002)]

2 Overapprox check: SAT
Assert pVC(fool) [main, (L2,bar)]
[main, (L1,fo0), (L7, f002)]

3 Overapprox check: SAT
Assert pVC(£f002) [main, (L2,bar)]
4 | Overapprox check: SAT
Assert pVC(bar) [main, (L2,bar), (L12, barl)]
[main, (L2,bar), (L13, bar2)]

) Overapprox check: SAT
Assert pVC(bar1) [main, (L2,bar), (L13, bar2)]
6 Overapprox check: SAT
Assert pVC(bar2)

7 |Overapprox check: UNSAT
Return SAFE

3 Overview

3.1 Underapproximation Widening

We propose a novel algorithm, Underapprozimation Widening Guided Stratified
Inlining (UnderWidenSI), that uses proofs of unsatisfiability to guide stratified
inlining. Under WidenSI maintains an underapproximated model of the target
program and widens it until either the program is verified as safe or a bug is
found.

We illustrate the UnderWidenSI strategy in Figures [fa] to [Ad] Assume that
we are trying to verify whether some required property holds on a program. The
space contained by the yellow ovals show the reachable program states while the
red ovals depict error states on which the required property does not hold. The
objective of a verification algorithm is to construct a model of the program that
is precise enough to show that the program can reach an error state or prove
that the error states are unreachable. Figures[4a] to [Id show a safe program while
Figure [Ad] depicts an unsafe program.

Consider Figure [fal the UnderWidenSI algorithm starts off with the partial
verification condition of the entry procedure and “blocks” executions though all
its open callsites.

Definition (Blocked callsites). We use the term, blocking a callsite C, to
imply that all paths that reach C are deemed infeasible. That is, blocking a
callsite has the effect of replacing the callsite by (assume false).
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Direction of Widening
: O
. Error States

Reachable Program States

(a) Underapproximate the program by
blocking C1 and Cb.

Direction of Widening

Error States

QS

Reachable Program States
(c) Widen by inlining C3, C4 and verify
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Direction of Widening

Error States

Reachable Program States
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a new underapproximation by blocking
017 Cg and 04.

Error States

Reachable Program States

(d) Verify as unsafe as error state R
is reachable in the underapproximated

model.

Fig.4: How UnderWidenSI works

Essentially, blocking callsites creates underapproximations of the set of fea-
sible program paths. Such underapproximated VCs can be constructed by as-
serting additional blocking clauses corresponding to the control-flow variables of
the open callsites. These blocks disallow reachability to certain program states.
For example, in Figure [a] we construct an underapproximated model of the
program by blocking the open callsites C; and Cs. The inner green oval depicts
the program states that are reachable in the underapproximated model, whereas
the outer gray regions demonstrate the states that are unreachable due to the
blocks on Cy and Cs.

If the verification query on this model (conjunction of the underapproximated
model and the negation of the property) returns SAT, it implies that an error
state in indeed reachable. On the other hand, if the query returns UNSAT (as
shown in Figure, we need to widen the model to procure additional reachable
executions. We guide this widening operation by extracting the reason for this
unsatisfiability from a minimal unsat core Elof the query, that returns the set of
block clauses; the callsites corresponding to these blocking clauses constitutes a
reason of why the current underapproximate model is not able to reach any of
the error states. Hence, we widen the model by unblocking exactly these callsites

5 Although there may exist multiple minimal unsat cores, we found via some prelimi-
nary experiments that the choice of the unsat core does not have a significant impact
on the overall runtime of our algorithm (on an average).
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Fig.5: How OverRefSI works

leading to a wider model (see Figure . The widening by inlining C5 causes a
stratified inlining step, and hence may open up new callsites, say C3 and Cj.

We proceed in the same manner by blocking these open callsites and repeat
the query. Finally, (in Figure we construct an underapproximated model that
still does not intersect with the error states. However, in this case, the unsat core
does not contain any blocked clause, as none of the currently blocked callsites
would have allowed widening in the direction of the error states.

The unsat core provides a direction for widening towards the error states.
This also allows us to declare that the program is safe without requiring to
widen the model to encompass the set of all reachable program states—if the
verification query is UNSAT and the unsat core does not contain any blocked
clause, then this forms a sufficient condition to declare the program safe.

Figure [4d] shows how our algorithm proceeds for a faulty program: it incre-
mentally widens the model in the direction of the error states till an error state
R is reached. At this point, the UnderWidenSI algorithm declares the program
as unsafe.

Let us now contrast the Under WidenSI strategy with the OverRefSI strategy,
popularly known as counterezample-guided abstraction refinement (CEGAR),
which currently drives the SI algorithm in CORRAL. OverRefSI starts off with
an overapproximated model of the program: the pVC of the entry procedure with
all callsites replaced by non-deterministic updates to its set of modified variables.
For example, in Figure OverRefSI constructs an abstract program/overap-
proximated model M; of the program by overapproximating the open callsites.
If the resulting verification condition is SAT, it examines the generated coun-
terexample to check if it spurious. If the counterexample is found to be a true
bug, it declares the program unsafe. If the counterexample is spurious, the model
is refined to eliminate this spurious counterexample. For example, in Figure [5a]
we find that there exists an error state/counterexample P within M7, where the
property can be violated. Hence, OverRefSI refines M; in Figure [5al by inlining
the overapproximated callsites through which P is reachable. The refinement
is done to rule out P as a counterexample, i.e., P becomes unreachable after
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refinement. We observe in Figure that after the first round of refinement, P
is no longer reachable in the overapproximated Ms, however, we can still find
another counterexample (). Hence, the abstraction M5 is refined again. The pro-
gram is declared safe when the model cannot reach any error state. Note that
the algorithm can prove the safety of the program without requiring to precisely
capture the exact set of reachable program state.

OverRefSI and UnderWidenSI are complementary: while OverRefSI main-
tains an overapproximated model and refines the model (shrinking the set of
reachable states), UnderWidenSI maintains an underapproximated model and
widens the model (expanding the set of reachable states) incrementally. In terms
of the algorithmic details, the OverRefSI algorithm in CORRAL uses the models
(the counterexamples) to drive refinements, whereas our UnderWidenSI algo-
rithm uses the proof (the unsat core) to guide the widenings.

4 Algorithms

4.1 Underapproximation Widening Guided Stratified Inlining
(UnderWidenSI)

The UNDERWIDENSTEP routine in Algorithm [3| demonstrates how the Under-
WidenSI strategy works in each verification step. It takes as input a procedure P,
a set of open callsites C' and an SMT solver §. The UNDERWIDENSTEP routine
is called by the SI algorithm (instead of OVERREFSTEP in Line [4]) iteratively in
order to verify the safety of P.

In the beginning, we construct an underapproximated pVC of the input pro-
cedure P by blocking all calls through the open callsites in C' (Line . Next, we
fire an underapproximation query (Line . If the query returns SAT, then we
return the verdict UNSAFE with the counterexample trace (Line |§[) Otherwise,
we get the minimal unsatisfiable core uc and extract all the blocked callsites
which appear on uc in p (Line .

If 1 does not contain any blocked callsites, we deduce that P is SAFE. The
proof of the safety of P is captured by wc. Hence, we return the verdict that P
is SAFE. Otherwise, each of the callsites in p are then inlined (Line which
constructs a refinement of P. The inlined callsites are then removed from the
list of open callsites C' and new callsites that opened up due to the inlinings are
added to C' (Line [16).

When the algorithm is unable to arrive at a decision regarding the safety
of P, it returns a verdict of NODECISION along with the list of inlined callsites
1 and the new list of open callsites C' (Line [13)).

Example. We demonstrate the working of UnderWidenSI to verify the pVC
of main of Figure [I] in Table 2] Initially, we assert the pVC of main and add
[main, (L1, foo)] and [main, (L2,bar)] to the list of open callsites in step 0. Re-
placing each of the open callsites with (assume false) statement, i.e., blocking
them, constructs an underapproximation of the program. If an SMT solver query



Proof-guided Underapproximation Widening for Bounded Model Checking 13

Algorithm 3: UNDERWIDENSTEP(P, C, S)

Input: procedure P, set of callsites C, SMT solver &
Output: SAFE, UNSAFE(trace), NODECISION(u, C)

1 // Underapprozimate check

2 S.Push()

3 forall c€ C do

4 LS.Assert(—'ControlVariable(c))

5 if S.Check() == SAT then

6 ‘ return UNSAFE(S.Model())

7 else

8 L i < BlockedCallsites(S.UnsatCore())
9 S.Pop()

10 if p == 0 then
11 L return SAFE

12 else

13 C'+0

14 forall c € ¢ do

15 | €'« INLINE(P, ¢)

16 C+ (C—pyuc’

17 return NODECISION(u, C)

on this underapproximation returns SAT, then the program is surely UNSAFE as
the satisfiable model can only represent an execution trace that goes through
inlined callsites. In that case, we can return the verdict UNSAFE along with an
error trace constructed from the model. On the other hand, if the underapprox-
imation check returns UNSAT, then we cannot return a verdict on the safety of
the program immediately.

Following this, in step 1 (see Table , we push a new frame on the solver
and assert (—blkr; A—blkrs) to block executions through the callsites of foo and
bar respectively to construct the underapproximated pVC of main. We query
the solver with these constraints. Figure [1| shows that if we block executions
through basic blocks L1 and L2, the program cannot terminate, i.e., the return
statement in L3 is not reachable. Hence, the solver returns UNSAT. The reason
for the unsatisfiability is blocking executions through both L1 and L2.

To widen the underapproximated model of the program so that we may
reach L3, we need to remove the block on at least one of them and inline the
respective callsite. The unsat core, in this case, contains the callsite of varbar
in basic block L2. Therefore, we pop the earlier solver frame containing blocked
clauses and assert (blkz = pVC(bar)) in the solver. Inlining bar, opens up
the callsites [main, (L2, bar), (L12,bar1)] and [main, (L2, bar), (L13, bar2)].

Next, in step 2, we again construct the underapproximated pVC of main
by blocking executions through the callsites of foo, barl and bar2. The solver
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Table 2: Execution of UnderWidenSI on the program of Fig.
STEP Action Open Callsites
0 Assert pVC(main) [main, (L1,fo00)]
[main, (L2,bar)]

1 Underapprox check: UNSAT
Assert pVC(bar) [main, (L1,fo0)],

[main, (L2,bar), (L12, barl)]
[main, (L2,bar), (L13, bar2)]

2 Underapprox check: UNSAT
Assert pVC(foo) [main, (L1,foo), (L6, fool)]
Assert pVC(bar1) [main, (L1,fo0), (L7, f002)]
Assert pVC(bar2)

3 Underapprox check: UNSAT
Assert pVC(fool)
Assert pVC(fo002)

4 Underapprox check: UNSAT
Return SAFE

query returns UNSAT with uc containing the callsites of foo, barl and bar2
which are inlined.

In step 3, the callsites of fool and foo2 are now open. Blocking both of
these callsites and making an underapproximation check returns UNSAT with
uc containing the callsites of fool and foo2. These callsites are now inlined.

In step 4, the underapproximation query returns UNSAT and uc contains no
blocked callsites. This points to the fact that uc contains only inlined callsites,
i.e., starting from step 0 if we only inline the callsites in uc and leave the re-
maining callsites overapproximated, we will still get an UNSAT. Therefore, uc
is the proof of the safety of the program and we return the verdict that the pvVC
of main is safe.

Note that when the underapproximation query returns SAT, then the coun-
terexample trace is constructed on the underapproximated program, i.e., the
trace may contain only blocked and inlined callsites. The underapproximated
program represents a subset of the paths in the original program, therefore, any
counterexample trace present in the underapproximated program is sure to be
present in the original program as well. Therefore, if the underapproximated
program is unsafe, the original program is unsafe as well.

We have implemented the Under WidenSI algorithm in LEGION. We compare
the performance of the UnderWidenSI algorithm in LEGION against that of
CORRAL which uses OverRefSI.

4.2 Portfolio Technique

The complementary behavior of the OverRefSI and the UnderWidenSI algo-
rithms motivate us to design a portfolio approach for verifying a program. The
portfolio strategy incorporates both the OverRefSI algorithm used by CORRAL
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and the UnderWidenSI algorithm implemented in LEGION. We refer to the port-
folio verifier as LEGIONT. For each program, LEGIONT runs both CORRAL and
LEGION in parallel. LEGIONT terminates verification as soon as one of the algo-
rithms finishes verification and reports the outcome. We discuss the performance
of LEGIONT against that of CORRAL and LEGION in Section

5 Experimental Results

We have built a tool, LEGION, that implements our UnderWidenSI algorithm.
To compare against OverRefSI, we use CORRAL [20], a state-of-the-art verifier
used at Microsoft [24]. We also build a portfolio solver, LEGIONT, that runs both
CORRAL and LEGION in parallel. Whenever one of the tools finish verification,
LEGIONT terminates the algorithms and reports the outcome.

We compare the performance of CORRAL against LEGION and LEGION™T on
a suite of Windows and Linux device driver benchmarks. The Windows device
driver benchmarks are obtained by running Static Driver Verifier (SDV) [4] on
real windows device drivers that exercise all features of the C language such as
arrays, heaps, pointers, loops, recursion etc. SDV compiles these drivers into a
suite of BOOGIE [8] programs, each of which is a device driver paired with prop-
erty (compilation is detailed in [24]). Note that, although the suite of Windows
device drivers compiled into BOOGIE programs are available as SDV bench-
marks [3T], the actual C programs are internal to Microsoft.

Along with this, we also use a set of Linux device drivers that are available as
C programs as part of the SVCOMP benchmarks suite [7]. We used SMACK [36]
to compile the Linux device drivers into BOOGIE programs. Overall, we elect
to use a total of 727 hard programs, on which CORRAL took more than 200
seconds to verify or times out, from the SDV and SVCOMP benchmarks to run
our experiments. We set the timeout for each verification task to 2 hours for both
CORRAL and LEGION. For all verification tasks, We use an unrolling length of 3
as advised in the benchmarks [31] and used in other works [I1].

As LEGIONT uses twice the computational resources compared to CORRAL
and LEGION, we halve its time budget to 1 hour to make a fair comparison. We
also report the performance of LEGIONT with a 2 hour time budget (it can be
seen as the virtual best of CORRAL and LEGION).

The experiments were performed on a machine with AMD EPYC 7452 pro-
cessor (48 cores) and 384 GB of RAM. Both CORRAL and LEGION uses Z3 [15]
as the underlying SMT solver. We have used the default setting of a fixed ran-
dom seed for Z3 for all our experiments after verifying the fact that the choice
of random seed does not have any significant impact on our results.

5.1 Corral Versus Legion

Figure [6] depicts the number of solved instances within the time budget by COR-
RAL and LEGION. In Figure @ a point (z, y) denotes the number of instances z,
each of which was solved within time . As we can observe, CORRAL is able to
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Fig. 6: Number of instances solved within time (in hours) for CORRAL vs LEGION
vs LEGIONT.

Table 3: Total time taken by each verifier to solve instances

Verifier |Solved Instances|Total Time Taken
CORRAL 262 109 hours
LEGION 351 112 hours
LEGIONT 369 71 hours

solve 262 out of 727 instances (36%) with a time budget of 2 hours per instance,
whereas LECGION solves 351 instances (48%) with the same time budget. Both of
them fail to solve 330 instances (45%). Out of the 397 instances (55%) that are
solved by either CORRAL or LEGION, 46 instances (12%) are solved exclusively
by CORRAL, whereas 135 instances (34%) are solved exclusively by LEGION.

The scatter plot of verification times across LEGION and CORRAL is shown
in Figure [7] The spread in the scatter plots demonstrate that these two tools
complement each other—the benchmarks on which CORRAL struggles are some-
times handled well by LEGION, and vice-versa. Picking the best of two verifiers
solves a total of 397 out of 727 instances (55%). This motivated the design of
LEGIONT.

5.2 Performance of Legion™

As LEGIONT utilizes parallelism, in order to make a fair comparison we halve the
time budget for LEGIONT on each verification instance to 1 hour. This means
that LEGION™ runs both the tools CORRAL and LEGION in parallel but with a
time budget of 1 hour each.

Figure |§| shows that the portfolio verifier LEGIONT solves 369 out of 727
instances (51%) with a 1 hour time budget, whereas CORRAL solves only 262
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Fig. 7: Scatter Plot of Verification time of CORRAL vs LEGION.

instances (36%) with a total time budget of 2 hours. There are only 14 instances
that CORRAL solves but LEGIONT is unable to solve. Similarly, there are only
17 instances that LEGION solves but LEGIONT is unable to solve.

With a 2 hour timeout, LEGIONT solves 397 instances in total (55%). This
is essentially the virtual best of CORRAL and LEGION with a 2 hour timeout.

Figure |8 shows the total time taken (in hours) by CORRAL, LEGION and
LEGIONT to verify the instances that were solved by all three of them (total 213
instances). LEGION™ is 1.9x faster than LEGION and 2.9x faster than CORRAL.

Across the benchmarks that each of the tools solve individually, CORRAL
takes 109 hours to solve 262 benchmarks, LEGION takes 112 hours to solve 351
benchmarks, whereas LEGIONT solves 369 benchmarks within only 71 hours (see
Table [3)).

Note that the benchmarks used in our study are those on which CORRAL
took greater than 200 seconds. On the rest of the benchmarks, clearly LEGIONT
will perform at least as well as CORRAL. We chose to leave them out to ensure
that the experiments run in a reasonable time: there were roughly 14000 of these
easy cases. It allowed us to focus on benchmarks where speedup was important.

6 Related Work

The high-level idea of using proof-guided abstractions has been long
known [3003]. Proofs of unsatisfiability have been used to derive abstractions
for unbounded model checking in the context of microprocessor verification [30].
Amla et al. have also demonstrated that counterexample based abstraction is
complementary to proof based abstraction and they can be combined in a ju-
dicious manner to reap the benefits of both the techniques for hardware verifi-
cation tasks [3]. However, program verification has mostly been dominated by
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Fig. 8: Cumulative time taken (in hours) to verify 213 instances that were solved
by all three verifiers.

counterexample-guided abstraction refinement (CEGAR) based strategies. Of
the few proposals that use proof-guided underapproximation widening strategies,
most of them focus on verification of multi-threaded programs [I8I35]. These
techniques perform underapproximation on the number of thread interleavings
allowed, while eagerly inlining all procedures. One technique [I8] constrains the
number of interleavings to certain bounds, while the other [35] uses dynam-
ically inferred invariants for constructing (potential) underapproximations on
interleavings. Note that, these techniques are orthogonal to our approach. Eager
inlining is not feasible for our benchmarks, which is precisely the problem that we
address. Our proposal shows that proof-guided widening strategies can be effec-
tively employed for verifying large sequential programs. Proof of unsatisfiability
from underapproximated models have also been utilized to narrow down the
search space for overapproximation refinement in order to decide finite precision
bit vector arithmetic with arbitrary bit vector operations [9]. The underapproxi-
mation is done on the bit vector variables of a propositional logic formula where
some of the bit vector variables are encoded with fewer boolean variables than
their width.

Other than using proofs to guide widening heuristics, proof artifacts, like
interpolants, have been used to construct annotations [27U2829T2] that can be
useful in constraining future search. Such techniques are orthogonal to underap-
proximation widening based techniques. However, they can be useful for LEGION
and we plan to investigate them in the future.

Underapproximation widening has also been used in program synthe-
sis [37/40J39]. Instead of unleashing the search for the program on the whole
search space, such techniques search for the desired program in an underap-
proximated search space. While prior approaches [37] used a pre-defined widen-
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ing sequence, later approaches [40I39] use proofs of unsatisfiability to guide the
widening sequence. Similar techniques have also been used in the synthesis of
boolean functions [I6/17]. Manthan [I6JI7] constructs an initial guess of the
boolean function by sampling the specification and constructing a decision-tree
classifier from the resulting data. It, then, uses a proof-guided technique to “re-
pair” the learnt model into a desired function.

There have also been applications of the maximal satisfiable set (MAXSAT)
on an unsatisfiable formula for program debugging. BugAssist [19] attempts to
infer the set of suspicious locations using a MAXSAT formulation over an failing
program trace and the specifications. Bavishi et al. [6] extend the formulation
to provide a ranking over the suspicious locations such that the locations higher
up in the rankings are less likely to cause regressions.

Another line of work is to use fuzzers to sample concrete instances and grad-
ually build approximations of program behavior for the purpose of deductive
verification [22] and symbolic execution [34]. However, such approaches use test
instances and do not apply a proof-guided strategy.

LEGION is inspired by many of the above algorithms and, there is potential
of incorporating more of these ideas in LEGION in the future.

7 Conclusion

Bounded model checking approaches for program verification predominantly fo-
cuses on CEGAR based strategies. In this work, we propose a proof-guided
underapproximation widening strategy which behaves in a complementary man-
ner to the CEGAR technique. The complementary nature allows us to build a
portfolio strategy that takes advantage of both proof-guided underapproxima-
tion widening and CEGAR to deliver a significant speed up in verification time
over both.

Our current approach only looks at the predicates corresponding to the call-
sites to figure out which are most relevant to the proof of unsatisfiability of
the underapproximated model. In the future, we aim to extract additional in-
formation from the unsat core which would allow us to explore more involved
widening strategies. Furthermore, combining the underapproximation techniques
that work on the domain of thread interleavings to deal with a large space of
sequential behaviors (via lots of procedures) and concurrent behaviors (via lots
of interleavings) would be another interesting direction to explore. We also be-
lieve that underapproximation widening may yield improvement performance
on our distributed bounded model checker, HyDRA [ITJ12]. Another interesting
direction that we want to pursue is on combining bounded model checking algo-
rithms (both overapproximation refinement and underapproximation widening)
with dynamic analysis [BI38T13] and statistical testing [32UT0] based approaches.
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