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ABSTRACT 
Convolution neural network is becoming the state of the art 
models in many applications. With deep architectures, 
convolution neural network can learn speech patterns 
effectively. There remains the decision on using raw signals, 
spectrogram, or other input representation. In this paper Deep 
Convolution Architectures for Speech Recognition is designed, 
implemented, and developed. The architectures are 
implemented on raw data and on spectrogram representations. 
The architectures composed of two stages networks. Self 
extracting network and classification networks. First, the 
architecture uses the spectrogram approach to the feature 
extraction stage. Then classify the speech patterns into the 
appropriate class. The second architecture uses raw signal as 
input to the extraction stage. The two approaches use 
minimum preprocessing to the speech signal. The architectures 
recognize the speech patterns in the TI46 corpus. Extensive 
experiments were conducted to reach the best design in both 
approaches. Among the many convolution architectures we 
presented the best results.  The architecture on raw signal 
produced better recognition rate, and achieves excellent 
performance over reported results. 

KEYWORDS 
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1  Introduction 
The work on developing modern models that automate speech 

recognition is still emerging. Many approaches are developed 
during the past years. Excellent results are reported. Based on this, 
research still comes up with promising architectures. 

 
Speech recognition is considered one of the prominent fields. 

Reflected in content captioning, hands free interfaces in cars, home 
devices, mobile devices, voice recognition systems ...etc. With the 
emergence of Deep Learning, NNs are found to perform complex 
recognition tasks. Focuses on Enhance optimization, looking for 

powerful activation functions and enhance architectures, determine 
the myriad hyper parameters, preprocessing speech for deep neural 
networks to name a few [1]. 

Deep Neural Networks (DNNs) are playing a vital role in 
building systems in today’s automation environments. The works 
on Big data, cloud computing, Internet of Things…etc consider 
DNNs the state of the art models for intelligent machine learning 
and artificial intelligence applications. Since 2006 Deep Learning 
(DL) becomes dominant research for its amazing performance 
[13]. One of the obstacles that face DNNs is the requirement of 
powerful processors and large memory requirements. The Graphic 
Processing Units (GPUs) improve the computation significantly, 
but still lack fast training sessions. On the other hand, memory 
requirement can be met by using cloud environments to support the 
high demands. Very rare SaaS supports free offerings. 

Convolution Neural Networks (CNNs) is widely used in 
computer vision at their infancy. Currently emerging as powerful 
technologies in all recognition tasks.  Previous research considered 
Hidden Markov Models (HMMs), Recurrent Neural Networks 
(RNNs) with various stochastic gradients decent that capture the 
temporal information in sequential data. Explore different types of 
activation functions with different architectures. In speech, 
convolution nets outperform HMM and other models. Ranging 
from representing the speech signal as Spectrograms to using raw 
signal [3, 10, 12]. Convolution and recurrent neural network is 
considered basic structure for speech recognition in many 
architectures [3]. Others are developed based on ensemble learning 
to improve robustness [4][5][6].  

 
In this paper we design, develop, and implement Deep 

Convolution Neural Network Architectures for Speech 
Recognition (DCASR). DCASR1 uses spectrogram representation 
of the speech signal. DCASR2 accepts raw data. The TI46 Corpus 
is used in the training and testing of the architecture. 

2  Speech recognition 
Speech recognition approaches are Pattern Recognition, 

Acoustic-Phonetic, or Artificial Intelligence. Hybrid approaches 
incorporate combination of any of the previous. Examples are 
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models of acoustic-phonetics with pattern recognition. Traditional 
model of pattern recognition uses fixed/engineered features (or 
fixed kernel) plus a trainable classifier [14]. Mainstream modern 
pattern recognition is an unsupervised mid-level features together 
with a trainable classifier. With the emergence of deep learning, 
representations are hierarchical and trained. 

Deep means it has more than one stage of non-linear feature 
transformation. This approach enables architectures to self extract 
appropriate representation from inputs. Many convolution 
architectures were developed over the past years [3]. 

 

3  Deep Convolution Architecture for Speech 
Recognition 

The CNN is a deep architecture that composed of two stages 
Figure 1. Feature Extraction (FE) stage and a classification stage. 
The feature extraction stage is a deep neural network composed of 
cascade of convolution layers and pooling layers. The FE accepts 
speech signal. Generate feature maps followed by a pooling layer. 
The kernel filters the features on the map. Output from the 
extraction stage form the inputs to the classification stage. The 
classification stage is a fully connected network. Neurons in the 
input layer accept extracted features and classify them into 
appropriate classes. The classification network is a 5 layers fully 
connected network. 

 

 

Figure 1: Portion of the DCASR Architecture 

Figure 1 Displays Portion of the architecture. The feature 
extraction stage and the kernels, the feature layer with 
representative for the feature maps, and a pooling layer. The 
output from the feature extraction is then fed to the classification 
stage. 

The cascade of the layers composed of four Convolutions, 
ReLU, and Pooling Layers, Figure 2.  

 

      
 

Figure 2: Feature Extractions in the DCASR Architecture 

Figure 2 is the one of the cascades in the feature extraction 
stage. The classification stage is a fully connected network with  
softmax activation. In this stage each entry from the pooling layer 
is get a vote, a final output from the architecture recognize special 
class. 

3.1  Speech Corpus 
The corpus used in this research is the TI46. Speaker-Dependent 
Isolated word corpus, collected at Texas Instrument (TI) to 
provide researchers with training and testing sets. TI46 has 16 
speakers, 8 males and 8 females. 26 utterances word for each 
speaker. 10 designated as training (enrollment) tokens and 16 as 
testing tokens. 

The organization of the TI46 corpus composed of two 
directories, TI20 and TI Alpha. TI20 contains all utterances of the 
words for the ten digits plus some control words. TI20 Alpha 
contains utterances of the words for the English letters. Both TI20 
and TI20 Alpha are divided into training and testing directories 
[7][8][14]. 

 

3.2  Preprocessing 
The Original signal passes through number of steps  
• Normalization: Speech signal is a 1-dimentional 

array. Each word is normalized in the range [-1, 1] 
following  the pseudo code: 

 signal = signal – mean (signal) 
 signal = signal /max(abs(signal)) 
 

• Silence removal: silence removal performed to 
detect end points. The is performed following the 
pseudo code:  

points         128                           //length of frame 
advance          256 

 threshold 1e-2 

        n            length of the signal 
       high = n 
       while high> points + 1 and mean(|frame|)< 

threshold 
           high         high – advance 
        low = 0 

while low < n – points and mean(|frame|)< 
threshold 
low           low + advance 

signal = signal [low : high] 
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• Resizing: resizing is to unify the signal length input 
to the neural network. Following the pseudo code: 
 
     q = 8000 
     n = length(signal) 
    If n<q 
      append signal with q-n zeros 
else 
      signal = signal [0:q] 
 

 

4 Results 
 

 
Figure 3: Preprocessing the speech signal 

 

Figure 3 visualizes the speech signal at different preprocessing 
operations. In Figure 3, 1 displays the original signal, 2 shows the 
normalization effect on the original signal, the signal is 
normalized in the rang (-1, 1). 3 gives the signal after silence 
removal, each signal is divided into frames, we start with the first 
frame and find the mean of the absolute values then threshold 
with 1e-2, values below the threshold is considered silence and 
removed from the signal till the first frame with value greater than 
the threshold appears. Then perform the same starting at the end 
of the signal. 4 display the resizing of the signal to 8000. 

 

First implementation of the architecture DCASR1 represents the 
signal by spectrogram. Spectrogram contains lots of information 
for the speech signal. The best recognition rate is found to be   
98.7 %. Figure 4 displays the results for training and testing. 

Epoch 1070/6000 
- 13s - loss: 0.0322 - acc: 0.9951 - val_loss: 0.1387 - val_acc: 0.9831 
Epoch 1071/6000 
- 13s - loss: 0.0363 - acc: 0.9942 - val_loss: 0.1050 - val_acc: 0.9873 
(7086, 20) 
(1182, 20) 
Train data Large CNN Error: 0.00% 
Test data Large CNN Error: 1.27% 
[0.014249244976379746, 1.0] 
[0.1050018458351392, 0.9873096446700508] 
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 14, 14, 15, 16, 
16] 
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 14, 14, 15, 16, 
16] 
100.0 % acc 
98.73096446700508 % val_acc 
98.90016904337152 % Max val_acc 

Figure 4: DCASR1 Recognition Rates for Training and 
Testing 

 

The model accuracy and model loss are visualized in 
figures 5 and 6 respectively. 

 
 

        
 
 
 
 
 
 
 

Figure 5 displays the accuracy for the training and testing sets. 
While Figure 6 gives the loss for the training and testing. Epochs 
are shown on the horizontal axis, the accuracy and loss are on the 
vertical for the first and second figures respectively. 

Using TensorFlow backend. 
Dataset shape is  (8268, 8000) 
Dataset shape (8268, 8000) 
Max trainY =  19 Max testY =  19 
Min trainY =  0 Min testY =  0 
Train X shape is  (7086, 8000) 
Test X shape is  (1182, 8000) 
Train X shape is  (7086, 1, 100, 80) 
Test X shape is  (1182, 1, 100, 80) 
Train Y shape is  (7086, 20) 
Test Y shape is  (1182, 20) 

 
 
 
 
 
 
 
 
                                                        
 
 

Figure 5: DCASR1 
Accuracy Visualization for 
the Training and Testing 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 6: DCASR1 Loss 
Visualization for the 

Training and Testing Sets 
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Layer (type)                                         Output Shape                 Param # 
 
conv2d_1 (Conv2D)                            (None, 1, 100, 320)       25920 
 
max_pooling2d_1 (MaxPooling2        (None, 1, 100, 320)       0 
 
conv2d_2 (Conv2D)                             (None, 1, 100, 300)       96300 
 
max_pooling2d_2 (MaxPooling2         (None, 1, 100, 300)       0 
 
flatten_1 (Flatten)                                  (None, 26000)             0 
 
dense_1 (Dense)                                    (None, 256)               6656256 
 
dropout_5 (Dropout)                              (None, 64)                0 
 
dense_5 (Dense)                                    (None, 20)                1300 
 
Total params: 6,994,780 
Trainable params: 6,994,780 
Non-trainable params: 0 
Train on 7086 samples, validate on 1182 samples 
Epoch 1/6000 

Figure 7: Portion of the DCASR1 Architecture Parameters 

Figure 7 summaries the Tensor flow model for the 
architecture. The number of convolution layers is four, 5 layers 
fully connected network. The first and second convolution layers 
are shown together with the last layer of the fully connected 
network. 

Previous work on speech recognition reported 98.5% 
recognition rate [14]. The main advantage over the previous results 
is the self extraction ability of the DCASR1, and the weight 
sharing methodology in the feature extraction stage. The feature 
engineering process for a recognition task is very tedious and time 
consuming. It is a great advantage over traditional systems. This 
enables the architecture to perform step towards intelligent 
behavior.  

We implement the DCASR2 on raw speech signal. The 
recognition improved significantly, and reported  99.95%  
recognition rate on the training data, and  99.02%  on the testing 
data (Figure 8). 
Train data Large CNN Error: 0.05% 
Test data Large CNN Error: 0.98% 
[0.04159180211998975, 0.9994557082596272] 
[0.14022109681037098, 0.9902067464635473] 
[0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 0, 
1] 
[0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 0, 
1] 
99.94557082596272 % acc 
99.02067464635473 % val_acc 
99.34711627524358 % Max val_acc 

Figure 8: DCASR2 Recognition Rates for Training and 
Testing 

                                                                     

 

 

 
 
 
Figure 9 graph the accuracy model for the training and 

testing data sets. The horizontal axis gives the epochs and the 
vertical shows the accuracy. Figure 10 visualize the loss model for 
both training and testing data. Horizontally the epochs, and 
vertically the loss values. 

 
 

Using TensorFlow backend. 
Dataset shape is  (8268, 8000) 
Dataset shape (8268, 8000) 
Max trainY =  19 Max testY =  19 
Min trainY =  0 Min testY =  0 
Train X shape is  (7349, 8000) 
Test X shape is  (919, 8000) 
Train X shape is  (7349, 100, 80) 
Test X shape is  (919, 100, 80) 
Train Y shape is  (7349, 20) 
Test Y shape is  (919, 20) 
 
Layer (type)                               Output Shape              Param # 
 
conv1d_1 (Conv1D)                  (None, 100, 256)          20736 
 
max_pooling1d_1 (MaxPooling1 (None, 100, 256)          0 
 
conv1d_2 (Conv1D)                    (None, 100, 240)          61680 
 
max_pooling1d_2 (MaxPooling1 (None, 100, 240)          0 
 
flatten_1 (Flatten)                         (None, 20800)             0 
 
dense_5 (Dense)                           (None, 20)                2580 

Total params: 11,065,908 
Trainable params: 11,065,908 
Non-trainable params: 0 
Train on 7349 samples, validate on 919 samples 
Epoch 1/6000 

Figure 11: Portion of the DCASR2  parameters 

 
               
 

Figure 9: DCASR2 Accuracy 
Visualization for the 

Training and Testing Sets 

 
 
 
 
 
 
 
 
 
 

Figure 10: DCASR2 Loss 
Visualization for the 

Training and Testing Sets 
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DCASR2 parameters are given in Figure 11. Summaries 
the model for the DCASR2 architecture. The total number of 
convolution layers is four. The fully connected network composed 
of five layers. The first and second convolution layers are shown 
together with the last layer of the fully connected network. 

 
We implement the architecture using TensorFlow. 

DCASR1 reported 1.27% test data error, (Figure 4). In the other 
hand DCASR2 reported 0.98% test data error (Figure 8). The total 
parameters for DCASR1 are 6,994,780 compared to 11,065,908 for 
DCASR2, Figures 7 and 11 respectively. DCASR1 train on 7086 
samples and validate on 1182 (Figure 7). While DCASR2 train on 
7349 and validate on 919 (Figure 11). 

Despite the large number of parameters, DCASR2 
outperform DCASR1 in the recognition ability of the network. 
Moreover the use of the raw signal in DCASR2 is considered 
advantageous over DCASR1. 

5 Conclusions 
In this work, a convolution neural network is used to 

deep learning architectures for speech recognition. Preprocessing 
enhances the self extraction ability of the CNN. It is sequence of 
normalization, silence removal, and resizing. The architectures 
consist of two stages, feature extraction and classification. The 
feature extraction composed of four convolution layers, followed 
by max pooling layer each.  Classification stage is a five layers 
backpropagation  network. DCASR1 achieved 98.7% recognition 
rate. DCASR2 achieved 99.02% recognition rate, which is 
considered an outstanding. 
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