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Abstract—With the proliferation of IoT devices and applica-
tions, an overwhelming set of protocols have been proposed to
respond to the requirements of such devices and applications.
So far, UDP has been considered as the de facto transport
protocol for IoT. Several reasons are behind this choice, primarily
its simplicity, low latency, limited overhead, and small energy
requirements. On the other hand, TCP requires significant re-
sources, primarily energy and is too complex to implement on tiny
devices, with limited memory, CPU power and battery. Therefore,
often, reliability is provided by upper-layer protocols, mainly by
the applications themselves. In fact, classical IoT applications
such as sensing, identification and actuating generate multiple
copies of data due to the hardware redundancy and periodic
updates. Examples of such applications include, agricultural,
environmental, traffic, and healthcare monitoring. However, with
the increased requirement for reliable transport and real-time
IoT applications, UDP and TCP may not be the best candidates
for such applications. For instance, in battlefields, firefighting,
natural disasters, sensors may not be capable of generating
multiple copies of critical data periodically and might even
be destroyed after sending one or two messages. Thus, the
network must provide reliability in such scenarios. Moreover,
smart textiles are more and more integrating sensory devices
and require reliable transmissions. In fact, with the very stringent
resource constraints on one hand, and the requirements to respect
the Specific Absorption Rate (SAR) of human bodies, on the other
hand, re-transmissions and power must be kept at their lowest
levels. In this paper, we propose a simple Automatic Request
(SARQ) transport protocol that uses acknowledgments and and
a retransmission mechanism. Through a realistic simulation
setup using Contiki motes in the Cooja simlator, we show
that our protocol exhibits slightly higher energy consumption
and resource requirements than UDP, but far less than TCP.
Conversely, we show that our protocol exhibits 99% Packet

Delivery Ratio (PDR), while UDP and TCP exhibit 74% and
99% PDR, respectively.

Index Terms—TCP, UDP, IoT, Reliable Transport, ARQ.

I. INTRODUCTION

Because early IoT applications were dominated by sen-
sory and identification devices, re-transmission of lost and/or
delayed packets have not been an issue since sensors and
tag readers often perform redundant transmissions of the
same information. As such, a simple transport protocol such
as the User Datagram Protocol (UDP) was sufficient. Over
the last decade, IoT has evolved to encompass loss-sensitive
and mission-critical applications such as security surveillance,
military operations, disaster monitoring, Industrial IoT clouds
and Web of things. Thus, reliable data transfer becomes a
requirement of IoT transport layer protocols. Naturally, the
Transmission Control Protocol (TCP) (RFC 7414) emerges
as the most popular candidate to deliver reliable transport,
but it has been widely criticized and deemed inadequate for
constrained devices. Therefore, several attempts have been
made to reduce TCP complexity and overhead. These include
μIP [1], lwIP [1], RIOT (GNRC TCP) [2], BLIP/TinyOS TCP
[3], FreeRTOS TCP [4], μC/OS TCP [5] and TCPlp [6]. Be-
sides UDP and TCP, commonly used transport layer protocols
include Datagram Congestion Control Protocol (DCCP) (RFC
4340), Stream Control Transmission Protocol (SCTP) (RFC
9260), and Quick UDP Interconnections (QUIC) (RFC 9000),
but these were not designed for IoT. In this paper, we analyze
the performance of TCP in IoT networks. We propose a Simple



ARQ protocol, termed SARQ, that provides a low cost, energy
efficient and reliable transport in IoT. The paper is structured
as follows: In Section I, we present TCP implementations for
constrained devices. In Section II, we explore low-power TCP
for IoT solutions. In Section III, we describe our ARQ protocol
and compare its performance to UDP and TCP using Contiki
motes in the Cooja Simulator. Finally, we conclude the paper
by summarizing our findings and some future work directions.

II. TCP IMPLEMENTATIONS FOR CONSTRAINED DEVICES

TCP was designed in the early eighties, when most comput-
ers were running with 8- and 16-bit, 128-512 Kbytes of mem-
ory, and 2-4 Mhz CPU computers. Today, those computers
would be considered as constrained devices. Nonetheless, the
amount of data that must be processed and the performance
requirements are not as they used to be. While one would
accept to wait a couple of minutes to collect environmental
forecasts back then, today we need such information to be
gathered, received, and treated within a few seconds. Very
recently, the IETF launched the Light-Weight Implementation
Guidance (LWIG) working group (WG) to collect feedback
from implementers of IP stacks in constrained devices. Other
important WGs include the Constrained RESTful Environ-
ments (CoRE) and the TCP Maintenance and Minor Exten-
sions (TCPM) WGs. In this Section, we provide the main
proposals made so far for constrained devices running on 8- to
16- or 32-bit processors. We focus on those primarily based on
TCP (RFC 9006). Table I gives a concise comparison between
the various TCP implementations in IoT systems.

A. μIP

μIP (github.com/adamdunkels/uip) is a twenty years old
lightweight TCP/IP stack designed for constrained embedded
systems using 8 and 16-bit micro-controllers that is written
by Adam Dunkels. Due to its simplicity, μIP has been widely
implemented by manufacturers including Cisco, Atmel and
Texas Instruments. However, μIP implements only limited
TCP functions. Further, the stop-and-wait flow control has very
poor performance especially with poor quality links where a
single segment may require several re-transmissions.

B. lwIP

Lightweight IP (lwIP) (www.nongnu.org/lwip) is another
TCP/IP stack, also developed by Adam Dunkels, designed
for constrained embedded systems using 8- and 32-bit micro-
controllers. lwIP have gained significant acceptance and is be-
ing implemented by well-known manufacturers as well such as
Texas Instruments, Atmel, Analog Devices, ST Microelectron-
ics, and others. However, as far as we know, implementations
made so far run UDP-Lite or basic TCP functions and have
not been tested with congestion scenarios.

C. RIOT : GNRC TCP

The RIOT (api.riot-os.org) TCP implementation, also
known as Generic Network Stack (GNRC) TCP or GNRC
TCP, was designed for Class 1 devices (RFC 7228). It is

TABLE I
COMPARING THE TCP IOT IMPLEMENTATIONS

Comparing various implementations of TCP in IoT
Solution
Name

Platform OS RTT/
RTO

Conge-
stion
Avoid-
ance

Flow
Con-
trol

RAM

μIP/
μIPv6

8-16
bit

None/
Con-
tiki

Yes
(Karn’s
algo-
rithm)

No Stop &
Wait

1/1.8
KB

lwIP 8-32
bit

None/
Mul-
tiple

Yes Yes Slow
Start

40
KB

GNRC
TCP

8-16
bit

RIOT Yes No Single
MSS
Win-
dow

1.5
KB

BLIP 8-16
bit

TinyOS Constant
RTO

Yes Single
MSS
Win-
dow

1
KB

Free-
RTOS
TCP

8-16-
32 bit

Free-
RTOS

Yes/
De-
layed
ac-
knowl-
edge-
ment

No multiple-
MSS

20
KB

μC/OS
TCP

8-16-
32 bit

μC/OS Yes No multiple
MSS

22
KB

TCPlp 32 bit Free-
BSD

Yes Yes Slow
Start

32-
64
KB

primarily aimed for 8- and 16-bit micro-controllers. As most
IoT hardware is based on the streamlined IEEE std. 802.15.4
MAC and PHY layers, this std. defines Full Function Devices
(FFD) and Reduced Function Devices (RFD). FFDs have
resources allowing them to act as network coordinators and
perform routing and various network functions. However,
RFDs have very limited resources and may not be able to
support GNRC TCP.

D. BLIP/TinyOS TCP

TinyOS (www.tinyos.net) is an old OS designed for tiny de-
vices. Native TinyOS provides a subset of the socket interface
primitives via a basic library, allowing the implementation of
an experimental TCP stack. BLIP TCP, developed to enhance
TCP performance on TinyOS, differs from standard imple-
mentations in three key ways. Firstly, it incorporates basic
congestion control mechanisms such as slow-start, congestion
avoidance, and fast re-transmission. However, it only utilizes
them for fast re-transmission, as it transmits all buffered
data once the transmission timer expires. Secondly, due to
memory constraints, BLIP TCP sets the receive window to
one Maximum Segment Size (MSS) window size. Thirdly, it
employs a constant TCP Retransmission Timeout (RTO) value
(3 seconds by default), resulting in a consistent re-transmission
rate.

https://github.com/adamdunkels/uip
https://www.nongnu.org/lwip/2_1_x/index.html
https://api.riot-os.org/
http://www.tinyos.net/


E. FreeRTOS TCP

FreeRTOS (www.freertos.org/) is a real-time operating sys-
tem for embedded devices running on 16- and 32-bit mi-
croprocessors. However, FreeRTOS faces a tradeoff between
memory allocation and performance. In its basic configuration,
memory isn’t allocated to TCP connections, and instead, the
stack dynamically allocates and deallocates memory from the
FreeRTOS heap as needed. While this approach can slow
down data transmission, it ensures flexibility in memory usage.
Conversely, a faster implementation allocates buffers to TCP
connections, resulting in quicker and more predictable memory
allocation. Yet, this approach may consume a significant
amount of memory.

F. μC/OS TCP

μC/OS (www.micrium.com/rtos/kernels/) is a Real-Time
Operating System (RTOS) for embedded devices. It is intended
for 8-, 16- and 32-bit microprocessors and supports a pre-
emptive multitasking real-time kernel, with an optional round
robin scheduling. While FreeRTOS is licence free, μC/OS
requires the purchase of support documentation and a licence
for commercial applications. Further, as opposed to FreeRTOS,
μC/OS uses a bitmap scheduler that has the advantage of
allowing a more deterministic and faster processing. This
however reduces the application design flexibility as it only
allows a one-to-one matching between tasks and priority
levels. On the other hand, FreeRTOS is relatively flexible as
it allows any number of tasks to share the same priority.

G. TCPlp

Based on Berkeley’s FreeBSD OS, TCPlp is designed to
operate within the resource constraints of IoT hardware. While
some IoT hardware may be capable of supporting full TCP
functionality, much of the hardware available on the market
may have as little as 1 KB of RAM. As the trends moves
towards smaller and more discrete sensors, wearable devices,
and body networks, resources are expected to become even
scarcer, with device sizes potentially not exceeding a couple
of millimeters. Further, the memory is not expected to be
fully allocated for the networking functions. Furthermore,
the TCPlp solution does not address the header compression
issues. Thus, it may not be implementable for RFDs.

III. LOW POWER TCP FOR IOT

Several papers have studied and critiqued various TCP
implementations in IoT devices [7] [8] [9]. However, despite
this extensive research, none of the above-mentioned TCP
solutions for IoT provides comprehensive documentation on
how all TCP features are actually implemented. Further, con-
nection setup, teardown and header compression are often not
provided. Developers and designers must go through sparse
source code and documentation to figure out the specific
implementation details. In this Section, we present a basic
proposal to support TCP in IoT systems. This mainly includes
connection setup and tear down, flow and congestion control,
and header compression.

A. Header Compression

Draft [10] specifies TCP header compression. However,
the draft expired in April 2011 and, as far as we know, no
subsequent updates have been made so far. In this paper, we
propose a new compression scheme inspired by that draft but
modified to support segment numbering rather than bytes. We
propose a jumping window flow control scheme, as specified
in figure 1. We also explain how to map between native TCP,
which might be typically running on an unconstrained device,
and our proposed scheme, running on a constrained device.

Fig. 1. TCP Header Compression

Below we provide detailed explanations how our protocol
works.

B. Port Numbers

TCP and UDP headers start with the 16-bit source and des-
tination port numbers, respectively, used to uniquely identify
multiplexed applications. In a way similar to that used by
6LowPAN where UDP port numbers may be reduced to 4
bits, TCP port numbers may follow the same rules. However,
a specific range must be defined for TCP, similar to the 61616-
61631 range used for UDP compression (RFC 8138).

C. Sequence Numbers

The sequence (SEQ) and acknowledgment (ACK) number
fields used by TCP are 32 bits long each. This means that
64 bits would be required. Moreover, the window size field
(WNDW) is 16 bits long. This makes it a total of 80 bits i.e.,
10 bytes, which is obviously too much for small frames. With
limited RAM space for the entire OS, typically a couple of
hundred kilobytes, there is no need for such huge space just for
numbering segments. Thus, we need to adequately compress
the SEQ, ACK, and WNDW fields. These are replaced by 4-
bit long N(S) and N(R) fields and the WNDW field is elided,
as it is no longer needed as explained in figure 2.

Fig. 2. TCP Header Field Compression: SEQ, ACK, and WNDW

D. Connection Setup

As pet IETF draft [11] a TCP connection in IoT is typically
initiated by the constrained device, allowing it to enter sleep
periods. The draft does not address the three-way handshake
process or sequence numbers. TCP typically uses randomly
generated Initial Sequence Numbers (ISNs), but this requires

https://www.freertos.org/
https://www.silabs.com/developers/micrium


additional processing for constrained devices. To address this,
the draft aims to simplify the algorithm for generating ISNs,
without affecting their length, ensuring randomness and unic-
ity.

E. Flow, Congestion, and Error control

We propose a very basic solution to perform flow, con-
gestion, and error control. The idea is to use a Selective
Repeat (SRP) jprocedure with HDLC-like numbering for flow,
congestion, and error control. Due to IoT device radio chip
limitations, Jumping Windows (JW) is used, where the sender
sends up to W frames and waits for cumulative acknowledg-
ment before moving on to the next window. In our proposal,
the JW flow control is implemented at the transport layer. It
resumes the TCP control mechanisms inside the IoT network.
As native TCP uses bytes as sequence numbers, we perform
a mapping between these numbers and those used for the
JW. Following the opening of the TCP connection, the ISN
is memorized. The sequence numbers of the first fragment of
the JW begin at 0. Each fragment of a TCP segment has a
configurable Fragment Size (FS) of 64, 69, 72 or 74 bytes.
Dispatch
11111PWW
P=0: SRP
P=1: GBN
WW: 00 FS=64

01 FS=69
02 FS=72
03 FS=74 We limit the maximum JW size to

8 fragments of 64—74 bytes each. This allows at least 512
bytes of data per TCP segment with using the Selective Repeat
Scheme. Thus, the MSS must be correctly set, according
to the implemented window Size. In the IoT network side,
we support two main types of frames carrying specific TCP
headers: data frames, with sequence numbers and connection
setup frames. Data frames, marked with the DATA flag, carry
information up to the maximum configured size, with only the
last frame being potentially smaller and including the ”length”
field. Once all data frames have been sent, the receiver
acknowledges the total data received, using the ISN to deduce
SEQ and ACK values for the end-to-end user connection. The
total data received is calculated as ACK = SEQ + N× S+ L,
where N is the number of full fragments, S is the maximum
fragment size, and L is the last fragment’s size.

IV. SIMPLE ARQ PROTOCOL OPERATION

To achieve a balance between the reliability characteristics
of TCP and the speed benefits of UDP, our SARQ protocol
combines the best of both worlds, offering singnificantly
improved reliability compared to UDP, but faster data transfer
and less power usage than TCP. Furthermore, we maintain
the three-way handshake mechanism of TCP as it assures
reliability of connection setup, since we are using an IP-
based connectionless network layer. The SARQ algorithm is
outlined. See the algorithm 1 for details.

Algorithm 1 Simple ARQ Algorithm
Initialize the process and UDP connection
Enter an infinite loop to handle incoming and outgoing
packets:
if the device is the Sender then

Create a packet with type ’D’ and sequence number 1.
Send the packet to the receiver.
Handle re-transmissions for unacknowledged packets

after a timeout.
Wait for an ACK from the receiver.
if the ACK is received then

send another packet.
end if
if the ACK is not received after a timeout then

Re-transmit the packet.
if maximum attempts are reached and there is no

ACK received for this packet from the receiver then
The packet will be considered lost.

end if
end if

end if
if the device is the Receiver then

Listen for incoming packets.
Receive a packet, send an ACKs to the sender.
Log information about the received packets.

end if
The process remains active to handle incoming and outgoing
packets indefinitely.

V. EXPERIMENTAL RESULTS

In this section, we compare the performances of UDP,
TCP, and the SARQ protocols in the context of Internet of
Things (IoT) applications. This comparison aims to evaluate
UDP and TCP, and illustrate how SARQ is more suitable for
sensitive and mission-critical IoT applications. The simulation
platform used is Contiki-NG (github.com/contiki-ng/contiki-
ng/tree/release/v4.2), an open-source operating system de-
signed for resource-constrained IoT devices, with version 4.2
used for this work. It features a low-power IPv6 commu-
nication stack, enabling Internet connectivity, and supports
various platforms such as the Texas Instruments MSP430.
Contiki-NG accommodates several types of motes, including
Cooja, Sky, and Z1 motes. However, the documentation for
Contiki-NG is limited, but it can be supplemented with the
OpenTestbed simulator, which provides a realistic environment
for simulating and testing IoT devices. In this setup, We
deployed four Z1 client motes and one Z1 server mote, with
each client mote configured to transmit 100 packets to the
server mote. Figure 3 illustrates the network topology utilized
in our simulations. Packet size varies from 10 to 80 bytes due
to the RAM size constraint of the Z1 mote in Contiki-NG.
This limits the maximum packet size to 80 bytes. The receiver
actively monitors the number of connected motes, rejecting
connections if the limit (MAX CONNECTED MOTES) is

https://github.com/contiki-ng/contiki-ng/tree/release/v4.2
https://github.com/contiki-ng/contiki-ng/tree/release/v4.2


Fig. 3. Network topology

reached.

A. Performance Evaluations

We used three metrics to assess the performance of the
three transport schemes: Packet Delivery Ratio (PDR), energy
consumption and the end-to-end delay. We evaluate the impact
of the packet size and the SARQ window size on PDR, energy
consumption and the end-to-end delay. These metrics offer
valuable insights on the suitability of the transport schemes
for IoT applications. The impact of the Packet Size in IoT
networks has been investigated in [12], which emphasized the
role of packet size in determining the overall performance
and reliability of data transmission within IoT networks. In
this study, the packet size used ranged from 10 to 100 bytes.
Further, energy consumption is critical in IoT networks and it
has been deeply investigated [13]–[15]. Ref. [16] analyzes the
critical effect of packet payload size, hops count, and interface
speed on the end-to-end packet delay in IoT networks. The
study highlights that larger packet sizes significantly increase
the end-to-end packet delay. This is because larger packets
require more time to transmit and are more likely to be delayed
due to network congestion and packet loss.

B. Simulation and Results

In the implementation of TCP, the RTO is set to 3 seconds,
and the Maximum Segment Size is calculated as the difference
between UIP BUFSIZE (the size of the uIP buffer) and the
total combined length of the IPv6 and TCP headers, denoted
by UIP IPTCPH LEN. However, the networking stack con-
figuration in Contiki-NG establishes the IPv6 header length as
40 bytes and the TCP header compression length as 20 bytes.
In Figure 4, we give the PDR vs the packet size. We observe
that the PDR is nearly constant for all the packet sizes for the
three protocols. While TCP reaches a 100% packet delivery,
UDP delivers only 74.25% of the packets, while our SARQ
scheme also achieves a 100% PDR. As opposed to what has
been sated above, it seems that the packet size does not to have
a major influence on PDR. At a first glance, this finding might
somehow contradict the claims regarding the impact of packet
size on PDR discussed qbove, but when we dig deeper into
that statement, we limited ourselves here to packet sizes not
exceeding 80 bytes because of the limitations of IoT devices.

If we add the MAC and PHY layer headers, we are respecting
the Maximum Transfer Unit (MTU) of IoT networks, i.e., the
127 bytes specified by the IEEE 802.15.5 [17] as a reference.

Fig. 4. Effect of Packet Size on PDR

Figure 5 gives the difference in energy consumption among
TCP, UDP and SARQ protocols per transmitted packet. As
we can notice, the consumed energy slightly increases with
the packet size. Most importantly, SARQ consumes about 40
mJ more than UDP per transmitted packet, but about 40 mJ
less energy than TCP.

Fig. 5. Effect of Packet Size on Energy Consumption

On the other hand, figure 6 illustrates the effect of packet
size on the average end-to-end delay for three different pro-
tocols: TCP, UDP, and SARQ. The results indicate that TCP
exhibits the highest average end-to-end delay across all packet
sizes compared to UDP and ARQ. Specifically, TCP’s delay
begins at approximately 0.03 ms for 10 bytes packets and
gradually rises to around 0.035 ms for 80 bytes packets. In
contrast, UDP consistently maintains the lowest average end-
to-end delay among the three protocols, starting slightly below
0.023 ms for 10 bytes packets and only slightly increasing to
just above 0.026 ms for 80 bytes packets. SARQ shows a delay
that lies between TCP and UDP, beginning at about 0.025
ms for 10 bytes packets and rising to approximately 0.028
ms for 80 bytes packets. This comparison underscores the
efficiency of UDP protocol in minimizing delay, while TCP’s
higher delay reflects its additional overhead for reliability,
and SARQ’s delay represents a middle ground with its error
correction capabilities.



Fig. 6. Effect of Packet Size on the Average End-To-End Delay

C. Discussion

We can state summarize that SARQ is much more reliable
than UDP due to its higher PDR (100%) compared to UDP
(74.25%). Furthermore, when comparing it to TCP, SARQ
exhibits better performance in terms of energy consumption,
using about 40 mJ less than TCP. Additionally, SARQ achieves
better average end-to-end delay compared to TCP, with a delay
that is about 5 milliseconds shorter than TCP, while also
maintaining a 100% PDR. Therefore, it can be concluded that
SARQ provides higher reliability than UDP and outperforms
TCP in terms of energy consumption, rendering it a suitable
candidate for resource-constrained mission critical IoT appli-
cations.

VI. CONCLUSION

In this paper, we introduced a novel protocol for IoT
networks termed Simple Automatic Request (SARQ), aimed
at enhancing reliability and efficiency in data transmission
within IoT networks. The SARQ protocol is designed to
tackle the challenges of packet re-transmission, encompassing
aspects such as Packet Delivery Ratio, energy consumption
and and the end-to-end delay. Using simulations, we
demonstrated the effectiveness of SARQ protocol in
achieving reliable and efficient communication, offering a
promising alternative to traditional protocols such as TCP
and UDP. Our findings suggest that Simple ARQ protocol
holds significant promise for enhancing the performance and
reliability of IoT networks, making it a valuable contribution
to the field. Given the diverse and increasingly specialized
requirements expected by IoT applications, where reliability
is paramount, the Simple ARQ protocol emerges as a more
viable alternative to TCP. Unlike UDP, which is known
for its speed in transmission time but lacks reliability, the
Simple ARQ protocol offers a balance between speed and
reliability, making it an attractive option for IoT devices. As a
continuation of this work, we will envision the implementation
of SAQR on real hardware platforms.
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