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Abstract—Calibrating the Implied Volatility Surface (IVS) using
sparse market data is an essential task for option pricing in
quantitative finance. The calibrated values must provide a solution
to a specified partial differential equation (PDE) in addition to
obeying no-arbitrage conditions modelled by individual differential
inequalities. However, this leads to a multi-objective optimization
problem, which emerges in Physics-Informed Neural Networks
(PINNs) as well as in our generalized framework. In order to
address this problem, we propose a novel calibration algorithm
called Whack-a-mole Learning (WamL), which integrates self-
adaptive and auto-balancing processes for each loss term. The
developed algorithm realizes efficient reweighting mechanisms for
each objective function, ensuring alignment with constraints of
price derivatives to achieve smooth surface fitting while satisfying
PDE and no-arbitrage conditions. In our tests, this approach
enables the straightforward implementation of a deep calibration
method that incorporates no-arbitrage constraints, providing an
appropriate fit for uneven and sparse market data. WamL also
enhances the representation of risk profiles for option prices,
offering a robust and efficient solution for IVS calibration.

Index Terms—Multi-objective Learning, Physics-Informed Neu-
ral Networks, Option pricing, Implied Volatility Surface, Partial
Differential Equations

I. INTRODUCTION

In the recent deep learning revolution, deep neural networks
are increasingly being applied to model and simulate complex
systems, which parameterize unknown functions with artificial
neural networks (ANNs). Among them, addressing forward and
inverse problems involving partial differential equations (PDEs)
gave rise to physics-informed neural networks (PINNs, (1)),
which incorporate noisy data and physical laws as multi-task
learning. The expansion of this approach opens up possibilities
for meaningful real-world adoption, including in finance.

One typical PDE-related problem that could benefit from
PINNs is the calibration of implied volatility surfaces (IVS).
Previous research on finding IVS equivalent to option pre-
miums using ANNs has primarily employed adapted global
optimization (2; 3) and advanced network models (4; 5; 6).
Several studies have addressed the calibration problems by
penalizing the loss constraints (3; 6; 7; 8) or mapping pricing
from model parameters (9; 10), and applied PINNs for the
Black-Scholes PDE (11). Almost all approaches are considered
a subset of IVS requirements, but not for all requirements. To
accurately represent the options’ market dynamics, IVS should

be identified while satisfying PDE and financial principles,
including no-arbitrage conditions as derivative constraints,
leading to a multi-objective optimization problem.

The major challenge for such IVS calibration using deep
learning is managing the combination difficulty between multi-
scale losses and fine-tuning individual losses. To tackle this,
we propose a novel calibration algorithm called Whack-a-mole
Learning (WamL), which integrates self-adaptive and auto-
balancing processes in deep learning and applies multi-objective
calibration for the IVS as an expansion of PINNs. The de-
veloped algorithm balances efficient combination mechanisms
for each objective function, ensuring alignment with PDE
conditions and price derivative inequalities by layers. This is
achieved by updating the loss function weights using gradients
simultaneously with the updating of the neural network weights.
In parallel, each objective loss is developed to be balanced
appropriately by a self-attention mechanism. WamL aims for
high interpretability and smooth surface fitting while satisfying
PDE constraints and no-arbitrage conditions.

To summarize, our contributions are as follows:

• We introduce the WamL algorithm, which combines
self-adaptive and loss-balancing learning algorithms to
successfully apply PINNs to the IVS calibration problem.
WamL accurately detects implied volatility characteristics
while adhering to no-arbitrage and PDE conditions.

• The effectiveness of WamL is demonstrated in that it
improves the interpolation, including smooth and appro-
priate sensitivity profiles. Additionally, by emphasizing
the network’s efforts to comply with the self-adaptive
configurations in learning, WamL enhances the model’s
overall effectiveness and robustness.

• WamL contributes to enhancing the interpretation tool
for IVS calibration and risk profiles through automatic
differentiation, offering a robust and efficient solution by
recent efficient computation advancements in quantitative
finance applications.

This study tackles the challenges of multi-objective training
and provides a novel approach to accurately represent options
market dynamics while satisfying essential financial constraints.



II. IVS CALIBRATION

A. Calibration Problem

The implied volatility surface (IVS) models values resulting
from European option prices. We work with a complete
filtered probability space

(
Ω,F , (Ft)t∈[0,T ] ,P

)
where P is an

associated risk-neutral measure. The price of a European call
option1 C at time t is defined as

C = e−rτE
[
(ST −K)+ | Ft

]
, (1)

where St is the underlying price at t, K is the strike price, τ =
T − t is the time to maturity T , and r is the deterministic risk-
free rate. In the Black-Scholes model (12), implied volatility
σimp is used to model the price for K, τ ∈ [0,∞):

CBS (σimp) = StN (d+)− e−rτKN (d−) ,

d± =
ln(e−rτSt/K)±

(
σ2
imp/2

)
τ

σimp
√
τ

,
(2)

where N(·) is the cumulative normal distribution function.
To generalize for K and τ , (13) proposed the local volatility

(LV) model, where European option prices satisfy the PDE

f := rK
∂C

∂K
− 1

2
σ2
LV(K, τ)K2 ∂

2C

∂K2
+

∂C

∂τ
= 0, (3)

with initial and boundary conditions:

Cτ=0 = (ST −K)
+
, lim

K→∞
C = 0, lim

K→0
C = St. (4)

Plugging this into (2) yields a conversion function between
σimp and σLV with respect to K and τ ,

σ2
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)
(5)

to be fit with the PDE (3).
In this study, we define IVS calibration as identifying the

multivariate function respecting the prices Φ (x), associated
with IVS as a function φ (x) ≥ 0 with inputs x := (K, τ),

Φ(x) = CBS (K, τ, φ (x)) . (6)

The inverse problem of the IVS is that, given limited options
prices, we would like to identify the implied volatility function
with respect to x, redefined as σimp (x), to fit with that premium
resulted by CBS also satisfy PDE. Based on (2∼5), once φ
is determined, we can analytically obtain the option price
Φ. Furthermore, Φ is second differentiable whenever φ is
second differentiable, allowing the representation of the PDE
in (3). The challenge of this problem is the scarcity of option
price data. To overcome this challenge, one possibility is to
interpolate/extrapolate the price data or add further information
relevant to the problem.

1We focus on European call options, but our discussion can theoretically
apply to European put options and their synthesized products.

B. No-Arbitrage Constraints for European Options
The calibration of option prices is limited by sparse data

and, as discussed, should obey the constraints imposed by
no-arbitrage conditions. The no-arbitrage principle states that
market prices should prevent guaranteed returns above the risk-
free rate. We consider the necessary and sufficient conditions
for no-arbitrage presented in (14), which allows us to express
the call option price as a two-dimensional surface appropriately.
These necessary and sufficient conditions for no-arbitrage are
represented as non-strict inequalities for several first and second
derivatives,

−e−rτ ≤ ∂C

∂K
≤ 0,

∂2C

∂K2
≥ 0,

∂C

∂τ
≥ 0. (7)

From the above, no-arbitrage conditions require these deriva-
tives to have a specific sign. Standard architecture does not
automatically satisfy these conditions when calibrating with
a loss function, which is simply based on the mean squared
error (MSE) for the prices.

III. MULTI-OBJECTIVE OPTIMIZATION

IVS calibration is a complex problem that requires fitting
a model to PDE and no-arbitrage conditions, which impose
additional constraints on the derivative values of the function
surface. With the exponential growth in computing power, deep
neural networks are increasingly being applied to model and
simulate such PDE-based systems.

A. Physics-Informed Neural Networks (PINNs)
Physics-Informed Neural Networks (PINNs), introduced in

(1), incorporate underlying physical laws into neural network
architecture through PDEs, forming a new class of data-efficient
universal function approximators.

We consider a parameterized PDE system given by:

f [Φ (x)],x ∈ Ω,

B[Φ (x)],x ∈ ∂Ω,
(8)

where f denotes the set of PDE residuals that include differen-
tial operators, B represents the set of boundary conditions, and
Ω and ∂Ω are the spatial domain and the boundary, respectively.

PINNs solve this PDE system as an optimization problem
by minimizing the total loss using an artificial neural network
in a deep learning context:

L := L0 + Lb + Lf , (9)

L0 :=
1

N0

N0∑
i=1

∣∣∣y(i) − Φ(x(i))
∣∣∣2 ,

Lb :=
1

Nb

Nb∑
i=1

∣∣∣B[Φ(x(i))]
∣∣∣2 ,

Lf :=
1

Nf

Nf∑
i=1

∣∣∣f [Φ(x(i))]
∣∣∣2 ,

(10)

where L0 is defined as the error between observed and modelled
values, Lb enforces the periodic boundary conditions, and Lf

enforces the structure imposed by PDE residual values at a
finite set of collocation points.



B. Derivative-Constrained PINNs (DCPINNs)

We now consider the generalization of the PINNs with partial
derivative inequality conditions Derivative-Constrained PINNs
(DCPINNs) following (15). We assume

h[Φ(x)],x ∈ Ω (11)

where h[·] represents a set of differential operators acting on
an inequality equation. To fit with inequality constraints, a loss
Lh to be minimized is defined as,

Lh :=
1

Nh

Nh∑
i=1

γ ◦
∣∣∣h(Φ(x(i))

)∣∣∣2 . (12)

γ(x) =

{
x, if inequality is not satisfied
0, otherwise

(13)

where Lh enforces the structure imposed by inequality with
differential operators at a finite set of collocation points, and
γ reflects the loss whether the inequality is satisfied or not.

IV. WHACK-A-MOLE LEARNING (WAML)

IVS calibration aims to identify the surface Φθ(x) by finding
the optimal parameter set θ with inputs x := (K, τ). Standard
architecture does not automatically satisfy all PDEs and no-
arbitrage conditions. We consider optimization problems that
include multiple losses, not only for the surface Φθ(x) but also
for its derivatives. The total cost to be minimized is,

L := λ0L̂0 + λbL̂b + λf L̂f︸ ︷︷ ︸
PDE residuals

+ Σαλhα
L̂hα︸ ︷︷ ︸

No-arbitrage penalties

, (14)

L̂0 :=
1

N0

N0∑
i=1

m
(i)
0

∣∣∣C(i)
0 − Φθ

(
x
(i)
0

)∣∣∣2 , (15)

L̂b :=
1

Nb

Nb∑
i=1

m
(i)
b

∣∣∣C(i)
b − Φθ

(
x
(i)
b

)∣∣∣2 , (16)

L̂f :=
1

Nf

Nf∑
i=1

m
(i)
f

∣∣∣f (
Φθ(x

(i))
)∣∣∣2 , (17)

L̂hα :=
1

Nhα

Nhα∑
i=1

m
(i)
h

∣∣∣γα ◦ hα

(
Φθ(x

(i))
)∣∣∣2 . (18)

where C
(i)
0 is the observed premium, i = 1, . . . , N0 from

the observed dataset, and L̂hα
represents each penalty term

corresponding to (7), i.e., LhK , LhKK and Lhτ correspond
to the terms in (7), respectively. The key modifications from
standard PINNs configurations are the multiplier λ for each loss
and the weights m for each individual loss in each categorized
loss.

The concept of Whack-a-mole Learning (WamL), which
is proposed in this study, involves a combination of two
"whacks" in the learning process. The first "whack" intensifies
the gradient of individual losses within categorized losses to
enhance local constraints, especially the objective for inequality
derivative constraints. The second "whack" fixes the multi-scale

imbalance between categorized losses in (15∼18), particularly
to mitigate the impact of changing gradient values from epoch
to epoch due to the inequality feature in (18).

In line with the neural network philosophy of self-adaptation,
WamL applies a straightforward procedure with fully trainable
weights to generate multiplicative soft-weighting and attention
mechanisms, inspired by (16; 17). The first "Whack" introduces
self-adaptive weighting that updates the loss function weights
via gradient ascent concurrently with the network weights. We
minimize the total cost with respect to θ but also maximize
it with respect to the self-adaptation weight vectors m at the
k-th epoch,

m
(j)
β (k + 1) = m

(j)
β (k) + ηm∇

m
(j)
β

L̂β(k). (19)

where β specifies each loss β ∈ {0, b, f, hrmK , hrmKK , hrmτ}
and ηm is the learning parameter. In the learning step, the
derivatives with respect to self-adaptation weights are increased
when the constraints of derivative terms are violated. In parallel,
for the second "Whack", loss-balancing employs the following
weighting function in the loss function based on Eq (14).
Considering updated at the k-th epoch,

λβ(k + 1) =


1, if

∣∣∣∇θL̂β(k)
∣∣∣ = 0

1
2

(
λβ(k) +

∑
β |∇θL̂β(k)|
|∇θL̂β(k)|

)
, otherwise

(20)
where ∇i is the partial derivative vector (gradient) with respect
to the i-th input vector (value), and |·| indicates the average of
the absolute values of the elements in the vector. Note that the
main reason for the choice of absolute values, instead of the
squared values in (17), is to avoid overlooking outlier gradients
from the individual losses, as most elements of ∇Lh are zero
values when the last stage of the training.

The proposed method automatically adjusts the weights of
loss terms based on their relative magnitudes during training at
regular intervals specified by the user throughout the training
process. This adaptable strategy aims to maintain a balanced
contribution of each loss term on the optimization procedure,
potentially improving convergence and accuracy.

V. NEURAL NETWORK FORMULATION

In the WamL approach, we apply a simple but deep feed-
forward neural network architecture, specifically a multilayer
perceptron (MLP). Let L ≥ 2 be an integer representing the
depth of the network; we consider a neural network constructed
with one input vector, L hidden layers, and one output value.
Both input values and an output variable are real numbers, i.e.,
x ∈ Rn and y ∈ R. We can express the price function Φ in (6)
which includes MLP as a multivariate function φ depending
on the variables x, i.e., φ : R2 → R,

φ (x) = ς ◦AL ◦ fL−1 ◦AL−1 ◦ · · · ◦ f1 ◦A1 (x) , (21)

where for l = 1, . . . , L, Al : Rdl−1 → Rdl are affine functions
as Al(xl−1) = WT

l xl−1 + bl, and dl is the number of neurons
in the layer l for xl−1 ∈ Rdl−1 , with Wl ∈ Rdl−1×dl and



Fig. 1. The whole network architecture of Whack-a-mole Learning (WamL).

bl ∈ Rdl , d0 = n, dL = 1, and x0 = x. fl and ς are activation
functions which are applied component-wise. To restrict the
positivity of implied volatility and boundary conditions (4), we
applied the softplus function for the last activation function
ς (x) = ln (1 + ex). Given a dataset x, which includes a set
of pairs (x(i), C(i)), i = 1, . . . N , and a cost function L(x,Φ),
the network model Φ is found by fitting the parameters θ (i.e.,
W and b) which minimize the loss function.

A challenge lies in that Eq. (14) involves derivatives with
respect to x, which are also functions of the parameters. When
numerical approximation of derivatives is used, it could result
in slow or inaccurate solutions. To address this, this study
utilizes an extended backpropagation algorithm from (18) with
Automatic Differentiation for the gradient in Eq. (14) through
exact derivative formulations. This approach requires activation
functions in the network to be second-order differentiable or
higher. It is noted that functions like ReLU or ELU need slight
additional consideration at non-differentiable singular points.
If all activation functions are second-order differentiable, the
same is true for the entire network, as shown in (19).

VI. ALGORITHMS

This section introduces the algorithm for WamL for multi-
objective problems as an expansion of the work in (1), which
controls the inequality loss of the partial derivatives of a neural
network function with respect to its input features.

Algorithm 1 exhibits WamL characteristics that set it apart
from conventional learning methods. First, the computation
points x{f,h} for the derivatives of the MLP do not correspond
with the points of the training dataset x0, due to the fact it is
typically sparse and uneven. Instead, the algorithm adjusts the
derivatives to fit mesh grids, hence capturing derivative data
across a wide array of input features. Secondly, the objective
function L depends not only on the MLP’s direct output but also

on its derivatives as specified in Eq.(14), all of which depend
on identical network parameters. WamL facilitates balancing
accurate calibration and categorized losses, which consist of
PDE residuals and derivative inequalities, as described in
Section IV.

VII. EXPERIMENTAL DESIGN

A. Neural Network Setting and Training Configuration

In selecting appropriate network architectures and adopting
suitable learning algorithms, we draw on approaches and
configurations from (17; 20) to improve learning efficiency
and accuracy. In our experiment, the network architecture φ
is a deep setting with four layers (L = 4), each containing
64 neurons and using a hyperbolic tangent activation function
for smooth activations. We apply non-dimensionalization for
input as moneyness, K̂ = K/F with forward price F , and use
Glorot initialization for θ. Reference grids for PDE residuals
(Nf ) and no-arbitrage constraints (Nh{K,KK,τ} ) are defined as
dense rectangular mesh grids, equally distributed with 101
points in K̂ ∈ [0, 2.5] and in τ ∈ [0, 5]. We use the following
hyperparameters: ηm = 1.0, pm, pλ = 100, and kmax = 10000.
For optimization, we employ the Adam optimization (21) with
a weight decay setting, starting with a learning rate η = 10−3

and an exponential decay with a decay rate of 0.9 for every
1, 000 decay steps.

The models compared in this study are

L =

PINNs (-WamL)︷ ︸︸ ︷
Vanilla (-WamL)︷ ︸︸ ︷
λ0L̂0 + λbL̂b +λf L̂f +λhK

L̂hK
+ λhKK

L̂hKK
+ λhτ

L̂hτ︸ ︷︷ ︸
DCPINNs (-WamL)

.

(22)
In computing, differentiable solvers have been developed in
JAX/Flax (22; 23), which are suitable for inverse problems



Algorithm 1 Whack-a-mole Learning (WamL) Algorithm

Require: Dataset (x0,b, C0,b)
{1,...,N0,b}, x{1,...,Nf}

f , x{1,...,Nh}
h

Ensure: Neural network parameters θ
Consider a deep NN φθ(x) with θ, and a loss function

L :=
∑
β

λβL̂β (mβ ,xβ (, Cβ)) ,

where L̂β denotes the categorized loss with β ∈
{0, b, f, hK, hKK, hτ}, mβ = 1 are weight vectors for
individual loss in L̂β and λβ = 1 are dynamic parameters
to balance between the different categorized loss.
With pre-determined hyper-parameter values η, ηm, pm, pλ,
kmax, then use a gradient-based optimizer to update θ as:
for k = 1, . . . , kmax do

Compute ∇θL̂β(k) by automatic differentiation
if k mod pm = 0 then

Update mβ by

m
(j)
β (k + 1) = m

(j)
β (k) + ηm∇

m
(j)
β

L̂β(k),

where mβ(k), L̂β(k) shows at k-th iteration.
end if
if k mod pλ = 0 then

Update λβ by

λβ(k + 1) =


1, if

∣∣∣∇θL̂β(k)
∣∣∣ = 0

1
2

(
λβ(k) +

∑
β |∇θL̂β(k)|
|∇θL̂β(k)|

)
, otherwise

where |·| is mean of the absolute values of elements.
end if
Update the parameters θ via gradient descent, e.g.,

θ(k + 1) = θ(k)− η∇θL (k).
end for
Return θ

when modelling an unknown field. The experiments are
conducted using Google Colab2, which offers GPU computing
on the NVIDIA Tesla T4 with 15 GB of video random access
memory. The results reported in the figures represent the mean
values obtained from 5 experimental runs, with synchronized
seed values for random variables across the compared models.

B. Testing with Synthetic Data

The algorithm (i.e. WamL) developed for evaluating IVS
was first tested on simulated values in a parameterized two-
dimensional case of the surface interpolation problem. We took
up the Stochastic Alpha Beta Rho (SABR) model introduced
by (24) and prepared a sparse two-dimensional dataset to test
our methodology. To fit a more realistic market situation, the
following experiment utilized sparse (and uneven) grid data

2Google Colab. http://colab.research.google.com

referring to actual historical traded grids from July 10 to July
14, 2023, and generated synthetic option premiums on the grids
using Eq. 24 with {α, β, ρ, ν} = {0.2, 1.0,−0.4, 0.6}.

C. Real Data

We also conduct robust backtesting on extensive intraday
options data for WamL using S&P 500 options. Our historical
dataset comprises intraday traded prices of S&P 500 options
for 248 business days from October 1, 2022, to September 30,
2023. We obtained about 500,000 data points on a daily basis
via CBOE DataShop3.

TABLE I
STATISTICS OF INTRADAY PRICES OF S&P 500 OPTIONS FOR 248 BUSINESS

DAYS FROM OCTOBER 1, 2022, TO SEPTEMBER 30, 2023.

Elements [per day] Mean (min.) (max.)

All count of intraday traded price 527,646 (183,418) (734,441)
# of unique grids 6,516 (4,580) (8,269)
% of call options 40.20 % (35.16 %) (47.09 %)
% of short term (τ < 1M ) 95.61 % (91.40 %) (97.07 %)
% of long term (τ > 1Y ) 2.62 % (1.42 %) (4.32 %)
% of near ATM (K̂ ∈ [0.9, 1.1]) 72.10 % (64.43 %) (76.95 %)
% of far OTM (K̂ /∈ [0.5, 1.5]) 2.00 % (1.17 %) (3.05 %)

Table I shows that the distribution of input variables for
intraday traded options is highly uneven. The vast majority
of trades (about 95%) involve options with short expiration
dates of less than a month. Moreover, over 70% of these trades
are concentrated near the at-the-money strike. Compared to
typical scenarios using mesh grid data, this uneven distribution
presents a more challenging task for calibrating IVS.

VIII. RESULTS

A. Performance Evaluation on Synthetic Data

To assess the effectiveness of the proposed Whack-a-mole
Learning (WamL) algorithm, we initially conducted experi-
ments using synthetic data as described in Section VII-B. A
sparse two-dimensional dataset was synthesized to simulate
the challenges of limited data availability often encountered in
real-world scenarios. The performance of WamL was compared
against three baseline models with different loss formulations:
Vanilla, PINNs, and DCPINNs. The evaluation metrics included
calibration accuracy, adherence to no-arbitrage constraints, PDE
residuals, and the quality of the interpolated volatility surface.

Figure 2 presents the IVS generated by each model for the
synthetic dataset. WamL demonstrates an ability to accurately
capture the intricate patterns of the volatility smile from
very sparse data, closely resembling the ground truth surface.
In contrast, as shown in Figure 3, the vanilla and PINNs
models struggle to reproduce the complex shape of the surface,
resulting in a more simplistic and less accurate representation in
terms of derivatives of the surface, i.e., no-arbitrage constraints.

3CBOE DataShop, (2023). https://datashop.cboe.com/option-trades



Fig. 2. Synthesized option premiums and inferred prices by calibrated models
with WamL, and corresponding calibrated IVS by models.

Fig. 3. Heatmaps corresponding to derivative inequalities by option premium
surface. The red-colored area indicates a violation of no-arbitrage conditions.

TABLE II
CALIBRATION ERRORS ON A LOGARITHMIC SCALE (MEAN) ON SYNTHETIC

DATA. BOLD VALUES INDICATE LOWEST (BEST) VALUES.

Models L0 Lf LhK
LhKK

Lhτ

Vanilla -7.3 -11.9 -5.9 -2.4 -inf∗
PINNs -4.3 -12.6 -1.8 -1.4 -12.5
DCPINNs -5.7 -14.3 -inf∗ -10.1 -inf∗
Vanilla-WamL -7.3 -11.4 -5.5 -2.3 -10.9
PINNs-WamL -3.7 -14.8 -2.9 -inf∗ -7.0
DCPINNs-WamL -5.6 -15.2 -inf∗ -inf∗ -inf∗

∗Negative infinity (-inf) in a logarithm scale indicates zero value.

Quantitative analysis of the calibration errors reveals that
WamL outperforms the baseline models. Table II summarizes
the categorized losses for each model in relative errors. Note
that each loss is not applied to self-adaptive weights or loss-
balancing multipliers, i.e., we applied mβ = 1 and λβ = 1.
This allows us to isolate the effects of each component and
understand their contribution to the overall model performance.
WamL achieves balanced lower errors, indicating its superior
calibration accuracy. The incorporation of physics-informed
constraints and the use of automatic differentiation enable
WamL to effectively leverage the available data points and
produce a highly accurate interpolation of the IVS.

B. Backtesting on Real Market Data

The backtesting procedure involved calibrating the IVS
using WamL and the baseline models for each trading day
as presented in Section VII-C. The calibrated surfaces were
then used to assess the accuracy of option price predictions,
PDE residual losses, and adherence to no-arbitrage constraints.

Fig. 4. Backtesting results. Daily calibration errors (logarithmic scale) on
S&P 500 options data from October 1, 2022, to September 30, 2023.

Figure 4 illustrates the performance of WamL and the
baseline models over the backtesting period. WamL consistently
achieves more balanced calibration errors than the other models,
which aligns with the results from synthetic data experiments.
The superior performance of WamL can be attributed to its
robustness in effectively incorporating market dynamics and
no-arbitrage constraints into the calibration process.

TABLE III
CALIBRATION ERRORS ON A LOGARITHMIC SCALE (MEAN) ON REAL DATA.

BOLD VALUES INDICATE LOWEST (BEST) VALUES.

Models L0 Lf LhK
LhKK

Lhτ

Vanilla -4.6 -13.6 -6.2 -3.3 -5.5
PINNs -4.4 -14.2 -4.3 -4.8 -5.7
DCPINNs -4.5 -15.1 -9.5 -9.9 -8.5
Vanilla-WamL -4.6 -13.4 -6.2 -3.3 -5.5
PINNs-WamL -4.2 -14.2 -5.1 -5.8 -6.6
DCPINNs-WamL -4.4 -14.9 -15.5 -46.6 -9.1

Table III presents key performance metrics averaged over the
entire backtesting period. DCPINNs-WamL achieves signifi-
cantly lower errors, indicating a strong fit between the calibrated
surface and the no-arbitrage constraints, while maintaining
competitive performance in other metrics. This demonstrates
WamL’s ability to improve global fit while effectively balancing
multiple objectives.

C. Risk Sensitivity Analysis

An important aspect of IVS calibration is the accurate
estimation of risk sensitivities, such as delta, gamma, and theta.
Delta measures the sensitivity of option prices to changes in
the underlying asset price, gamma quantifies the rate of change
of delta, and theta represents the sensitivity of option prices to
changes in time to maturity. These risk sensitivities correspond
to the inequalities in the no-arbitrage conditions, ensuring that
the calibrated IVS adheres to fundamental financial principles.

Figure 5 compares the risk sensitivity profiles generated
by WamL and baseline models. WamL reasonably estimates
delta, gamma, and theta while satisfying no-arbitrage conditions
and producing smooth, continuous risk sensitivity curves.



Fig. 5. Risk sensitivity profiles generated by different models. The figure
shows the first and second derivatives with respect to moneyness M (left and
centre) and the first derivative with respect to time to maturity τ (right). Each
line represents a slice of the surface at different maturities τ ∈ [1, 2, 3, 4, 5].

In contrast, the baseline models show discrepancies and
irregularities, with the vanilla model struggling the most. The
risk sensitivity comparisons highlight WamL’s ability to capture
the underlying dynamics of the options market, which is crucial
for informed risk management and hedging strategies in option
portfolio construction and risk exposure management.

D. Loss Scalability and Computational Efficiency

Finally, we demonstrate the functioning of WamL during
training and evaluate its computational efficiency. To demon-

Fig. 6. Evolution of loss weights for each categorized loss during training.
Values are normalized relative to the maximum value at each epoch.

strate the effectiveness of WamL during training and evaluate its
computational efficiency, we analyze the loss weights for each
categorized loss across training epochs, as shown in Figure 6.
The results reveal that WamL successfully reacts to derivative
inequality violations and rectifies them using the gradient
descent optimizer throughout the training process. Notably, we
observe trade-offs between derivative constraints and premium
accuracy, with the balancing weights being alternately adjusted
to achieve an optimal balance. This dynamic adjustment of
weights, which resembles "Whack-a-mole," highlights WamL’s
ability to adapt to the changing landscape of the optimization
problem, ensuring that the model converges to a solution
that satisfies the derivative constraints while maintaining high
premium accuracy.

TABLE IV
THE COMPUTATION TIMES (MEAN [SECONDS]) FOR CALIBRATING THE IVS

ON DATASETS OF CHANGING SIZE

Models Default(+WamL) Half data

Vanilla(+WamL) 55.0 (58.1) 53.4 (56.3)
PINNs(+WamL) 115.4 (142.5) 114.1 (140.8)
DCPINNs(+WamL) 119.0 (148.6) 117.9 (147.7)

Table IV presents the computation times required by WamL
and the baseline models for calibrating the IVS on datasets
of decreasing size. The computational efficiency of WamL is
evident from its ability to handle these complex optimization
challenges without significant overhead. The efficient use
of automatic differentiation and the adaptive loss balancing
approach contribute to WamL’s fast convergence and reduced
computational overhead. WamL also exhibits excellent scala-
bility, as evidenced by the sublinear growth in computation
time with respect to the dataset size. This scalability is crucial
for handling the ever-increasing volumes of options data in
modern financial markets, e.g., in real-time applications.

IX. CONCLUSIONS AND FUTURE WORK

This study introduced Whack-a-mole Learning (WamL), a
novel calibration algorithm designed to address the multi-
objective problem of derivatives, with a focus on implied
volatility surface calibration in finance. WamL demonstrated
the ability to capture appropriate patterns from limited sparse
data by integrating self-adaptive and auto-balancing processes,
enabling reweighting mechanisms for each loss term.

Experiments conducted on both synthetic and real market
data highlight WamL’s effectiveness in accurately modelling
the dynamics of the options market using PDEs while adhering
to no-arbitrage constraints and minimizing calibration errors.
The adaptive loss balancing approach and the efficient use
of automatic differentiation contributed to WamL’s fast con-
vergence and reduced computational overhead. Its superior
performance, adherence to PDEs and no-arbitrage constraints,
and computational efficiency make WamL a promising tool for
practitioners in the financial industry.

Future research could focus on incorporating additional
constraints and market information to enhance the realism
of the model and better capture dependencies in options data.
Although the soft constraints approach does not rigorously
enforce each constraint in a multi-objective optimization
context, WamL has demonstrated its ability to generate suitable
surfaces when dealing with noisy real-world data and trade-off
structures. While the experiments showcase the efficacy of the
WamL algorithm, further research could provide insights into
how WamL efficiently finds the minimum loss and explore its
potential for application in other domains.
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APPENDIX

A. The SABR model

The SABR model in (24) is a typical parametric model,
which can capture the market volatility smile and skewness
and reasonably depict market structure. When Ft is defined as
the forward price of an underlying asset at time t, the SABR
model is described as

dFt = αtF
β
t dW

1
t , dαt = ναt dW

2
t ,

⟨dW 1
t , dW

2
t ⟩ = ρdt.

(23)

Here, W 1
t , W 2

t are standard Wiener processes, αt is the model
volatility, ρ is the correlation between the two processes, and ν
is analogous to vol of vol. The additional parameter β describes
the slope of the skewness. Essentially, the IVS in the SABR
model is given by a series expansion technique associated with
volatility form of (25)
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