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Abstract 
Quantum computers are notoriously difficult to program. This is largely because they 

operate predominantly on complex algebraic structures which are not usually part of the 
vocabulary of conventional programmers who are more used to working with integers, 
floating point numbers and Boolean values. Also, the atomic operations carried out by 
quantum gates require a level of understanding of counter-intuitive properties of quantum 
mechanics, such as superposition, measurement, and entanglement, which is a 
considerable step beyond the familiar Boolean logic which is implemented by gates in 
classical circuits. Therefore, there is a significant challenge for software developers who 
have been trained in how to create code for conventional computers in making the 
transition to quantum. Quantum programming is currently the preserve of mathematicians 
and theoretical physicists. In this paper I shall consider whether the process algebra of 
CSP could be useful tool in this context to make the field of Quantum Computing more 
accessible. 
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1 Introduction 
Quantum Computing [1] is a field that leverages the principles of quantum mechanics to perform 

computations in a fundamentally different way from classical computers. It was originally proposed in 
the early 1980s by Feynman [2] and Manin [3], independently. At the time of writing, small-scale 
quantum computers have become a reality and are available for hire from cloud service providers. 
However, they are not yet sufficiently powerful to carry out useful computations, and therefore must be 
currently considered only to be a research tool. 

 
The allure of Quantum Computing is that it may make certain significant computations feasible that 

are currently out of the reach of classical computers. Theoretical work has shown that certain 
calculations have a lower quantum complexity than computational complexity.  For instance a quantum 
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computer could potentially carry out integer factorisation exponentially faster than a traditional 
computer (using Shor’s algorithm, developed by the American mathematician Peter Shor in 1994 [4]). 
This would make it feasible to break many of the cryptographic systems in use today, with potentially 
devastating consequences for global commerce and national security. And this realisation has been a 
key driver for a massive multi-billion-pound investment in this subject in recent years. 

 
But there is also a school of thought that it might never be possible to create sufficiently powerful 

quantum computers to realise this potential because of problems with managing increasing error-rates 
as the number of components increases. This phenomenon is known as ‘Quantum Noise’ [5]. 

 
Quantum computers are analogous to classical computers in that they consist of circuits with gates 

that process bits of information.  Whereas a classical bit only has two discrete states, 0 or 1, a qubit can 
be in infinitely-many different quantum states, represented by two complex numbers, α and β, subject 
to a normalisation constraint: |α2| + |β2| = 1. Technically a qubit state is a unit length complex vector in 
a Hilbert vector space, which can take an infinite number of possible values [1]. 

 
In a sense the qubit exists in a simultaneous combination of both the classical discrete states, with 

certain probabilities, this property is known as of superposition.  However, when the qubit’s state is 
measured, it becomes fixed at either zero or one.  

 
Quantum states can be conveniently represented as a point on the surface of a unit sphere, known 

as the Bloch sphere. 
 

 
  
Figure 1. The Bloch Sphere 
 
Quantum computers also exhibit the strange phenomenon of entanglement between qubits.  If one 

qubit is entangled with another, then its state will also become fixed by the measurement of the other 
one. 

 
Quantum gates are used to process the qubits. Although these are analogous to classical logic gates 

they tend to perform far more complicated operations. Whereas the gates of a digital circuit perform 
simple Boolean operations, like AND, OR, and NOT, on classical bits, quantum circuits require a more 
advanced level of mathematics to describe their states and transformations. 
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Quantum gates perform operations on one or more qubits by applying a tensor product between the 
gate's matrix representation and the state vector(s) of the qubits. 

 
The mathematical properties of superposition and entanglement can be used to design highly 

efficient quantum algorithms for solving important problems, potentially processing vast amounts of 
information in parallel. 

 
However, Quantum Computing, like Quantum Mechanics, is hard to grasp intuitively because of 

the strangeness of the concepts of superposition and entanglement. The reason why quantum computers 
operate in this strange manner is straightforward: it is the way that nature works below the scale of 
atoms. This makes the entry bar seem rather high for becoming a quantum developer.  

 
But there once was a time when programming a classical computer would have required a significant 

understanding of electronic circuits and components. And we have moved a very long way from that in 
the past eighty years with a stack of abstractions for digital circuits, microprocessors, distributed 
memory protocols, machine code, assembly language, and high-level programming languages. 

 
Simulators exist for quantum circuits, using classical computing, with mathematical concepts, such 

as complex vectors, matrices and tensor products used to represent the entities and operations. One way 
for traditional programmers to understand Quantum Circuits is as a kind of restricted programming 
language, where the only data type is qubit, and the operators are defined as matrices.  But, because of 
the nature of Quantum Physics, some of these operations can lead to more efficient execution than 
would be possible in a simulator.  

 
Building abstraction models for quantum computing has become a rich area of research.  Languages, 

such as Q#, Qiskit, or Cirq, provide abstractions for programming quantum algorithms. Programmers 
can express quantum operations and algorithms using familiar syntax. Quantum Libraries are available 
for these languages providing pre-built quantum algorithms and circuits that programmers can use as 
building blocks.   This is essentially at the same level as assembly language for classical computing, 
and further layers of abstraction and simplicity are needed to drive progress. 

 
So, the race is on to come up with an abstract model for quantum computing, that makes the field 

more accessible to conventional programmers without requiring them to have an advanced 
understanding of Quantum Physics.  

 
It would be interesting to explore whether use of a process algebra, such as CSP [11, 12], could be 

instrumental in achieving this.  After all, entanglement is a similar concept to synchronous 
communication, and circuits represent a process workflow. 

2 Quantum Circuits 
Quantum circuits as used today are essential acyclic.  Information travels from a source along wires 

from left to right passing through gates. An input signal consisting of a sequence of bits, or qubits, is 
passed through a sequence of gates, where each gate carries out an operation on its inputs and outputs 
the results. There is no splitting of wires to create multiplexed signals due to the “no cloning theorem” 
[6] which states that quantum states cannot be duplicated into multiple independent copies. 

 

Could Communicating Sequential Processes be Used to Make Quantum Computing Make... J. Martin

27



To perform iterative algorithms or computations with quantum computers, the normal approach is 
to embed a quantum circuit within classical circuitry acting as a control system. This is akin to the 
concept of graphical or mathematical coprocessors that are used in modern processing chips. 

 
Figure 2. Example Quantum Circuit 

 
A qubit (short for quantum bit) is the basic unit of information in quantum computing and 

counterpart to the bit (binary digit) in classical computing. A qubit plays a similar role to a bit, in terms 
of storing information, but it behaves much differently because of the quantum properties on which it's 
based.    

 
Quantum gates have been discovered which act on one, two or three qubits and transform their 

states.  These are analogous to the Boolean gates that are found in digital circuits and may be represented 
as unitary square matrices with dimension 2n where n is the number of qubits it works on. 

 
A quantum state of multiple qubits is constructed as the tensor product of those qubits and is a vector 

of length 2n [1]. A quantum gate therefore acts on a quantum state by multiplication.  It may take the 
state to an entangled one.  This means that the resultant state cannot be decomposed into a tensor product 
of the states of separate qubits – they are no longer independent from each other. 
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Figure 3. Matrix Representation of Quantum Gates 

These matrix operations can be padded out so that they allow other qubits to pass through them 
unaltered, which means that any acyclic quantum circuit with n inputs can be represented as product of 
unitary matrices with dimension 2n applied to an initial state vector to produce a final state vector.  This 
means that any quantum circuit can be represented as a single unitary matrix [13]. 

 
However, it is more intuitive for quantum programmers to work at the level of quantum gates, and 

it is possible to fabricate composite gates from collections of the standard building blocks, shown in 
figure 3, to build more sophisticated functions as patterns and provide a higher level abstraction of 
quantum algorithms. A special measurement gate can be applied within quantum circuits to observe a 
possible classical state of one or more qubits. Once observed, the quantum state collapses to the 
observed classical state. 
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The programming languages that are currently used for quantum computing are assembly languages 
rather than high level programming languages.  There is a rich seam of research of quantum circuit 
optimisation, which seeks to optimise quantum circuit complexity by performing semantics-preserving 
transformations, e.g. [9].  

3 Why is it Hard to Program Quantum Computers? 
It is extremely tricky to fit together the somewhat arbitrary operations for which quantum gates have 

been discovered (defined in Hilbert Space) to build meaningful programs that solve familiar problems.  
This essentially relies on intuition and a degree of trial and error. 

 
Also, the property of entanglement, which is useful for creating efficient quantum algorithms, leads 

to side effects, i.e. if two qubits are entangled, and one of them passes through a quantum gate but not 
the other, the states of both qubits will be altered nonetheless, because they cannot be separated. This 
is a common problem to deal with in object-oriented programming and design patterns exist to manage 
it, but in quantum computing it only adds to the difficulty of writing structured programs that are fit for 
purpose. 

 
The “no cloning theorem” also makes Quantum Computing less tractable, because of the 

impossibility of taking a separate copy of a qubit. 
 

4 The CSP Language and the FDR Proof Tool 
The CSP language of CAR Hoare (Communicating Sequential Processes) [11, 12] is a notation for 

describing patterns of communication by algebraic expressions. It is widely used for design of parallel 
and distributed hardware and software and for the formal proof of vital properties of such systems. 
(However, without computer assistance it is often impractical to prove such properties, algebraically, 
other than for very simple systems.) The grammar of CSP is shown in Figure 4. 

 

 
Figure 4. Grammar of the core CSP Language 
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The FDR tool (Failures Divergences Refinement) provides an automated proof system for the CSP 
language when it is expressed in a machine-readable format. 

5 How Might CSP Help with Quantum Programming?  
So why might CSP [11, 12] be a good language for creating quantum programs? Well we already 

have a very good textbook for writing simulated quantum computer programs in Python[1]. But Python 
is not a concurrent programming language - we have already seen there is plenty of concurrency in 
quantum computing. CSP is an algebraic language for defining and reasoning about concurrent systems. 
But it also has a representation as a fully working programming language that has been widely used for 
building distributed systems. That language is called Occam [10]. 

 
Let us now consider how the circuit from figure 4 might be represented as an Occam program. 
 
SEQ 
 PAR 
  H(Q0) 
  H(Q3) 
 PAR 
  CNOT(Q0, Q1) 
  CNOT(Q3, Q4) 
 PAR 
  H(Q1) 
  H(Q4) 
 PAR 
  T(Q0) 
  CNOT(Q1, Q2) 
  T(Q3) 
  T(Q4) 
 PAR 
  H(Q2) 
  H(Q3) 
 PAR 
  T(Q1) 
  CNOT(Q2, Q3) 
 PAR 
  H(Q1) 
  H(Q3) 
  H(Q4) 
 PAR 
  CNOT(Q0, Q1) 
  T(Q2) 
  CNOT(Q3, Q4) 
 PAR 
  H(Q1) 
  H(Q2) 
  H(Q4) 
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We have represented the various gates as a collection of processes composed in a hierarchy of 
sequential and parallel constructs. Each of these processes takes combinations of qubits as inputs and 
modifies their state. This sounds simple however the phenomenon of entanglement might get in the 
way. Because as already described above some of the qubits that are not inputs to a gate may still have 
their values changed due to this phenomenon. We would need to have a modified version of Occam 
that allows for entangled state of inputs. Potentially this would be more intuitive and easier to use than 
Python. And we could create a compiler for translating from this quantum version of Occam down to 
machine readable CSP which would be suitable for analysis by the FDR proof tool to establish formal 
properties of the underlying system.  

 
Unfortunately, state explosion could cause issues here - we will need some way of representing in 

an abstract way the essential characteristics of data passing through the system without having to get 
down into the messy numerical details.  

5.1 Modelling a standard acyclic quantum ‘circuit’. 
So, would it make sense to model a standard acyclic quantum circuit in “Quantum Occam”? The 

main benefit would seem to be in the intuitive representation of a distributed system as computer 
programming code. But a secondary benefit would be the possibility of carrying out algebraic proofs 
and automated final proofs using the FDR tool by translating from Quantum Occam down to machine 
readable CSP with a suitable level of data abstraction to contain the state explosion problem. 

5.2 Designing and constructing composite quantum gates out of 
fundamental components. 

It might also be possible to reason about the correctness of novel quantum algorithms using CSP, 
but it would very much depend on suitable abstractions away from the numerical complexity to make 
this tractable. And as already mentioned we need to find an elegant treatment for the phenomenon of 
entanglement to support this work. 

5.3 Modelling hybrid classical/quantum systems. 
Earlier in this paper we discussed the principle of embedding quantum computers within classical 

circuitry purely as deterministic computational devices – essentially as “maths coprocessors”. Now in 
this scenario there would be an obvious use for the CSP language for modelling the hybrid circuits - 
essentially concentrating on the classical aspects of these rather than the quantum functions, which 
would be treated as ‘black boxes’.  

5.4 Modelling entanglement between qubits, how it propagates through 
the circuit, to avoid side effects of measurement. 

One of the difficult aspects of quantum computing, as already described above, is managing the side 
effects of entanglement. Once quantum states have become entangled then the state of one can be altered 
due to the other one passing through a quantum gate. This is similar to the issue of side effects that are 
sometimes found in object-oriented programming when changing an object’s value might indirectly 
change the state of another one because of the use of reference datatypes. Xia and Zhao [14] have 
created a pre-processing quantum compiler which analyses the entanglement relationships by static 
code analysis in quantum programmes. This is potentially an area where a tool like FDR could gain a 
foothold - especially by using the principle of data independence to conceal mathematical complexity. 
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5.5 Modelling error correction with redundancy 
One of the unknown problems about quantum computing is to what extent will issues of random 

errors and faulty circuitry limit the expansion of quantum computers to much larger numbers of qubits 
so that they may carry out meaningful calculations. There is a school of thought that this problem will 
proliferate to such an extent that there will never be useful quantum computers. Current efforts to 
remediate this problem are founded upon error correction using redundancy. However, this is a non-
trivial problem within the quantum domain due to the no cloning theorem.  

 
Essentially splitting one logical qubit across multiple physical qubits can reduce the error rate.  A 

common belief is that around 1000 physical qubits will be needed to model each logical qubit, but this 
will surely depend on the physical implementation of the qubits. 

 
CSP/FDR might be useful in establishing the equivalence of virtual qubits and their physical 

counterparts if certain constraints are assumed to be true. 

6 Conclusions 
I have explained some of what makes quantum computing so difficult for programmers with 

conventional training and have considered ways that CSP might be used to help make pure quantum 
computing more tractable. However, perhaps the most promising use of CSP will be to model hybrid 
systems consisting of classical circuitry with multiple embedded quantum coprocessors working 
concurrently. This approach might emerge as a highly productive programming model for exploiting 
quantum computers. Discovery of novel efficient quantum algorithms will remain something of a black 
art performed exclusively by mathematicians and theoretical physicists, potentially exploiting AI 
assistants, engaged in trial and error to piece together circuitry and quantum gates to create efficient 
solutions to specific deterministic computational problems. 

  
Please note that the opinions expressed here are those of the author and do not necessarily represent 

those of Lloyds of London.  
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