
Implementing an Efficient SAT Solver for a

Probabilistic Description Logic

Pavel Klinov
University of Manchester

Manchester, United Kingdom
pklinov@cs.man.ac.uk

and Bijan Parsia
University of Manchester

Manchester, United Kingdom
bparsia@cs.man.ac.uk

Abstract

This paper presents an optimized algorithm for solving the satisfiability problem (PSAT)
in the probabilistic description logic P-SROIQ. In P-SROIQ and related Nilsson-style
probabilistic logics the PSAT problem is typically solved by reduction to linear program-
ming. This straightforward approach does not scale well because the number of variables in
linear programs grows exponentially with the number of probabilistic statements. In this
paper we demonstrate an algorithm to cope with this problem which is based on column
generation. Although column generation approaches to PSAT have been known for the
last two decades, this is, to the best of our knowledge, the first algorithm which also works
for a non-propositional probabilistic logic. We report results of an empirical investigation
which show that the algorithm can handle probabilistic knowledge bases of about 1000
probabilistic statements in addition to even larger number of classical SROIQ axioms.

1 Introduction

There are many proposed formalisms for combining Description Logics (DLs) with various
sorts of uncertainty, although, to our knowledge, none have been used in a real application. We
believe that this is due to two reasons: 1) there is comparatively little knowledge about how to
use these formalisms effectively (or even, which are best suited for what purposes) and 2) there
is a severe lack of tooling, in particular, there have been no sufficiently effective reasoners.

This paper describes our work on the second problem. We present the satisfiability algorithm
implemented in Pronto,1 our reasoner for the probabilistic extension of DL SROIQ (named
P-SROIQ) [15]. This logic can be viewed either as a generalization of the Nilsson’s proposi-
tional probabilistic logic [18] or as a fragment of first-order probabilistic logic of Halpern and
Bacchus [5] [2] (with certain non-monotonic extensions which are unimportant in the context
of this paper). One attractive feature of these probabilistic logics is that they allow modelers to
declaratively describe their uncertain knowledge without fully specifying any probability distri-
bution in contrast to, for example, Bayesian networks. They are also proper generalizations of
their classical counterparts which, in the case of P-SROIQ, means that modelers can take an
existing SROIQ ontology and add probabilistic axioms to capture uncertain, such as statist-
ical, relationships. Several applications of probabilistic DLs have been described, in particular,
automated validation of uncertain ontology alignments [3] and, very recently, an analysis of a
large medical expert system CADIAG-2 [14]. In the latter case uncertain rules used in medical
diagnosis were translated into P-SROIQ and Pronto was used to discover all probabilistic
inconsistencies in the system.

In spite of their attractive features Nilsson-style logics have been criticized, partly for the
intractability of probabilistic inference. Reasoning procedures are typically implemented via

1http://www.cs.manchester.ac.uk/%7Eklinovp/research/pronto

48 G. Sutcliffe, S. Schulz, E. Ternovska (eds.), IWIL 2010 (EPiC Series, vol. 2), pp. 48–63

pklinov@cs.man.ac.uk
bparsia@cs.man.ac.uk

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

reduction to linear programming but it is well known that corresponding linear programs are
exponentially large so the scalability is very limited. Over the last two decades there have been
several attempts to overcome that issue in the propositional case which led to some promising
results, such as solving the probabilistic satisfiability problem (PSAT) for 800-1000 formulas
[6]. It has been unclear whether the methods used to solve large propositional PSATs can be
directly applied to PSAT in probabilistic DLs (see Section 5).

To the best of our knowledge, Pronto is the first reasoner for a Nilsson-style probabilistic DL
which scalability is comparable to (and often better than) scalability of propositional solvers. In
particular, it can solve propositional PSATs of the same size but i) can also handle probabilistic
statements over arbitrary (i.e. non-propositional) SROIQ expressions and ii) can efficiently
deal with KBs containing large bodies of non-probabilistic knowledge in addition to roughly
1000 probabilistic statements.

2 Preliminaries

This section provides a brief background on the Description Logic SROIQ and its probabilistic
extension P-SROIQ.

2.1 Description Logic

Description Logics is a family of logics which are typically decidable fragments of first-order logic
developed specifically for representing structural background knowledge [1]. SROIQ is one of
the most expressive representatives of that family. It is a formal basis of the Web Ontology
Language (OWL 2) which is a W3C standard for representing ontologies. We introduce DLs
using ALCOQ— a subset of SROIQ which provides all the syntactic features used in this
paper. Full presentation of SROIQ is space consuming and is not required since there are no
important differences between probabilistic extensions to ALCOQ and to SROIQ. We refer
to [1, 9] for full details on syntax and semantics of expressive DLs including SROIQ.

Syntax of ALCOQ We assume fixed finite sets NC , NR and NI of concept names (atomic con-
cepts), role names and individuals respectively. Concept expressions (or concepts) in ALCOQ
have the following syntactic form:

C ::= A|{o}|¬C|C uD|∃R.C| ≥ nR.C| ≤ nR.C (1)

where A ∈ NC , R ∈ NR, C and D are concepts, n is a natural number, o ∈ NI . The following
are the standard abbreviations: CtD ≡ ¬(¬Cu¬D), ∀R.C ≡ ¬∃R.¬C, ⊥ ≡ ¬AuA, > ≡ ¬⊥,
{o1, . . . , ok} ≡ {o1}t, . . . ,t{ok} and = nR.C ≡≥ nR.Cu ≤ nR.C. Expressions of the form
{o1, . . . , ok} are called nominals.

Usually a knowledge base (or ontology) in DLs is considered to be a tuple K = (T ,A,R)
where T is a terminological box (TBox), A is an assertional box (ABox) and R is a role
box (RBox). In this paper RBoxes are irrelevant while nominals make TBoxes strictly more
expressive than ABoxes [1]. Therefore we will only consider TBoxes which are sets of concept
subsumption axioms. Each subsumption axiom is an expression of the form C v D where C
and D are concepts. C ≡ D abbreviates {C v D,D v C}.

49

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

Semantics of ALCOQ Semantics of DLs is standardly based on interpretations I = (∆I , ·I),
where ∆I is a non-empty set (the domain) and ·I is an interpretation function that maps each
A ∈ NC to a subset AI ⊆ ∆I , each R ∈ NR to a relation RI ⊆ ∆I ×∆I and each o ∈ NI to
an element oI ∈ ∆I . It is extended to concept expressions as follows:

(¬C)I = ∆I \ CI

({o})I = oI

(C uD)I = CI ∩DI

(∃R.C)I = {x ∈ ∆I |∃y ∈ CI s.t. (x, y) ∈ RI}
(≥ nR.C)I = {x ∈ ∆I ||{y ∈ CI s.t. (x, y) ∈ RI}| ≥ n}
(≤ nR.C)I = {x ∈ ∆I ||{y ∈ CI s.t. (x, y) ∈ RI}| ≤ n}

An interpretation I satisfies (or is a model of) a subsumption axiom C v D if CI ⊆ DI .
It is a model of a TBox T if it is a model of each axiom in T . A TBox is called satisfiable if it
has a model. Given a TBox T concept C is called satisfiable if there exists an interpretation I
which is a model of T and CI 6= ∅. An axiom C v D is entailed by a TBox T if it is satisfied
by every model of T .

2.2 Probabilistic Description Logic P-SROIQ
P-SROIQ is a probabilistic generalization of the DL SROIQ [15]. It supports probabilistic
subsumptions between arbitrary SROIQ concepts and a certain class of probabilistic concept
assertions. Any SROIQ ontology can be used as a basis for a P-SROIQ ontology which
facilitates transition from classical to probabilistic ontologies.

Syntax of P-SROIQ The syntactic constructs of P-SROIQ include those of SROIQ
together with conditional constraints. Conditional constraints are expressions of the form
(D|C)[l, u] where D,C are SROIQ concept expressions (called conclusion and evidence re-
spectively) and [l, u] ⊆ [0, 1] is a closed real-valued interval. Unconditional constraints are the
special case of conditional ones when the evidence class is equivalent to >.

For the purpose of this paper it is sufficient to consider only probabilistic TBoxes (or PT-
Boxes). A PTBox is a pair PT = (T ,P) where T is a classical SROIQ TBox and P is a
finite set of conditional constraints. Informally, a PTBox axiom (D|C)[l, u] means that “if a
randomly chosen individual is an instance of C, the probability of it being an instance of D is
in [l, u]”. In what follows we call T and P the classical and the probabilistic part of a PTBox
respectively.

Semantics of P-SROIQ Semantics of P-SROIQ is standardly explained using the notion
of possible world which is defined with respect to a set of concepts Φ (called basic concepts or
probabilistic signature2) [15]. A possible world I is a subset of Φ such that the set of axioms
{{o} v C|C ∈ I} ∪ {{o} v ¬C|C /∈ I} is satisfiable for a fresh individual o (in other words,
possible worlds correspond to realizable concept types). A basic concept C occurs positively in
a possible world I if C ∈ I, otherwise it occurs negatively. The set of all possible worlds with
respect to Φ is denoted as IΦ. A world I satisfies a basic concept C denoted as I |= C if C

2Note that basic concepts need not be atomic.

50

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

occurs positively in I. Satisfiability of basic concepts is inductively extended to SROIQ concept
expressions according to the semantics of SROIQ (see Section 2.1), for example, I |= C uD if
I |= C and I |= D.

For the reason which will become clear in Section 3.2 we assume a linear order of basic
concepts in Φ. Since Φ is a finite set we can denote the i-th basic concept in Φ by Ci. For a
given possible world I we also use the notation Ii to denote either Ci if Ci occurs positively in
I or ¬Ci if it occurs negatively. For a given PTBox the order of basic concepts is fixed across
all possible worlds.

A world I is said to be a model of a TBox axiom α denoted as I |= α if α ∪ {{o} v C|C ∈
I}∪ {{o} v ¬C|C /∈ I} is satisfiable for a new individual o. A world I is a model of a SROIQ
TBox T denoted as I |= T if it is a model of all axioms of T . A world I that satisfies a TBox
T exists iff T has a model (∆I , ·I) [15].

A probabilistic interpretation Pr is a probability distribution over IΦ. Pr is said to satisfy
a SROIQ TBox T denoted as Pr |= T if for all I ∈ IΦ, P r(I) > 0 implies that I |= T .
The probability of a concept C, denoted as Pr(C), is defined as

∑
I|=C Pr(I). Pr(D|C) is

used as an abbreviation for Pr(C uD)/Pr(C) given Pr(C) > 0. A probabilistic interpretation
Pr satisfies a conditional constraint (D|C)[l, u], denoted as Pr |= (D|C)[l, u], if Pr(C) = 0
or Pr(D|C) ∈ [l, u]. Pr satisfies a set of conditional constraints F if it satisfies each of the
constraints. A PTBox PT = (T ,P) is called satisfiable if there exists an interpretation that
satisfies both T and P.

The probabilistic satisfiability problem (PSAT) is a problem of deciding if a PTBox (T ,P)
has a model Pr. It is decidable and its complexity class is N2ExpTime-complete, i.e. the same as
the complexity of reasoning in SROIQ [10]. We refer to [15] for a more detailed presentation
of P-SROIQ semantics, reasoning problems and procedures, and complexity results.

3 The Probabilistic Satisfiability Algorithm

The first contribution of this paper is the novel PSAT algorithm implemented in Pronto (see
Section 5 for some relationships to the previously developed methods). For the sake of clarity we
will consider a special case of PSAT where the PTBox is of the form PT = (T , {(Ci|>)[pi, pi]})
(i.e. all probabilistic statements are unconditional constraints with point-valued probabilities
and all Ci are concept names). It is straightforward, but technically awkward, to generalize the
procedure to handle conditional interval statements over arbitrary concept expressions.

A PTBox PT = (T , {(Ci|>)[pi, pi]}) is satisfiable iff the following system of linear inequal-
ities is feasible, i.e. admits at least one solution (by generalization from propositional PSAT
[6]):

∑
I|=Ci

xI = pi, for each (Ci|>)[pi, pi] ∈ P (2)

∑
I∈IΦ

xI = 1 and all xI ≥ 0

where IΦ is the set of all possible worlds for the set of concepts Φ in T . Observe, that IΦ is
finite but exponential in the size of Φ, so it is not feasible to explicitly generate this system to
check whether it admits a solution.

One successful approach to dealing with linear systems having an exponential number vari-
ables is column generation. It is based on the fundamental property of linear programming:

51

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

any feasible (i.e. admitting at least one solution) program always has an optimal solution in
which only a linear number of variables have non-zero values. Column generation exploits this
property by trying to avoid an explicit representation of variables (columns) which will not
have positive values in the finally discovered solution. The method is briefly presented in the
next subsection.

3.1 Column Generation Basics

Consider the standard form of a linear program (3). Any linear program, in particular, a version
(2) with intervals can be reduced to it by adding slack variables.

max z = cx (3)

s.t. Ax = b (4)

x ≥ 0

A denotes a m×n matrix of linear coefficients of (3). At every step of the simplex algorithm,
A is represented as a combination (B,N) where B and N are submatrices of the basic and non-
basic variables, respectively. Values of non-basic variables are fixed to zero, and the solver
proceeds by replacing one basic variable by a non-basic one until the optimal solution is found.
Variables are represented as indexed columns of A. The index of a non-basic column which
enters the basis is determined according to the following expression [6]:

j ∈ {1, . . . , |N |} s.t. cj − uTAj is maximal (5)

where cj is the objective coefficient for the new variable and uT is the current dual solution of
(3). The expression cj − uTAj is called reduced cost. At every iteration the column having the
highest positive reduced cost is selected. If no such column exists the linear program is at an
optimum and the simplex algorithm stops.

If the size of N is exponential, as is the case for the program (2), one should compute the
index of the entering column according to (5) without examining all columns in N . This is
done using the column generation technique in which (5) is treated as an optimization problem
with the following objective function:

max (cj −
m+1∑
i=1

uia
j
i), A

j = (aji) ∈ {0, 1}
m+1 (6)

where aji are binary variables that represent linear coefficients of the entering column.

It is important to note that except of the way the entering column is obtained (i.e. generated
vs. selected) the simplex algorithm works along the same lines. Whether the column generation
technique is successful is contingent upon the following criteria: i) there exists an efficient
algorithm for the optimization problem (6), ii) an optimal solution of the program (3) can
be found without generation of an excessive number of columns. Such number characterizes
convergence of the algorithm. In the next subsection we demonstrate an optimized algorithm
for generating columns for the PSAT system (2) and will later demonstrate its effectiveness.

52

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

3.2 Possible World Generation

We first rewrite the system (2) as the following linear program:

max
∑
I∈IΦ

xI (7)

s.t.
∑
I|=Ci

xI = pi ×
∑
I∈IΦ

xI , for each (Ci|>)[pi, pi] ∈ P

∑
I∈IΦ

xI ≤ 1 and all xI ≥ 0

This program has the optimal objective value of 1 iff the system (2) is feasible. The advantage
of using this program is that it is feasible even if the PTBox is not satisfiable. This property
facilitates use of the column generation technique.

Consider aji , the i-th coefficient of some column Aj . The column corresponds to some

possible world Ij = {Ci}, therefore aji = 1 implies that Ci occurs positively in Ij while aji = 0
implies that it occurs negatively (or equivalently, Ij |= ¬Ci). Thus it is possible to represent
Ij as a conjunctive concept expression in SROIQ assuming a fixed linear ordering of concept
names {Ci} in Φ (see Section 2.2). More formally, we define the following function η which
maps columns, i.e. binary vectors, to conjunctions of basic concepts from Φ:

η(Aj) =
l
Xi, where Xi =

{
Ci, if aji = 1

¬Ci, if aji = 0
(8)

Xi are literal concepts that denote either a basic concept or its negation.
Soundness of the PSAT algorithm strongly depends on whether every solution of the optim-

ization problem (6), which is added as a column to the main linear program (7), corresponds
to a concept expression that is satisfiable w.r.t. T , i.e. is a possible world. If this condition is
true then soundness trivially follows because one may simply enumerate the set of all solutions
(since the set of possible worlds is finite), so (7) will be equivalent to the original linear system
(2). Completeness requires that every possible world for the given PTBox corresponds to some
solution of (6). Therefore, for ensuring both soundness and completeness it is crucial to con-
struct a set of constraints H for the problem (6) such that its set of solutions is in one-to-one
correspondence with the set of all possible worlds IΦ.

In what follows we will call columns which correspond to satisfiable expressions valid and
others — invalid. More formally, given a SROIQ TBox T , a column Aj is valid if T 2 η(Aj) v
⊥ and is invalid otherwise.

Validity can easily be ensured in the propositional case where each Ci is a clause. One
possibility is to employ a well known formulation of SAT as a mixed-integer linear program
(MILP) [7]. For example, if Ci = c1 ∨¬c2 ∨ c3 then (6) will have the constraint ai = xc1 + (1−
xc2) + xc3 where all variables are binary. In that case soundness and completeness follow from
the reduction of SAT to MILP. Previously developed propositional PSAT algorithms take full
advantage of that (see Section 5).

In the case of an expressive language, such as SROIQ, there appears to be no easy way
of determining the set of constraints H. Furthermore, it is unclear whether such a set is
polynomial in the size of T . Informally, H must capture every entailment, such as T |=
Ciu, . . . ,uCj v ⊥ in order to prevent generation of any column Aj such that Ciu, . . . ,uCj is

53

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

a conjunctive subexpression of η(Aj). All such entailments can be computed in a naive way by
checking satisfiability of all conjunctions Ciu, . . . ,uCj over Φ but this is no better than trying
to construct the full linear system (2).

Instead, Pronto implements a novel hybrid, iterative procedure to compute H which can be
summarized as follows:

Input: PTBox PT = (T ,P), current dual solution uT of (7)
Output: New column Aj or null
Initialize (6) using uT , H ← ∅1

while Aj 6= null do2

Solve (6) to optimality, Aj ← next optimal solution3

if Aj 6= null then4

if satisfiable(η(Aj), T) then5

return Aj
6

else7

add constraints to H that block Aj
8

end9

end10

end11

return null;12

Algorithm 1: Possible world generation algorithm

The key steps are 5 and 8. On step 5 the algorithm invokes a SROIQ reasoner (in our
case, Pellet [21]) to determine if the computed column corresponds to a possible world. This
is critical for soundness. If yes, the column is valid and returned. If no, the current set of
constraints H needs to be extended to exclude Aj from the set of solutions to (6) (a similar
technique is used in All-SAT solvers to block clauses [17]). This step deserves a more detailed
explanation which we present by first defining the notion of the minimal unsatisfiable core for
an unsatisfiable conjunctive concept expression.

Definition 1 (Unsatisfiable Core). Given a TBox T and unsatisfiable (w.r.t. T) concept
expression

d
Xi represented as a set of conjuncts X = {Xi}, a minimal unsatisfiable subexpres-

sion (MUS) is a subset X ′ = {X ′i} ⊆ {Xi} such that
d
X ′i is unsatisfiable w.r.t. T and any

X ′′ = {X ′′i } ⊂ {X ′i} is satisfiable w.r.t. T . The unsatisfiable core (UC) of
d
Xi is the set of

all its MUSes.

Intuitively, our notion of UC for conjunctive SROIQ concepts corresponds to the standard
notion of unsatisfiable core for propositional formulas in conjunctive normal form [16].

Each MUS can be regarded as a one “laconic justification” of the unsatisfiability of the
original concept expression [8] (here “laconic” means that it contains no superfluous conjuncts).
The UC is the set of all laconic justifications of the unsatisfiability. Clearly, it is sufficient to
add a constraint that rules out any of the MUSes to exclude the current column from the set
of solutions to (6).

Next, we show how to translate MUSes into linear inequalities. A MUS is a set of conjuncts
{X ′i} each of which corresponds to a binary variable (observe that η, as defined in (8), is a
bijective function). By a slight abuse of notation we write ai = η−1(X ′i) to denote the variable
that corresponds to Ci. Then given a MUS X ′ = {X ′i}ki=1 we add the following linear constraint:

k∑
i=1

ai ≤ k − 1, where ai =

{
η−1(X ′i), X ′i = Ci

1− η−1(X ′i), Xi = ¬Ci

(9)

54

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

If a conjunctive concept contains
d
Xi as a subexpression then all binary expressions bi, i.e.

either ai or 1 − ai depending on whether Xi is a positive or a negative literal, are equal to 1.
Therefore

∑k
i=1 ai = k where k is the size of {Xi}. Constraining

∑k
i=1 bi to be less or equal

to k − 1 is equivalent to requiring at least one bi to be equal to 0. According to the definition
of η this is equivalent to removing of at least one conjunct from X ′ which makes it satisfiable
(due to minimality of X ′, see Definition 1). Therefore, each of the constraints (9) is sufficient
to exclude all columns, which correspond to concept expressions containing X ′, from the set of
solutions to (6). Observe that the constraints do not exclude any columns which do not include
X ′ since it is necessary to ensure completeness.

On step 8 the algorithm computes the unsatisfiable core for a concept expressions that
corresponds to the current solution of (6). Then it transforms each of the MUSes into a linear
inequality according to (9) and adds them to the binary program (6).

We call our PSAT algorithm (Algorithm 1) “hybrid” because it combines invocations of LP
solver (to optimize (7)), MILP and SROIQ solvers (to optimize (6) and check satisfiability
of concept expressions respectively). It is iterative because it iteratively tightens the set of
solutions to (6) until either a valid column is found or provably no such column exists.

Finally, we give a short example demonstrating our iterative technique for computing valid
columns.

Example 1. Consider a PTBox where T = {A v ∃R.C,B v ∃R.¬C,≥ 2R.> v D} and
P contains some probabilistic constraints over the ordered set Φ = {A,B,D}. Algorithm 1
starts out with an empty set of linear constraints for (6). The list of binary variables for (6)
is (xA, xB , xD). Assume that at some iteration the algorithm generates the following column:
Aj = (1, 1, 0, 1) (the last component of any column is always equal to 1 because all coefficients
in the last row of (7) are equal to 1). Then η(Aj) = A uB u ¬D.

It is not hard to see that T |= η(Aj) v ⊥. The reason is that any instance o of A u B
must have two R-successors (domain elements which are connected to oI by RI). Moreover,
they are necessarily distinct because one is an instance of C and another is an instance of
¬C. Therefore, o is an instance of ≥ 2R.> and consequently is an instance of D. This is a
contradiction with ¬D in η(Aj).

The unsatisfiable core of η(Aj) is {A,B,¬D}. This MUS is converted into the following
linear inequality xD ≥ xA + xB − 1 which is then added to the binary program (6). As a result,
no invalid column containing this MUS will be computed on subsequent iterations.

3.3 Main Optimizations

We next describe several optimization techniques which play key roles for our implementation
of the possible world generation algorithm.

3.3.1 Exploiting Concept Hierarchy

The first optimization stems from a natural observation that many inequalities for the binary
program (6) can be added simply by examining the structure of a TBox. Virtually all modern
DL reasoners can efficiently construct a so called classification hierarchy by finding all sub-
sumptions between concept names that are logically entailed by the TBox. Such hierarchy can
be used to construct an initial set of inequalities H0.

Consider the following TBox T = {A tB v C}. The classified version of T should include
subsumptions A v C and B v C. Therefore they can be directly translated to inequalities

55

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

xA ≤ xC and xB ≤ xC before computing some invalid column containing either A u ¬C or
B u ¬C as subexpressions and converting these subexpressions into inequalities.

This idea helps to reduce the number of concept satisfiability tests. The effectiveness of this
technique depends on axiomatic richness of the TBox. For axiomatically weak TBoxes, where
almost all subsumptions can be discovered by traversing the concept hierarchy, most of the set
H is computed up front. More complex TBoxes may have non-trivial entailments involving
concept expressions on both left-hand and right-hand sides which can only be discovered when
checking validity of some column candidate. One such example is the subsumption AuB v D
from Example 1.

3.3.2 Optimistic Inequality Generation

One issue with a naive implementation of Algorithm 1 is that computing unsatisfiability cores
may appear impractical for certain concept expressions and TBoxes. This may especially hap-
pen for long expressions which contain MUSes with little or no overlap. It is well known from the
model diagnosis theory that finding all minimal unsatisfiable sets may require an exponential
(in the size of all unsatisfiable sets) number of SAT tests [20].

To address this issue the algorithm imposes a time limit on the procedure that computes the
UC. If at least one MUS has been found but finding others exceeds the timeout the procedure
is interrupted. The found MUSes are then converted to linear inequalities and the algorithm
moves on as if the full UC was computed.

This optimization does not cause a loss of either soundness or completeness. Completeness
is trivially preserved because not adding some inequalities to the program (6) can only expand
its set of solutions, so no possible world could be missed. Soundness is preserved because each
computed column is still valid (SAT tests are never interrupted). The only possible negative
impact of missing some MUSes is that they can appear in some future column candidates, so
the algorithm might go through additional iterations. However, they do not have to appear
because the optimal basis for the main program (7) can often be found before considering
column candidates containing those MUSes. Intuitively, the algorithm behaves optimistically
by hoping that additional iterations will not be required.

3.3.3 Multiple Column Generation and Stabilization

We use several techniques aimed at improving convergence of the column generation process.
The most important are generating several optimal solutions of (6), i.e. column candidates,
and introducing additional variables for the main linear program (7) to stabilize dual space and
reduce degeneracy.

It is known that adding multiple columns into basis at every simplex iteration can improve
convergence of column generation. For instance, Hansen and Perron add up to 50 column
per iteration [6]. This is made possible by their heuristic method of generating columns (the
variable neighborhood heuristics) which allows them to quickly generate many sub-optimal
columns having positive reduced cost. In our case, when columns are generated by a MILP
solver, there are the following two possibilities.

First, some MILP solvers, in particular, CPLEX, support solution pools which store multiple
optimal or sub-optimal solutions for an MILP problem instance. Such solvers can either return
the set of sub-optimal solutions which they recorded during the optimization process or continue
the branch-and-cut search after the optimum until the required number of solutions has been
found. Second, if the solver does not support solution pools one may still force it generate

56

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

multiple solutions. This can be done by “cutting off” the optimal solution and re-optimizing
or by hooking inside the solver to continue the search after the optimum.

Pronto is highly modular and can be used with different LP/MILP solvers. Using a solution
pool is the first choice strategy if it is available. If it is not available, as is the case with
GLPK, then the second option is used. However, since it has implications for performance
fewer columns are generated (usually up to 5).

Similarly to [6] we also use specific techniques to stabilize the values of the dual variables
and reduce degeneracy.3 This involves adding extra variables to the main linear program so it
looks as follows:

max
∑
I∈IΦ

xI − δ+y+ − δ−y− (10)

s.t.
∑
I|=Ci

xI = pi + y+ − y−

∑
I∈IΦ

xI ≤ 1, xI , y
+, y− ≥ 0

where y+ and y− are the column vectors (y+
1 , . . . , y

+
m)T , (y−1 , . . . , y

−
m)T respectively while δ+,δ−

are fixed positive coefficients. Observe that the original PSAT program (7) has the optimal value
of 1 iff the augmented program has the optimal value of 1 (so soundness and completeness are
preserved). However, the extra variables allow the objective function to vary smoothly between
0 and 1 which generally improves convergence of the column generation algorithms.

Our technique is simpler than the iterative method used by Hansen and Perron [6] but
appears to be more efficient in most of our tests. At the same time one may combine different
techniques or switch between them in the process of generating columns.

3.3.4 Early Unsatisfiability Detection

Automated reasoners often implement heuristic approaches to quickly detect obvious reasons
for unsatisfiabilty of logical formulae. One good example of such techniques is the early clash
detection methods employed by virtually all mature DL reasoners. Probabilistic reasoners are
no exception, for instance, propositional PSAT solvers sometimes use incomplete rule-based
reasoning methods which prove to be tremendously effective at proving unsatisfiability [6].

Since rule sets have only been formulated in the propositional case we take another approach.
It is based on the observation that if the PSAT program has an optimal objective value of 1 (i.e.
the KB is satisfiable) then the optimal dual solution is of the form (0, . . . , 0, 1). Components of
the dual solution show the rate at which the objective value of the primal program will improve
in response to a small relaxation of row bounds. If the optimal value of the program (7) is 1
then the only row whose relaxation can improve the objective is the last one, i.e.

∑
I∈IΦ xI ≤ 1.

Its coefficients are exactly the same as the objective coefficients, thus its dual value is 1 while
the other dual values are zeros. On the other hand, if the optimal objective value is below 1
then the indexes of non-zero dual variables indicate conflicting inequalities and, consequently,
conflicting conditional constraints.

Our algorithm maintains history of dual solutions over a fixed number of column generation
iterations. The history helps to spot the situation when the same dual variables repeatedly

3Degeneracy is the situation when some basic variables have zero values. It is known to be a problem for
simplex since it can lead to multiple column swaps without an improvement of the objective value.

57

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

take on non-zero values while the primal objective is improving very slowly. More precisely, if
over the last 10 iterations:

• The objective function improved by less than 1% and,

• More than 10% of dual values that were non-zero on some iterations had non-zero values
on all iterations

then it is a good indication that the set of conditional constraints, which correspond to those
dual variables, is not satisfiable. In that case, satisfiability of such constraints is tested separ-
ately. If they are indeed unsatisfiable, the whole process stops and unsatisfiability is reported,
otherwise the main column generation loop continues.

The technique preserves soundness because of monotonicity: if some subset of a KB is
unsatisfiable, then the whole KB is unsatisfiable. It also preserves completeness since for each
satisfiable KB the column generation process will necessarily continue until satisfiability is
proved (all extra tests, if any, must be negative).

The heuristic happens to be very effective for unsatisfiable KBs. In our experiments more
than 90% of unsatisfiable KBs have been proved unsatisfiable by this method. It is effective
mostly because conflicting sets of constraints tend to be small so it can easily be spotted if a
small number of duals progress towards non-zero values. However, if the KB is satisfiable then
the heuristic can slow the column generation down by introducing extra tests but this has so
far happened in less than 15% of the cases.

4 Experimental Evaluation

Since P-SROIQ was designed as an extension of the DLs behind OWL and compatibility with
OWL is declared as one of its major advantages, it is critical to ensure that the reasoning
algorithms can successfully deal with probabilistic extensions of real OWL ontologies, not just
randomly generated probabilistic clauses (as in [6]) or propositional taxonomies. We used the
the following criteria to choose ontologies from a large variety of currently available ones:

• One of our long-term goals is to provide tools for reasoning over probabilistic extensions
of OWL ontologies, so it is reasonable to evaluate the performance on ontologies which
use as many features of OWL 2 as possible. At the same time ontologies represented in
a lightweight fragment of OWL 2, such as OWL EL (based on logic EL++), also need
to be included, especially given that they are getting increasingly widespread in some
important domains, such as medical informatics.

• The ontologies should have reasonably large TBoxes with at least few hundred concept
subsumption, equivalence or disjointness axioms, and some object roles.

• The ontologies should have at least 500 concepts in the TBox to show that the reasoner
can handle large probabilistic signatures.

• Ideally, the ontologies should be “in service”, i.e. have been created for and be in use by
real applications as opposed to educational or experimental purposes. In that case they
are more likely to encompass common and useful modeling patterns.

We selected the following five ontologies from different domains. For all ontologies we use
versions stored in the TONES repository.4

4http://owl.cs.manchester.ac.uk/repository/

58

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

The Subcellular Anatomy Ontology (SAO) is the ontology from the neuroinformatics
domain describing cellular and subcellular structures, supracellular domains, and macromolec-
ules.5 It contains 737 concepts, 915 subsumption, 4 equivalence, and 1580 concept disjointness
axioms, 36 object properties and 47 data properties.

The Process Ontology is a part of the SWEET (Semantic Web for Earth and Environ-
mental Terminology) collection of ontologies developed by NASA to provide semantic support
for various Earth science projects.6 It contains 1537 concepts, 1922 subsumption, 84 equival-
ence, and 1 concept disjointness axioms, 102 object properties and 19 data properties.

The Sequence Ontology with Composite Terms (SO-XP) defines terms and relation-
ships used to describe features and attributes of biological sequence as well as cross-product
definitions for composite terms.7 It is a deliverable of the Gene Ontology Project and the Open
Biomedical Ontologies (OBO) experiment. It contains 1660 concepts, 1709 subsumption, 198
equivalence, and 21 concept disjointness axioms and 22 object properties.

The Teleost Anatomy Ontology (TAO) is a multi-species anatomy ontology for teleost
fishes.8 It contains 2229 concepts, 3 object properties and 3406 concept subsumption axioms.

The Cell Type Ontology (CO) is a structured controlled vocabulary for cell types con-
structed for model organism and other Bioinformatics databases.9 It contains 857 concepts, 1
object property and 1263 concept subsumption axioms.

Neither of these ontologies are propositional or small and simple enough to consider their
propositionalization and a subsequent use of a propositional probabilistic SAT solver as a feas-
ible alternative. None of the previously developed PSAT algorithms is capable of dealing with
thousands of classical axioms in addition to a comparable number of probabilistic formulas.

PSAT instances over these ontologies were generated by the random selection of pairs of
concept names. The proportion of unconditional constraints was kept at approximately 10%.
Although there is not yet an established best practice for modeling in P-SROIQ, our initial
investigation [11] suggested that most PTBox constraints are conditional. This is also the case
with Bayesian modeling. Unconditional constraints are mostly statements about individuals
but since they are restricted (see [13]) their number is usually limited.

It is known that satisfiable probabilistic KBs are typically more difficult for PSAT algorithms
[6, 4]. We have also observed that on average our algorithm generates less than half the
columns for unsatisfiable instances as compared to satisfiable instances. This is mostly due to
the early unsatisfiability detection technique (see Section 3.3.4). Therefore we implemented a
specific technique to generate satisfiable KBs which follows the generic methodology used in
[6]. It is based on generating two sets of possible worlds of fixed size with two probability
distributions. Possible worlds are generated using a SROIQ reasoner such that each concept
in the probabilistic signature has an approximately equal chance of being selected for the next
world. Two probability functions Pr1 and Pr2 are then randomly selected from the set of
normal probability distributions over the set of possible worlds. For each constraint (D|C)[l, u]
we take l (resp. u) as the minimum (resp. maximum) probability which is assigned to (D|C)
by Pr1 and Pr2. Intuitively, the existence of these interpretations guarantees satisfiability of
the KB because they are some of its models. The early unsatisfiability detection heuristic has
been kept on during the experiments to account for any loss of performance it may cause.

5http://ccdb.ucsd.edu/CCDBWebSite/sao.html
6http://sweet.jpl.nasa.gov/ontology/
7http://wiki.geneontology.org/index.php/SO:Composite Terms
8https://www.nescent.org/phenoscape/Teleost Anatomy Ontology
9http://obolibrary.org/cgi-bin/detail.cgi?id=cell

59

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

IBM CPLEX solver was used to solve all LP and MILP problem instances. Other solvers
can be easily plugged into Pronto. We have experimented with GLPK10 and the results tend
to be 25%-50% worse than those presented below.

All the experiments were conducted on a desktop PC with 2GHz CPU and 2GB RAM with
JRE 1.6 running under Windows XP SP3. For each PSAT test we measured the following
parameters: total CPU time (in seconds), total number of columns generated, and the average
time to generate a new column (CG time, in milliseconds). CPU time and the number columns
are averaged over 10 PSAT instances for each KB’s size while CG time is also averaged over all
columns generated during a single PSAT. The results are presented in Table 1.

Table 1: Results of PSAT evaluation on satisfiable PTBoxes

Ontology Language TBox size Signature size PTBox size Total time (s) CG time (ms) # columns
SAO SHIN 2499 125 250 78.85 449.86 138.8

250 500 161.16 450.24 261
325 750 360.97 1023.86 351.4
500 1000 1275.85 3062.52 424.8

Process SHOF 2007 125 250 48.48 337.38 87.2
250 500 114.68 380.76 180.6
325 750 224.42 480.26 280.8
500 1000 416.66 509.26 408.8

SO-XP SHI 1928 125 250 58.62 423.08 74.4
250 500 186.49 741.76 184.8
325 750 424.66 986.8 318.4
500 1000 799.38 1524.4 422.4

TAO EL++ 3406 125 250 48.63 280.96 91.4
250 500 123.36 379.68 191
325 750 224.69 414.16 281.4
500 1000 430.69 466.54 449.02

Cell Type EL++ 1263 125 250 53.8 321.1 87.2
250 500 128.2 386.54 180.8
325 750 236.85 428.4 280.8
500 1000 420.93 484.78 394.6

The major outcome is that our algorithm exhibits a very good convergence on probabilistic
extensions of real ontologies. This appears to be mostly due to rich TBoxes which effectively
shrink the set of all possible world thus allowing the algorithm to faster arrive at the optimal
PSAT program. For instance, in the case of the SAO ontology our algorithm was able to solve
all instances of PSAT of size 1000 never generating more than 600 columns out of the space
of 2500 (excluding invalid ones). A likely explanation is a high number of concept disjointness
axioms in the SAO ontology.

Due to the space restriction we do not include the results on propositional KBs. In that
case Pronto’s performance is comparable to that of propositional PSAT algorithms [6, 4]. The
algorithm tends to have a worse convergence on such KBs but columns are generated faster
because the optimization program (6), that is used to produce columns, has fewer inequalities.
This is a direct consequence of simpler TBoxes.

Our plan is to continue the experiments with probabilistic extensions of real ontologies.
Apart from posing interesting challenges to the PSAT algorithm, such ontologies are also more
valuable with respect to developing useful methodologies for probabilistic modeling. They

10The GNU Linear Programming Kit, http://www.gnu.org/software/glpk/

60

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

present examples of interesting interactions between classical and probabilistic knowledge which
can be useful for augmenting real ontologies with, for example, domain statistics.

5 Related Work

There is extensive work on solving the PSAT problem in propositional probabilistic logic (see
esp. [6, 19, 4, 7]). Those algorithms are similar in spirit since they are also based on the column
generation technique but are different in scope, design, and implementation.

The major difference between propositional and non-propositional PSAT problems in the
context of column generation is that propositionality of the KB allows encoding of all its struc-
ture in a polynomial number of linear inequalities over a polynomial number of binary variables.
This follows directly from the well known reduction of propositional SAT to integer program-
ming [7]. Therefore, the column generation problem (6) is much easier to handle, either as a
standard MILP instance [7, 4] or as a non-linear 0-1 program [6, 19]. To the best of our know-
ledge, this work is the first to describe an algorithm and evaluation results for non-propositional
PSAT.

Our method does not try to capture the classical part of the KB at once. By interacting
with a classical SAT solver for the target logic we capture only those parts which are essential
for solving a particular PSAT or entailment problem. While this may be less efficient on KBs
with weak classical part (or expressed in a restricted language, such as propositional logic) it
has important advantages. First, it allows us to handle essentially any target logic for which
a SAT solver is available. Second, this makes our algorithm more scalable with respect to
the amount of classical knowledge. For example, modern DL reasoners can efficiently solve
concept satisfiability problems even for very large TBoxes containing thousands of axioms (a
characteristic example is the NCI Thesaurus). Even if they were propositional (or could be
propositionalized) and fully translated into constraints for the problem (6), the latter would
be drastically larger. Instead, as our results show, we can often solve PSAT by capturing only
some relevant parts of TBoxes.

The PSAT algorithm presented in this paper is a substantial improvement of the earlier
described algorithm [12] which is based on a similar idea but generates columns by solving a
generic constraint optimization problem. The MILP formulation, presented in this paper, ap-
pears to be much more tractable and amenable to optimizations which resulted in the scalability
improvements of the order of magnitude.

6 Conclusion

The primary conclusion of this work is that it is highly likely that P-SROIQ is as “practical”
an ontology language, at least from the computational point of view, as SROIQ. PSAT
and the various entailment problems for P-SROIQ are N2ExpTime-complete, so, as with any
logic in the SROIQ family, practicality, efficiency, and scalability claims must be carefully
qualified. However, our current system handles all our randomly generated problems, which
stress characteristics that we have good reason to believe to be present in future ontologies, to
scales that are reasonable for hand built probabilistic ontologies in the next few years. As with
SROIQ, it is certainly possible to generate — or to find naturally — KBs that will utterly
defeat our current optimizations, but the transformation from being barely able to handle 10-
50 probabilistic statements to being handle thousands is a game changing improvement. Of

61

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

course, SROIQ reasoners have a much larger suite of optimizations to cope with a broader set
of ontology types. But this is a difference in degree, not kind.

For example, prior to the current PSAT algorithm the breast cancer risk ontology (BCRA)
[11] was nigh impossible to work with. We were reduced to working only with subsets of the
ontology and had to abandon the idea of importing it into a new ovarian cancer ontology. This
is clearly an unacceptable development situation for probabilistic ontology modelers. But now it
makes sense for ontology modelers to experiment seriously with P-SROIQ: Not only is it likely
that Pronto can handle their needs, but we now have confidence that additional optimizations
(or workarounds) can be designed as we encounter new difficult problems. In this sense, we are
now on the same footing as the SROIQ family of logics: Modelers keep breaking reasoners
and reasoners keep adapting to the new challenges.

References

[1] F. Baader, D. Calvanese, D. McGuiness, D. Nardi, and P. F. Patel-Schneider. Description Logic
Handbook. Cambridge University Press, 2003.

[2] F. Bacchus. Representing and reasoning with probabilistic knowledge. MIT Press, 1990.

[3] S. Castano, A. Ferrara, D. Lorusso, T. H. Näth, and R. Möller. Mapping validation by probabilistic
reasoning. In European Conference on Semantic Web, pages 170–184, 2008.

[4] P. S. de Souza Andrade, J. C. F. da Rocha, D. P. Couto, A. da Costa Teves, and F. G. Cozman. A
toolset for propositional probabilistic logic. In Encontro Nacional de Inteligencia Artificial, pages
1371–1380, 2007.

[5] J. Halpern. An analysis of first-order logics of probability. Artificial Intelligence, 46:311–350, 1990.

[6] P. Hansen and S. Perron. Merging the local and global approaches to probabilistic satisfiability.
Int. Journal of Approximate Reasoning, 47(2):125–140, 2008.

[7] J. Hooker. Quantitative approach to logical reasoning. Decision Support Systems, 4:45–69, 1988.

[8] M. Horridge, B. Parsia, and U. Sattler. Laconic and precise justifications in OWL. In International
Semantic Web Conference, pages 323–338, 2008.

[9] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Knowledge Repres-
entation and Reasoning, pages 57–67, 2006.

[10] Y. Kazakov. SRIQ and SROIQ are harder than SHOIQ. In Knowledge Representation and Reas-
oning, pages 274–284, 2008.

[11] P. Klinov and B. Parsia. Probabilistic modeling and OWL: A user oriented introduction into
P-SHIQ(D). In OWL: Experiences and Directions (OWLED-2008), 2008.

[12] P. Klinov and B. Parsia. On improving the scalability of checking satisfiability in probabilistic
description logics. In International Conference on Scalable Uncertainty Management, volume
5785/2009 of Lecture Notes in Computer Science, pages 138–149. Springer, 2009.

[13] P. Klinov and B. Parsia. Relationships between probabilistic description and first-order logics. In
International Workshop on Uncertainty in Description Logics, 2010.

[14] P. Klinov, B. Parsia, and D. Picado. The consistency of the CADIAG-2 knowledge base: A
probabilistic approach. In Logic for Programming, Artificial Intelligence and Reasoning, 2010.

[15] T. Lukasiewicz. Expressive probabilistic description logics. Artificial Intelligence, 172(6-7):852–
883, 2008.

[16] I. Lynce and J. P. M. Silva. On computing minimum unsatisfiable cores. In International Confer-
ence on Theory and Applications of Satisfiability Testing, 2004.

[17] K. McMillan. Applying SAT methods in unbounded symbolic model checking. In Computer Aided
Verification, pages 250–264, 2002.

[18] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.

62

Implementing an Efficient SAT Solver for Probabilistic DL P. Klinov and B. Parsia

[19] Z. Ognjanovic, U. Midic, and N. Mladenovic. A hybrid genetic and variable neighborhood descent
for probabilistic SAT problem. In Hybrid Metaheuristics, pages 42–53, 2005.

[20] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.

[21] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

63

	Introduction
	Preliminaries
	Description Logic
	Probabilistic Description Logic P-SROIQ

	The Probabilistic Satisfiability Algorithm
	Column Generation Basics
	Possible World Generation
	Main Optimizations
	Exploiting Concept Hierarchy
	Optimistic Inequality Generation
	Multiple Column Generation and Stabilization
	Early Unsatisfiability Detection

	Experimental Evaluation
	Related Work
	Conclusion

