
Kalpa Publications in Computing

Volume 20, 2024, Pages 35–46

Proceedings of 2024 Concurrent Processes Architectures
and Embedded Systems Hybrid Virtual Conference

Varied timing, OCCAM modeling, and hardware-software

equivalence in a worked IoT example

Lawrence J. Dickson1

Space Sciences Corporation
Lemitar, New Mexico

larry@spacesciencescorp.com

Abstract

CSP-based OCCAM modeling promises to bring great clarity to Internet of Things
(IoT) designs that have been made vague by abstract tools. This requires an absoluteness
in timing and data access that is more characteristic of the Transputer than of modern
systems. However, it turns out some standard C and *n*x library tools can provide it, if
human timing suffices.

IoT design is strongly dependent on use cases, and we had the fortune of a very definite
project use case that drove the small OCCAM-modeled system described in the Reference.
Key tools in the design include Unix sockets, ssh, and the kernel-based call select(). This
paper will complete that system, begun in the referenced Fringe, and relate it to the general
issues to which this technique can be expanded. Its occam modeling will be defended based
on timing knowledge, and its hardware-software equivalence (HSE) will be proven.

This development must be read in conjunction with the Reference, which see. It de-
velops the Reference to allow three or more independent racing systems. It explains the
applicability of the revised approach to general IoT.

Reference

Lawrence J. Dickson: Race-Condition-Robust Hardware-Software Equivalence in *n*x. IEEE-
COPA 2023 Fringe, September 25-27, 2023. RCRHSE-easychair.pdf

This [8] can be found in the github [9], along with old and current code.

Acknowledgements

The code and proofs described here and in the Reference were the work of the author, needed
for a specific project. The applicability of the techniques here developed was made apparent by
discussions with others in the COPA community, including Jeremy Martin, Lindsay Quarrie,
and Rob Fryer. I also thank the referees for their valuable suggestions.

L. Quarrie (ed.), COPA 2024 (Kalpa Publications in Computing, vol. 20), pp. 35–46

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

1 Motivation

In the Internet of Things (IoT), code needs to run the first time. The common habit of poking
around a menu to find something that works is not available if there is no menu, even no screen.
This run also needs to give exactly the right results, the first time. Otherwise some expensive
machinery may gnash and cry out.

On the other hand, some aspects of IoT may make things easier than typical high-resolution
user appeals. Generally, final outcome is expected promptly in human time, measured in
seconds (even minutes), and the data that controls this outcome may be measured in bytes
instead of megabytes. And when large files have to be passed, powerful processors (plural) may
be available to do the necessary processing on them.

All these factors point away from centralized, abstracted programming of the multilayered
type characteristic of modern handhelds like Android. At the same time, they point toward
distributed design with strict communication channels such as was pioneered by Communi-
cating Sequential Processes (CSP) [7], the computer language OCCAM [1], and the classic
Transputer [2] hardware. A question arises whether such design is accessible using modern
tools and hardware. The answer is affirmative if Hardware-Software Equivalence (HSE), an
OCCAM/Transputer characteristic ([1] page 71), can be achieved.

2 Use Case

There is one fact about IoT which I didn’t mention above, and which led me to an answer to
that question. This is that IoT design is strongly oriented to real use cases (e.g. [5]). I was
guided by a real use case to design a simple client/server system in C that achieves HSE. Using
it, I got true synchronicity at key points of an independently clocked system involving three
major processors.

The project used a quad-camera system to survey a toolbox drawer and detect whether
tools therein are all there, undamaged and correctly positioned. The three major processors
are two Raspberry Pis, Camera (C) and Rosebrock (R), and an AI-capable tablet (T). Though
both Raspberry Pis, C and R are different, being optimized for different purposes, C for camera
input and R for stitching code named after Arthur Rosebrock, author of PyImageSearch [4],
a well-maintained library of computervision and related programs, largely in Python. The
Tablet uses AI to interpret the stitched picture against a template, to decide whether tools are
undamaged and in their correct slots in the drawer.

The HSE tool, partially completed in the Reference (the project was underway at that time),
uses scriptable program calls in *n*x, including Linux and the tablet-capable Termux. Its server
is trigonal.c and associated clients are trigcsr.c, trigrhub.c, and trigtsr.c. Of these, trigrhub.c
is newly published here. These use Unix sockets [6], and achieve HSE through a simple ssh
call that causes two Unix sockets, one on each hardware device, to behave the same as a single
socket on the software of one device. Provable and prompt synchronization is achieved by using
select(), the C library call that adjudicates file descriptor races. The only assumption is that
the server and client processes are each sequential in the code that is triggered by a select()
win, so that each select() win acts as a true interrupt, not interleaved with the execution of any
other select() win on the same device.

The result of this design is predictable behavior in passing of message data, and (using the
compount timing anchor) true and prompt synchronicity. The HSE of this code is so strong
that both the software and hardware versions use the same binaries for both server and clients.
In this they resemble Transputer bytecode.

36

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

The critical race is between a client write on one process (or device) and the corresponding
client read on another process (or device). The server offers a one-deep buffer, resembling an
atom of Short Message Service (SMS [3]) in telephony, and adjudicates the race using select().
In the case of a client endpoint (only ever communicating with one other client) as reader,
the race is between server accepting that client read and server receiving the communication
partner client’s data write. In the case of a client hub (multiple client communication partners)
as reader, the race is between that client’s write of an identifier of its partner and the partner
client’s data write.

The result for a client-to-client communication is buffering in the case the writing client
wins, and instant pass-through at write time in the case the reading client wins. The key
structure is a timing anchor (see Reference), in which one client communicates a trigger to a
second, and the second, after an action, communicates an acknowledge to the first. The action
is expected to be relatively time-consuming, and is typically an scp pull of some multi-megabyte
data file or files.

See Figure 1 for how this works in practice.

2.1 Discussion of Figure 1

Notice that the communications between Camera (C) and Rosebrock (R), like those between
R and Tablet (T), consist of arrows to the right (Message) followed by wide arrow to the right
(Data Query), and arrow to the left (Acknowledge). These together form a ”timing anchor”
(see Reference for more detail). The Message has two possible race outcomes: read wins (direct
arrow to read with wait), or write wins (arrow to server buffer, followed by arrow to read with
no wait). Due to the time spent with Data Query, the Acknowledge is always read wins, and
thus synchronizes the two devices.

Figure 2 (excerpted from Figure 1) shows timing anchors of both race types. Because read
always wins the Acknowledge, the bottom arrow is always the synchronization point.

The occam pseudocode for a single timing anchor (from C to R) is as follows, with C code
to left and R code to right, and declarations not shown:

PAR SEQ

mcr ! Message mcr ? Message

-- Data must pre-exist PAR -- Data fetch command constructed

qcr ! Data qcr ? Data

arc ? Acknowledge arc ! Acknowledge

It seems odd that I represent these by a PAR on one side and a SEQ on the other, but the
reason is that I impose the rule that pseudocode must imply information transmission timing
knowledge or lack of knowledge. The left side returns from Message transmission instantly (due
to server buffering if there is no receiver read pending), but C does not know its Message is
transmitted to R until the Acknowledge arrives. Similarly, since the Data Query is implemented
by an scp pull (a call in R), C does not know that has happened until the Acknowledge has
arrived. The PAR expresses these uncertainties, and the OCCAM rules thus insist that all
information sent (Message and Data) must pre-exist the PAR and remain untouched by C
during the lifetime of the PAR.

By contrast, the SEQ is appropriate for the role of R. As soon as its read of Message is
complete, it knows that data is transmitted. It can use the data received in Message to construct
its Data Query (e.g. the names and directory locations of the big files of Data to be pulled by
its scp call). After that is done, and its capture of Data is complete, it sends its Acknowledge.

37

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

Figure 1: Three parallel devices controlled by timing anchors

38

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

Figure 2: Timing anchor, both race types shown

The table that follows shows the client calls actually used (see Reference, noting the inno-
vation of trigrhub, described below, since R is a hub):

Table 1: A timing anchor from C to R

process C script process R script

trigcsr ’!CRthename’ trigrhub ’?C’

action

trigcsr trigrhub ’!RCA’

The action is an scp pull. The argument to the first trigrhub tells which communication
partner is to write to this hub this time. The second trigcsr call is deceptively placed, as C
executes this read call immediately after the first call to trigcsr is completed, which because of
the server buffering is essentially instantaneous. This means the second trigcsr wins the race of
the Acknowledge and waits for the Acknowledge from R, thus synchronizing the two devices.

2.2 Hardware-software equivalence

In the above discussions I have called C, R, and T ”devices”, thus referring to the hardware
option. I have not specified where the server runs. However, as detailed in the Reference, any
or all of the clients may be software processes running on the same system as the server, so
that the total count of actual devices may be anything from 1 to 4, including the server.

The server runs as a daemon (i.e. it is started before any script using the clients, as seen in
Table 1, and it does not close until after any such script is done). The communication channels
are all soft (Unix) sockets. The case where a hardware link is used converts two such sockets,
one on each of the communicating systems, to a single link using a command like this:

ssh -nNT -L /tmp/9Lcamera.socket:/tmp/9Lcamera.socket pi@192.168.10.3

This also runs as a daemon on the client system, referencing the real IP address of the
server. Notice in this case both soft sockets have the same name. As a consequence, the binary
of both server and client is unchanged whether hardware or software implementation is used -
just like classic Transputer binaries! (See the for loop near the top of the next section to see
how to generate the HSE binaries.)

39

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

3 Hub-Upgrade: Adding a Hub to the Reference

The code is available for inspection and easy compilation at
https://github.com/SpaceSciencesCorp/Trigonal/releases/tag/v1.0.0

for i in trigonal trigcsr trigrhub trigtsr ; do

gcc -c $i.c

gcc -o $i $i.o

done

For practical usefulness, some clients in this system must be hubs (able to talk to more than
one other client). This was missing in the code demonstrated in September 2023 at IEEE-COPA
2023. My efforts since then have been aimed at modifying the server to deal with hubs.

One addition was key: the hub read has to identify its communication partner. Given the
timing anchor design, this is always possible, and it proved to suffice. The pending Boolean
and associated one-deep buffer were both replicated by the number of communication partners,
thus permitting unique responsiveness in the case of the early write. And a new variable with
a unique nonzero value for each communication partner allows cooperation with the late write,
using the fact that each client call set (including the hub client) is required to be part of a
purely sequential script.

In the code actually written, the client call sets are endpoints C and T, and hub R which
communicates with the two endpoints.

The modifications in the code of the Reference are contained in an Appendix to this paper.

3.1 Setup

See the Reference.

3.2 Run

See the Reference for general instructions. Changes will be noted here.
In C2 run:

./trigcsr ’!CRABCD’

And in R2 run (using the new hub client pointing back to C):
./trigrhub ’?C’

The message will pass through and appear in R2. It does not matter which of the clients is
triggered first. Thus, you can generate an acknowledge as follows:

In C2 run:
./trigcsr

(this is an endpoint read as in the Reference.)
And in R2 run:

./trigrhub ’!RCA’

(the hub write is the same as an endpoint write.)
The two characters immediately after the exclamation point are important,

as the program reads them and interprets them as message source and target.
Similarly, in the hub read, the character immediately after the question mark is
important, as the program reads it and interprets it as message source.

To shut down, hit terminal C1 with a Ctrl-C to kill the ssh -nNT and follow that in terminal
C1 with

40

https://github.com/SpaceSciencesCorp/Trigonal/releases/tag/v1.0.0

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

rm /tmp/9Lcamera.socket

Watch terminal R1. It will probably say 2 connections left. Finish the others from terminal
R2 with

./trigtsr DOWN

./trigrhub DOWN

If it didn’t say 2 connections left, you will also need

./trigcsr DOWN

and ./trigonal will quit.

3.3 Restrictions and scripting

The techniques developed here make use of the behavior of *n*x sockets, which establish a
bidirectional communication (called a socket link) between *n*x processes. Here we solely use
”Unix sockets” (soft sockets) and let the ssh tunnel take care of any hardware connection. Thus,
the processes may be on the same hardware (one socket) or on different hardware (two sockets
connected by one ssh tunnel). The behavior is equivalent.

Each socket link is driven solely by the client programs trig?sr for an endpoint, or trig?hub
for a hub, called on each process in a single sequential script or equivalent. The calls are grouped
in timing anchors, two calls each side per anchor, with no interleaving, according to the scheme
shown above in Table 1 (subsection 2.1).

Here thename is some ASCII information useful, for instance, in building filenames, and
action is some appropriate shared action, such as an scp pull of a few megabytes of data from
C to R. The calls to trig?sr without a parameter, or trig?hub with a parameter starting with
a question mark, are client reads, while those with a parameter starting with an exclamation
point are client writes. Because of the sequential restriction, the horizontal pairs in the table
always communicate with each other. See the Reference for further discussion and a graphic.

3.4 Robust communication

See the Reference.

3.5 Multiple timing anchor sequence troubles

This is the problem solved in this Hub-Upgrade.
The distinction here is between a client endpoint, which can only ever communicate with

one other client, and a client hub, which can communicate with two or more other clients. The
old code dealt only with client endpoints, and was thus restricted to two clients at a time with
no overlap.

In the old code, a client (i.e., Rosebrock) that could read from more than one other client
had no way of knowing which to take data from. Since in order to set up a timing anchor,
the programmer had to know, the solution was for the programmer to explicitly communicate
this knowledge in the call. This applies to read only, hence the use of the CSP/occam question
mark as the initial was appropriate.

The modification in trigonal.c expects this extra step in the hub read case, and doubles up
some variables to allow both sides to overlap. A new variable, source Rosebrock, lets the mated

41

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

writing client know to check if it is truly late with a preceding hub read asking for its side. Any
early hub read will block until the correct mating write comes along, even if other activity is
happening before then.

4 Usage example

This section gives a pseudocoded example of a practical use of this system.

4.1 Crude pseudocode

Here the timings are only approximate, as the three processes, whether soft (bash terminal)
or hard, have independent timing. (In real usage, each process is hard, the first two being
Raspberry Pis and the third an Android tablet with Termux running.) CR(n) is the n-th
timing anchor between C (or Camera) process and R (or Rosebrock) process. RT(n) is the n-th
timing anchor between R process and T (or Tablet) process. The sequential main program that
runs on C is Cameras(n) while R has Stitch(n) and T has AI(n). Each program runs on the
order of a minute, while each timing anchor requires on the order of a second.

The symbol { K || L || M } refers to programs K, L, and M running on C, R, and T
approximately simultaneously. Here a - in place of a program means nothing is happening on
that process.

{ Cameras(1) || - || - }

CR(1)

{ Cameras{2} || Stitch(1) || - }

RT(1)

CR(2)

{ Cameras(3) || Stitch(2) || AI(1) }

RT(2)

CR(3)

{ Cameras(4) || Stitch(3) || AI(2) }

. . .

{ Cameras(N) || Stitch(N-1) || AI(N-2) }

RT(N-1)

CR(N)

{ - || Stitch(N) || AI(N-1) }

RT(N)

{ - || - || AI(N) }

4.2 Partial scripts

In this subsection, I will partially explicate the above pseudocode as bash scripting, one (se-
quential) script running on each process. It isn’t quite accurate, as I merely put a note on
the action in the Pull lines, which would actually require some sed scripting and the con-
struction of an scp pull of the file shown. What is shown below is only up through the line
{ Cameras(3) || Stitch(2) || AI(1) }.

C process

42

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

Cameras 1

./trigcsr ’!CRphotos1.zip’

./trigcsr

Cameras 2

./trigcsr ’!CRphotos2.zip’

./trigcsr

Cameras 3

R process

./trigrhub ’?C’

Pull photos1.zip

./trigrhub ’!RCA’

Stitch 1

./trigrhub ’!RTpicture1.png’

./trigrhub ’?T’

./trigrhub ’?C’

Pull photos2.zip

./trigrhub ’!RCA’

Stitch 2

T process

./trigtsr

Pull picture1.png

./trigtsr ’!TRA’

AI 1

5 Conclusion and future work

The timing anchor developed here uses classic, well-proven tools in the *n*x world, such as
select(), sockets, and ssh/scp, to perform three tasks between a source device/process and
a destination device/process, when the source concludes with producing significant data for
the destination to work on: (a) inform the destination when the source’s data is stable, (b)
insure this data remains stable while being transmitted to a ready destination, and (c) note the
time synchronously on both devices/processes when the destination has the data. It does this
without any assumptions about shared dates. clocks, or timing.

This eliminates the need for shared dates or clocks among multiple systems, and by using the
timing anchor acknowledge to send a date/time, can realign those that have become unaligned.
It tackles a big problem in IoT, which gets worse as the number of devices increases: date
skew, sometimes upon reboot, and clock drift (these can result in systems seizing up due
to future dates on files, for example). If all devices have nearly identical timing, occasional
synchronization using timing anchors can assure nearly identical dates/times on all devices.

Future development will allow more complex networks than the current one-hub, one-server,
two-endpoint arrangement. It will be vastly eased by the hardware-software equivalence in this
system, which will make HSE possible in wider fronts in IoT, allowing cleanly designed small
devices/processes to perform individual, reliable, provable tasks in synchrony. It permits clean
analogy with classic CSP/occam/Transputer systems that pulled far beyond their weight class
as far back as the 1990s.

43

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

Bibliography

[1] INMOS Ltd. occam 2 Reference Manual. Prentice Hall, 1988. http://www.transputer.net/

obooks/obooks.asp.

[2] INMOS Ltd. Transputer Instruction Set, a compiler writer’s guide. Prentice Hall, 1988. http:

//www.transputer.net/iset/iset.asp.

[3] Wikipedia. SMS. Wikimedia Foundation Inc, 2024. https://en.wikipedia.org/wiki/SMS.

[4] Adrian Rosebrock. Pyimagesearch AI & Computer Vision Programming. PyImageSearch, 2024.
https://pyimagesearch.com.

[5] U. Franke, H. Fritz, A. Kuehnle, and J. Schick. Transputers on the Road. In Transputer Appli-
cations and Systems, Proceedings of World Transputer Congress 1993, volume 1, pages 1–17. IOS
Press, Amsterdam, The Netherlands, 1993.

[6] Neil Matthew and Richard Stones. Beginning Linux Programming. Wrox Press, Birmingham,
1997. ISBN: 1-874416-68-0.

[7] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-131-
53271-5.

[8] Lawrence J. Dickson. Race-Condition-Robust Hardware-Software Equivalence in *n*x. In IEEE-
COPA 2023 Fringe, September 25-27, 2023, RCRHSE-easychair.pdf

[9] Lawrence J. Dickson. Trigonal code history, Space Sciences Corporation, 2024. https://github.
com/SpaceSciencesCorp/Trigonal/releases/tag/v1.0.0

Appendix

The Appendix consists of the code diff. Only two diffs are required: that of digonal.c (the
old trigonal.c) with the current trigonal.c, and that of trigrsr.c (the Rosebrock endpoint client)
with trigrhub.c (the Rosebrock hub client).

For more information, and the old code, see the Reference.

trigrsr.c trigrhub.c diff

−−− t r i g r s r . c 2023−04−21 08 :34 :53 .000000000 −0700
+++ tr ig rhub . c 2023−10−06 14 :15 :26 .000000000 −0700
@@ −7,9 +7,9 @@

#inc lude <unistd . h>
#inc lude ” u s c o c r l f . h”
/∗ C l i e n t :

− ∗ Conn e c t s i mm e d i a t e l y
− ∗ I f a r g c >1 i t s e n d s a r g v [1] c o n t e n t s t o s e r v e r
− ∗ O t h e r w i s e i t a w a i t s b u f f e r f r om s e r v e r and o u t p u t s i t t o s t d o u t
+ ∗ Conn e c t s i mm e d i a t e l y , e x p e c t s a r g c > 1 (HUB)
+ ∗ I t s e n d s a r g v [1] c o n t e n t s t o s e r v e r
+ ∗ I f a r g v [1] [0] == ’ ? ’ i t a w a i t s b u f f e r f r om s e r v e r and o u t p u t s i t t o s t d o u t

∗ Then c l o s e s t h e c o n n e c t i o n
∗/

int
@@ −46,7 +46 ,7 @@

f p r i n t f (s tder r , ” connect returned %d\n” , r e t) ;
}
/∗}}} ∗/

− /∗{{{ Send a r g v [1] o r r e c e i v e and o u t p u t t o s t d o u t ∗/
+ /∗{{{ Send a r g v [1] ; s om e t im e s r e c e i v e and o u t p u t t o s t d o u t ∗/

/∗ Send i f a r g c >1. ∗/
i f (argc > 1) {

r e t = wr i te (data socket , argv [1] , s t r l e n (argv [1]) + 1) ;
@@ −57 ,20 +57 ,24 @@

f p r i n t f (s tder r , ” wr i te returned %d , content %s\n” , ret , argv [1]) ;
}
s l e ep (1) ;

− } else {
/∗ R e c e i v e r e s u l t . ∗/

− r e t = read (data socket , bu f f e r , s izeo f (bu f f e r)) ;
− i f (r e t == −1) {
− per ro r (” read ”) ;
− e x i t (EXIT FAILURE) ;
− } else {
− /∗ En su r e b u f f e r i s 0− t e r m i n a t e d . ∗/

44

http://www.transputer.net/obooks/obooks.asp
http://www.transputer.net/obooks/obooks.asp
http://www.transputer.net/iset/iset.asp
http://www.transputer.net/iset/iset.asp
https://en.wikipedia.org/wiki/SMS
https://pyimagesearch.com
https://github.com/SpaceSciencesCorp/Trigonal/releases/tag/v1.0.0
https://github.com/SpaceSciencesCorp/Trigonal/releases/tag/v1.0.0

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

− bu f f e r [s izeo f (bu f f e r) − 1] = 0 ;
− f p r i n t f (s tder r ,
− ” read returned %d , bu f f e r s i z e with t r a i l i n g nu l l %d , content %s\n” ,
− ret , s t r l e n (bu f f e r)+1 , bu f f e r) ;
− p r i n t f (bu f f e r) ;
+ i f (argv [1] [0]== ’ ? ’) {
+ re t = read (data socket , bu f f e r , s izeo f (bu f f e r)) ;
+ i f (r e t == −1) {
+ perro r (” read ”) ;
+ ex i t (EXIT FAILURE) ;
+ } else {
+ /∗ En su r e b u f f e r i s 0− t e r m i n a t e d . ∗/
+ bu f f e r [s izeo f (bu f f e r) − 1] = 0 ;
+ f p r i n t f (s tder r ,
+ ” read returned %d , bu f f e r s i z e with t r a i l i n g nu l l %d , content %s\n” ,
+ ret , s t r l e n (bu f f e r)+1 , bu f f e r) ;
+ p r i n t f (bu f f e r) ;
+ }

}
+ } else {
+ f p r i n t f (s tder r , ”REQUIRES ARGUMENT\n”) ;
+ ex i t (EXIT FAILURE) ;

}
/∗}}} ∗/
/∗ C l o s e s o c k e t . ∗/

digonal.c trigonal.c diff

−−− digona l . c 2023−04−21 08 :55 :16 .000000000 −0700
+++ t r i g o n a l . c 2023−10−07 12 :04 :29 .000000000 −0700
@@ −16 ,11 +16 ,13 @@

int connection camera , connect ion Rosebrock , c onne c t i on t ab l e t ;
int data camera , data Rosebrock , data tab l e t , f d s i z e ;
int current camera , current Rosebrock , c u r r e n t t a b l e t ;

− int pending camera , pending Rosebrock , pend ing tab l e t ;
+ int pending camera , pending CR , pending TR , pend ing tab l e t ;
+ int source Rosebrock ;

int nconnecs , resu l t camera , re su l t Rosebrock , r e s u l t t a b l e t , r e t v a l ;
char bu f f e r [BUFFER SIZE] ;
char todo camera [BUFFER SIZE] ;

− char todo Rosebrock [BUFFER SIZE] ;
+ char todo CR [BUFFER SIZE] ;
+ char todo TR [BUFFER SIZE] ;

char t odo tab l e t [BUFFER SIZE] ;
/∗{{{ C r e a t e c o n n e c t i o n s o c k e t , b i n d , l i s t e n : CAMERA∗/
/∗ C r e a t e l o c a l s o c k e t . ∗/

@@ −142 ,7 +144 ,8 @@
current camera = connect ion camera ;
current Rosebrock = connect ion Rosebrock ;
c u r r e n t t a b l e t = conne c t i on t ab l e t ;

− pending camera = pending Rosebrock = pend ing tab l e t = 0 ;
+ pending camera = pending CR = pending TR = pend ing tab l e t = 0 ;
+ source Rosebrock = 0 ; /∗ i n i t i a l i z e d t o OFF ∗/

val id camera = 1 ;
va l id Rosebrock = 1 ;
v a l i d t a b l e t = 1 ;

@@ −216 ,7 +219 ,8 @@
/∗ Hand l e commands . ∗/
i f (! strncmp (buf f e r , ”DOWN” , s t r l e n (bu f f e r))) {

down flag = 1 ;
− } else i f (current Rosebrock == data Rosebrock) {
+ } else i f ((current Rosebrock == data Rosebrock) &&
+ (source Rosebrock == (int) ’C ’)) {

/∗{{{ Send r e s u l t . ∗/
r e t = wr i te (data Rosebrock , bu f f e r , s t r l e n (bu f f e r)+1);
i f (r e t == −1) {

@@ −227 ,13 +231 ,14 @@
}
/∗ C l o s e s o c k e t . ∗/
c l o s e (data Rosebrock) ;

+ source Rosebrock = 0 ;
current Rosebrock = connect ion Rosebrock ;
/∗}}} ∗/

} else {
− s t rcpy (todo Rosebrock , bu f f e r) ;
− f p r i n t f (s tder r , ”camera to Rosebrock pending content %s\n” ,
− todo Rosebrock) ;
− pending Rosebrock = 1 ;
+ strcpy (todo CR , bu f f e r) ;
+ f p r i n t f (s tder r , ”camera to CR pending content %s\n” ,
+ todo CR) ;
+ pending CR = 1 ;

}
}
i f (detec t end) {

@@ −270 ,23 +275 ,10 @@
f p r i n t f (s tder r , ” accept returned %d\n” , data Rosebrock) ;
current Rosebrock = data Rosebrock ;
i f (data Rosebrock >= f d s i z e) f d s i z e = data Rosebrock + 1 ;

− i f (pending Rosebrock) {
− /∗{{{ Send r e s u l t . ∗/

45

Varied timing, OCCAM modeling and HSE in a worked IoT example L. J. Dickson

− r e t = wr i te (data Rosebrock , todo Rosebrock , s t r l e n (todo Rosebrock)+1);
− i f (r e t == −1) {
− per ro r (”pending Rosebrock wr i te ”) ;
− e x i t (EXIT FAILURE) ;
− } else {
− f p r i n t f (s tder r , ”pending Rosebrock wr i te returned %d\n” , r e t) ;
− }
− pending Rosebrock = 0 ;
− detect end = 1 ;
− /∗}}} ∗/
− }

}
/∗}}} ∗/

} else { /∗ d a t a R o s e b r o c k ∗/
− /∗{{{ Wait f o r n e x t d a t a p a c k e t , u n t i l DOWN. ∗/
+ /∗{{{ Wait f o r n e x t d a t a p a c k e t , u n t i l DOWN. D e f a u l t d e t e c t e n d . ∗/

/∗ Wait f o r n e x t d a t a p a c k e t . ∗/
r e t = read (data Rosebrock , bu f f e r , s izeo f (bu f f e r)) ;
i f (r e t == −1) {

@@ −309 ,6 +301 ,45 @@
/∗ Hand l e commands . ∗/
i f (! strncmp (buf f e r , ”DOWN” , s t r l e n (bu f f e r))) {

down flag = 1 ;
+ } else i f (bu f f e r [0] == ’ ? ’) { /∗ c l i e n t r e a d ∗/
+ detect end = 0 ; /∗ D e f a u l t f o r r e a d e a r l y ∗/
+ f p r i n t f (s tder r , ”Rosebrock c l i e n t read source %c\n” , bu f f e r [1]) ;
+ i f (bu f f e r [1] == ’C ’) { /∗ S o u r c e i s C ∗/
+ source Rosebrock = (int) ’C ’ ;
+ i f (pending CR) {
+ /∗{{{ Send r e s u l t . ∗/
+ re t = wr i te (data Rosebrock , todo CR , s t r l e n (todo CR)+1);
+ i f (r e t == −1) {
+ perro r (”pending CR wr i te ”) ;
+ ex i t (EXIT FAILURE) ;
+ } else {
+ f p r i n t f (s tder r , ”pending CR wr i te returned %d\n” , r e t) ;
+ }
+ pending CR = 0 ;
+ source Rosebrock = 0 ;
+ detect end = 1 ;
+ /∗}}} ∗/
+ }
+ } else i f (bu f f e r [1] == ’T ’) {
+ source Rosebrock = (int) ’T ’ ;
+ i f (pending TR) {
+ /∗{{{ Send r e s u l t . ∗/
+ re t = wr i te (data Rosebrock , todo TR , s t r l e n (todo TR)+1);
+ i f (r e t == −1) {
+ perro r (”pending TR wr i te ”) ;
+ ex i t (EXIT FAILURE) ;
+ } else {
+ f p r i n t f (s tder r , ”pending TR wr i te returned %d\n” , r e t) ;
+ }
+ pending TR = 0 ;
+ source Rosebrock = 0 ;
+ detect end = 1 ;
+ /∗}}} ∗/
+ }
+ } else {
+ f p r i n t f (s tder r , ”Rosebrock c l i e n t read source ILLEGAL.\n”) ;
+ ex i t (EXIT FAILURE) ;
+ }

} else i f (bu f f e r [2] == ’C ’) {
i f (current camera == data camera) {

/∗{{{ Send r e s u l t . ∗/
@@ −424 ,7 +455 ,8 @@

/∗ Hand l e commands . ∗/
i f (! strncmp (buf f e r , ”DOWN” , s t r l e n (bu f f e r))) {

down flag = 1 ;
− } else i f (current Rosebrock == data Rosebrock) {
+ } else i f ((current Rosebrock == data Rosebrock) &&
+ (source Rosebrock == (int) ’T ’)) {

/∗{{{ Send r e s u l t . ∗/
r e t = wr i te (data Rosebrock , bu f f e r , s t r l e n (bu f f e r)+1);
i f (r e t == −1) {

@@ −435 ,13 +467 ,14 @@
}
/∗ C l o s e s o c k e t . ∗/
c l o s e (data Rosebrock) ;

+ source Rosebrock = 0 ;
current Rosebrock = connect ion Rosebrock ;
/∗}}} ∗/

} else {
− s t rcpy (todo Rosebrock , bu f f e r) ;
− f p r i n t f (s tder r , ” t ab l e t to Rosebrock pending content %s\n” ,
− todo Rosebrock) ;
− pending Rosebrock = 1 ;
+ strcpy (todo TR , bu f f e r) ;
+ f p r i n t f (s tder r , ” t ab l e t to TR pending content %s\n” ,
+ todo TR) ;
+ pending TR = 1 ;

}
}
i f (detec t end) {

46

	Motivation
	Use Case
	Discussion of Figure 1
	Hardware-software equivalence

	Hub-Upgrade: Adding a Hub to the Reference
	Setup
	Run
	Restrictions and scripting
	Robust communication
	Multiple timing anchor sequence troubles

	Usage example
	Crude pseudocode
	Partial scripts

	Conclusion and future work

