
Hydrological model calibration in data-limited 

catchments using non-continuous data series with 

different lengths 

Chuanzhe Li1*, Jia Liu1, Fuliang Yu1, Jiyang Tian1, Yang Wang1 and 

Qingtai Qiu1 
1 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China 

Institute of Water Resources and Hydropower Research, Beijing, China 
azhe051@163.com, hettyliu@126.com, yufl@iwhr.com, tjyshd@126.com, 

ywwangyang@163.com, qqt31415926@163.com 

Abstract 

This paper evaluates the effects of calibration data series length on the performance 

of a hydrological model in data-limited catchments where data are non-continuous and 

fragmental. Non-continuous calibration periods were used for more independent 

streamflow data for SIMHYD model calibration. Nash-Sutcliffe efficiency and 

percentage water balance error were used as performance measures. The particle swarm 

optimization method was used to calibrate the rainfall-runoff models. Different lengths 

of data series ranging from one year to ten years were used to study the impact of 

calibration data series length. Fifty-five relatively unimpaired catchments located all 

over Australia with daily precipitation, potential evapotranspiration, and streamflow 

data were tested to obtain more general conclusions. The results show that longer 

calibration data series do not necessarily result in better model performance. Our results 

may have useful and interesting implications for the efficiency of using limited 

observation data for hydrological model calibration in different climates. 

1 Introduction 

How long of a data series should be used for hydrological model calibration? This is an especially 

important question when model users are applying models in data-limited catchments (Boughton, 

2007). It is important to make the best use of these limited data. In general, model users tend to use 

the longest available data series for model calibration in order to achieve more representative 

calibration. However, it is not the length of the data series used but the information contained in it and 
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the efficiency with which that information is extracted that are important (Sorooshian, Gupta, & 

Fulton, 1983). Many researchers have concluded that longer calibration data series do not necessarily 

result in better model performance. They have recommended different lengths of data series ranging 

from three months to ten years for calibration according to different models and study regions (Yapo, 

Gupta, & Sorooshian, 1996; Gan, Dlamini, & Biftu, 1997; Perrin, Oudin, Andreassian, Rojas-Serna, 

Michel, 2007). One full hydrological year is suggested for CRR model calibration as a minimum data 

requirement (Sorooshian, Gupta, & Fulton, 1983). It should be noted that most researchers use 

continuous calibration data for model calibration. There are few reports in the literature that have 

considered both non-continuous calibration periods and data for a full hydrological year in 

hydrological model calibration. 

The main objective of this study was to demonstrate the importance of calibration data length to 

the estimates of optimal parameters and uncertainty performance of the conceptual rainfall-runoff 

models. This study can help improve application of hydrological model in data-limited catchments. 

We used non-continuous calibration periods in order to have more independent runoff data for model 

calibration. Different lengths of data series ranging from one year to ten years, randomly sampled, 

were used to study the impact of calibration data length. Fifty-five relatively unimpaired catchments 

located all over Australia were tested to obtain more general conclusions. 

2 Hydrological Model and Data 

2.1 SIMHYD Model 

SIMHYD is a lumped conceptual daily rainfall-runoff model. It is driven by daily rainfall and 

potential evapotranspiration, and simulates daily streamflow. It has been tested and used extensively 

across Australia (Siriwardena, Finlayson, & McMahon, 2006; Zhang, Chiew, Zhang, Leuning, & 

Cleugh, 2008). Figure 1 shows the structure of SIMHYD as well as the algorithms. The version of the 

SIMHYD model used in this study has nine parameters. The ranges of these parameters are shown in 

Table 1. 

 

 
Figure 1: Structure of lumped rainfall-runoff model SIMHYD 
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2.2 Study Catchment and Data 

      Daily streamflow data from 55 unimpaired catchments located all over Australia were used in this 

study (Figure 2). Unimpaired streamflow is defined as streamflow that is not subject to regulation or 

diversion. The data are a subset of the Australian dataset collated for an Australian Land and Water 

Resources Audit project (Peel, Chiew, Western, & McMahon, 2000). The spatial resolution of the 

gridded daily rainfall was 5 km by 5 km based on interpolation of over 6 000 rainfall stations in 

Australia. The catchments range in area from 51 km2 to 1 891 km2. The mean annual rainfall in the 

catchments ranges from 587 mm to 2886 mm, and the mean annual runoff ranges from 44 mm to 

2095 mm. The runoff coefficients of the catchments range from 0.08 to 0.89, and the index of dryness 

ranges from 0.37 to 2.19, representing diverse hydrological and climatic conditions. 

3 Methodology 

We designed different lengths of data series available to calibrate the SIMHYD model. Calibration 

runs were conducted using data lengths of one, two, three, five, eight, and ten non-continuous years 

randomly selected from the whole observation data set. We sampled 100 times randomly, with lengths 

Parameter Description Minimum  

value 

Maximum  

value 

INSC  Interception store capacity (mm) 0.5 5.0 

MaxIL  Maximum infiltration loss (mm) 50 400 

ILE  Infiltration loss exponent 0 6.0 

SMSC  Soil moisture store capacity (mm) 50 500 

SUB  Constant of proportionality in interflow equation 0 1 

CRAK  Constant of proportionality in groundwater recharge 

equation 
0 1 

K  Baseflow linear recession parameter 0.003 0.3 

XE  Proportionality constant of Muskingum routing 

method 
0 0.5 

KE  Storage-time constant of Muskingum routing method 0.5 10 

Table 1: Description and ranges of parameters in SIMHYD model 

 
Figure 2: Location of 55 catchments in Australia used for this study 
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of two, three, five, eight, and ten years. When the data series length was one year, data from every 

year were sampled independently from the whole observation data set. Calibration data assembled in 

non-continuous years including different climatic conditions were sufficient to obtain robust estimates 

of model performance and parameters. This method is more suitable for catchments where data are 

limited and fragmentary. The performance of each calibration was evaluated for the whole period, 

using Nash-Sutcliffe efficiency (
NSE ) and water balance error percentage (

WBE ) defined below. The 

particle swarm optimization (PSO) (Eberhart & Kennedy, 1995) was used to optimize the parameters 

of the rainfall-runoff model. 
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where 
sim,iQ  and 

obs,iQ  are the simulated daily runoff and observed daily runoff, respectively; 
obsQ  is 

the arithmetic mean of the observed runoff; i represents the ith day; and N is the total days sampled. 
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For the optimization, the two criteria are aggregated into one objective function 
objf : 

 
obj NS WB(1 )f E E     (3) 

The weighting factors of   and   are set at 1 and 0.01, respectively. 

4 Results and Discussion 

4.1 Model Calibration and Verification Results 

The calibrated and verified results of the SIMHYD model (
NSE  and absolute 

WBE ) using different 

calibration data series lengths for 55 catchments are shown in Figure  and Figure 4, in which T1, T2, 

T3, T5, T8, and T10 represent the data series lengths of one, two, three, five, eight, and ten years, 

respectively. The standard deviations of 
NSE  and absolute 

WBE  values for different calibration data 

series lengths are shown in Figure 5 and Figure 6, respectively for the calibration and verification 

results. 

It can be seen in Figure 3 that the curves of 
NSE  are closer together and become steeper as we 

progress from the one-year to the ten-year data sets. The steeper the curves of 
NSE  are, the greater the 

sensitivity of model performance to selection of the calibration data set. The shift of the distribution 

indicates improvement of model performance with shorter data sets. In Figure 3(b), the curves of 

absolute 
WBE  steepen progressively with increasing data series length. From eight years on, the curves 

of absolute 
WBE  show little or no change as data series length increases, indicating no improvement in 

the distribution of absolute 
WBE . The standard deviations of 

NSE  and absolute 
WBE values show similar 

results in Figure 4. The curves steepen with increasing data series length. From eight years on, the 

changes lessen. This indicates that the SIMHYD model can generate more stable 
NSE  and absolute 

WBE  values with short calibration data series over different catchments. 
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For the verification results in Figure 5, both the trends of 
NSE  and absolute 

WBE  indicate that the 

verification performance tends to improve when the number of years used for calibration increases. 

When the length of calibration is longer than eight years, it can be inferred that the model 

performance reaches steady and satisfactory results with high 
NSE  values and low absolute 

WBE  

values. The standard deviation values of 
NSE  and absolute 

WBE  in Figure 6 show a similar tendency. 

It is clear that longer calibration data series may provide more consistent and better calibration and 

verification values, and result in more consistent simulations. However, due to the huge cost of 

measurement and collection of calibration and forcing data, short calibration data sets have often been 

used. Our results indicate that eight-year data sets may be adequate for SIMHYD, achieving the 

optimal calibration and verification values. 

 
Figure 3: Summary of calibrated 

NSE  and absolute 
WBE  values for different calibration data series lengths 

 

 
Figure 4: Summary of verified 

NSE  and absolute 
WBE  values for different calibration data series lengths 

 
Figure 5: Standard deviation of calibrated 

NSE  and absolute 
WBE  values for different calibration data lengths 
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4.2 Variability of the Model Parameters 

The standard deviations of parameters of catchment 421018 (shown in Figure 2) obtained with 

different lengths of calibration data series are compared in Table 2. Different behaviours can be 

observed and some parameter values become stable more quickly than others when the length of 

calibration year increases. Standard deviations of parameters 
INSC  and 

MaxIL  increase significantly with 

the increase of the length of calibration data series. Standard deviations of parameters 
ILE , 

SMSC , 
SUB , 

and 
KE  decrease significantly with the length of calibration data series. Standard deviations of 

parameters 
CRAK , K , and 

XE  show little or almost no change with increases in the length of the 

calibration data series. A decreasing standard deviation indicates that the variability of these model 

parameters decreases, while an increasing standard deviation indicates that the variability of these 

model parameters increases. 

 
Figure 6: Standard deviation of verified 

NSE  and absolute 
WBE  values for different calibration data lengths 

 

Data 

series 

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 

T1 1.17 96.08 1.52 110.52 0.17 0.17 0.08 0.14 3.01 

T2 1.36 99.84 1.38 104.38 0.15 0.19 0.07 0.13 3.04 

T3 1.48 101.48 1.61 103.35 0.13 0.19 0.07 0.16 2.99 

T5 1.53 105.78 1.53 99.65 0.10 0.17 0.07 0.14 2.76 

T8 1.67 101.56 1.37 85.93 0.09 0.2 0.07 0.14 2.44 

T10 1.53 104.51 1.35 75.19 0.09 0.19 0.07 0.15 2.12 
Table 2: Standard deviations of model parameters (catchment 421018) with different calibration data 

lengths 

Note: σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8 and σ9 are the standard deviations of CINS, LMaxI, EIL, CSMS, αSUB, αCRAK, K, Ex 

and Ek, respectively. 
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5 Conclusions 

Longer calibration data series may give more consistent optimal parameter values and result in 

more consistent simulations. However, due to the huge cost for measurement and collection of 

calibration and forcing data, or limited data for some ungauged catchments, short calibration data sets 

have often been used in previous rainfall-runoff modeling studies. Our results show that, in general, 

eight years of data chosen randomly are sufficient to obtain steady estimates of model performance 

and parameters for the SIMHYD model. They also show that most humid catchments require fewer 

calibration data (three years or five years) for good performance and stable parameter values. Our 

results may have useful and interesting implications for study of data-limited catchments, by 

indicating how many data points it is necessary to collect for the purpose of calibration. 
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