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Abstract

Hyperproperties are commonly used to define information-flow policies and other re-
quirements that reason about the relationship between multiple traces in a system. We
consider HyperQPTL – a temporal logic for hyperproperties that combines explicit quan-
tification over traces with propositional quantification as, e.g., found in quantified proposi-
tional temporal logic (QPTL). HyperQPTL therefore truly captures ω-regular relations on
multiple traces within a system. As such, HyperQPTL can, e.g., express promptness prop-
erties, which state that there exists a common bound on the number of steps up to which
an event must have happened. While HyperQPTL has been studied and used in various
prior works, thus far, no model-checking tool for it exists. This paper presents AutoHyperQ,
a fully-automatic automata-based model checker for HyperQPTL that can cope with arbi-
trary combinations of trace and propositional quantification. We evaluate AutoHyperQ on
a range of benchmarks and, e.g., use it to analyze promptness requirements in a diverse
collection of reactive systems. Moreover, we demonstrate that the core of AutoHyperQ can
be reused as an effective tool to translate QPTL formulas into ω-automata.

1 Introduction

In 2008, Clarkson and Schneider [16] coined the term hyperproperties for the rich class of
system requirements that relate multiple computations. In their definition, hyperproperties
generalize trace properties, which are sets of traces, to sets of sets of traces. This covers a wide
range of requirements, from information-flow security policies such as non-interference [29]
and observational determinism [44] to properties such as robustness [25] and promptness [38].
Missing from Clarkson and Schneider’s original theory was, however, a concrete specification
language that could be used as a common semantic foundation and, e.g., implemented in model-
checking tools that automatically verify a system against a hyperproperty.

A first milestone towards such a language was the introduction of the temporal logic Hy-
perLTL [15], which extends LTL with quantification over traces. HyperLTL can, for instance,
express observational determinism as ∀π1.∀π2. (iπ1 ↔ iπ2) → (oπ1 ↔ oπ2), stating that every
pair of traces with identical input (modeled via atomic proposition i) also exhibits the same
output (o). In the past decade, many verification methods and tools for HyperLTL have been
developed (see Section 2 for an overview). HyperLTL is, however, limited in expressiveness. For
example, it fails to express promptness properties which state that there must exist a bound
(common across all traces of a system) up to which an event must have happened.
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In this paper, we study HyperQPTL [41], a logic that – in addition to explicit trace quan-
tification – also features propositional quantification as, e.g., found in quantified propositional
temporal logic (QPTL) [42]. HyperQPTL is particularly expressive because trace and proposi-
tional quantifiers can be freely interleaved. Consequently, HyperQPTL cannot only express all
ω-regular properties over multiple traces in a system but truly interweaves trace quantification
and ω-regularity. For example, we can state a simple promptness property as follows:

∃q.∀π. q ∧
(
¬q U ψ(π)

)
(1)

which states that there must exist an evaluation of proposition q such that (1) q holds at least
once, and (2) for all traces π of the system, the desired event ψ occurs on π (denoted by ψ(π))
before the first occurrence of q. The first occurrence of q thus gives a bound up to which ψ
must have happened, and – as q is quantified before the trace π – this bound is common across
all traces.

This additional expressive power of HyperQPTL has been used in various different settings.
Examples include causality checking in reactive systems (i.e., the question of whether some tem-
poral property is the cause for some event, as, e.g., needed when understanding counterexamples
returned by a model checker) [17]; constructing prophecies to ensure completeness during model
checking [8]; showing decidability of Lewis’ [39] theory of counterfactuals modulo QPTL [26];
simulating the knowledge operator and thus capturing a range of epistemic properties [41, 23];
and expressing various promptness requirements [24]. In all these applications, propositional
quantification plays a crucial role, and weaker logics – such as HyperLTL – are insufficient.

However, despite HyperQPTL’s importance, practical verification of HyperQPTL against
finite-state systems was, thus far, not possible, effectively condemning all applications of Hy-
perQPTL to be purely theoretical endeavors.

AutoHyperQ. In this paper, we present AutoHyperQ, an explicit-state fully-automatic model
checker for HyperQPTL obtained by extending the HyperLTL model checker AutoHyper [10].
Our tool checks a hyperproperty by iteratively eliminating trace and propositional quantifi-
cation using automata techniques – namely product-constructions with a given system (to
eliminate trace quantification) and projections (to eliminate propositional quantification). To
handle quantifier alternations, AutoHyperQ translates between non-deterministic and universal
automata by utilizing automata complementations, which are outsourced to external automata
tools. Importantly, AutoHyperQ is complete for arbitrary HyperQPTL formulas, i.e., it can
verify properties with arbitrary interleaving of trace and propositional quantification.

Evaluation. To showcase AutoHyperQ, we verify various promptness properties on reactive
systems obtained from the SYNTCOMP competition [35]. Our experiments demonstrate that
AutoHyperQ can handle systems of considerable size (thousands of states) and constitutes, to
the best of our knowledge, the first tool that can automatically check (a range of) promptness
requirements.

QPTL to Automata. We further show that the algorithmic core of AutoHyperQ can be
reused to translate (non-hyper) QPTL formulas into ω-automata – an important first step
in most model-checking pipelines. Our experiments show that the algorithm underlying
AutoHyperQ – when coupled with efficient automata tools such as spot [22] – outperforms
the state-of-the-art tools for QPTL-to-automata translations.
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Structure. The remainder of the paper is structured as follows: We discuss related work in
Section 2, introduce HyperQPTL in Section 3, and present the theoretical extensions to the
model-checking algorithm presented in [25] in order to handle propositional quantification in
Section 4. We provide a brief overview of AutoHyperQ in Section 5. In Section 6, we demonstrate
that AutoHyperQ can verify interesting promptness requirements, and, in Section 7, evaluate
the QPTL-to-automaton translation of AutoHyperQ.

2 Related Work

Model Checking of Hyperproperties. Over the past decade, many verification methods
and tools for HyperLTL [15] have been developed: MCHyper [25] can model-check alternation-
free HyperLTL formulas by constructing the self-composition. Coenen et al. [18] verify ∀∗∃∗
properties (i.e., properties where no existential quantifier is followed by a universal one) using
user-provided strategies for the existentially quantified traces; thus reducing to the verification
of an alternation-free formula. This strategy-based verification is incomplete in general but can
be made complete by adding prophecies [8]. In practice, the automatic synthesis of prophecies is
expensive and currently only applicable to small systems and temporally safe specifications [8, 6].
Hsu et al. [34] propose a bounded model-checking approach based on QBF solving. AutoHyper
[10] checks HyperLTL formulas by employing automata-based techniques and constitutes the
first complete model checker that can handle arbitrary HyperLTL properties.

HyperLTL has been extended in multiple dimensions to, e.g., support multi-agent systems
[7, 11]; asynchronous hypeproperties [5, 13, 31, 7]; data from infinite domains [9]; and sequential
information-flow policies [4]. None of these logics can express arbitrary ω-regular hyperproper-
ties as they inherit the limited expressiveness of LTL [21].

HyperPDL-∆ [30] extends Propositional Dynamic Logic [27] with explicit trace quantifica-
tion and can thus express ω-regular properties over tuples of traces. Crucially, only the temporal
body that follows the quantifier prefix can express ω-regular relations, and we cannot interleave
propositional and trace quantification as is possible in HyperQPTL and, e.g., needed to express
promptness (cf. 1). Second-order HyperLTL [12] extends HyperLTL with quantification over
arbitrary sets of traces and thus subsumes HyperQPTL. Different from HyperQPTL, model
checking of second-order HyperLTL is highly undecidable.

HyperQPTL Model Checking. Our present tool, AutoHyperQ, builds on the foundations of
AutoHyper [10] (which implements the algorithm for HyperLTL from [25]) and adds additional
machinery to handle propositional quantification (cf. Section 4). Consequently, AutoHyperQ can
handle a strict superset of the (HyperLTL) properties supported by AutoHyper. In particular,
AutoHyperQ can, for the first time, check important properties such as promptness that are not
expressible in HyperLTL. Conversely, on HyperQPTL properties without propositional quan-
tification (aka. HyperLTL properties), AutoHyperQ shows similar performance to AutoHyper

(see [10] for details).

Promptness. Promptness properties are ubiquitous in the study of reactive systems, and a
range of specification languages that can express promptness have been proposed. Examples
include PLTL [1], PromptKATL∗ [2], PROMPT-PNL [40], and Prompt-LTL [38]. Prompt-LTL
and HyperQPTL have incomparable expressiveness [24]. While (theoretical) model-checking
algorithms for some promptness logics exist [1, 38], they are – to the best of our knowledge –
not implemented. AutoHyperQ is thus the first model-checking tool that is applicable to a range
of promptness properties (cf. Section 6).
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3 Preliminaries

Transition Systems. We fix a finite set of atomic propositions AP . A transition system
is a tuple T = (S, S0, κ, L) where S is a finite set of states, S0 ⊆ S is a set of initial states,
κ ⊆ S × S is a transition relation, and L : S → 2AP is a labeling function. We assume that
for every s ∈ S, there exists at least one s′ ∈ S with (s, s′) ∈ κ. A path is an infinite sequence
s0s1s2 · · · ∈ Sω, s.t., s0 ∈ S0, and (si, si+1) ∈ κ for all i ∈ N. The associated trace is given by
L(s0)L(s1)L(s2) · · · ∈ (2AP )ω. We write Traces(T ) ⊆ (2AP )ω for the set of all traces in T . For
a trace t ∈ Traces(T ) and i ∈ N, we write t(i) ∈ 2AP to refer to the ith position in t.

HyperQPTL. Let V be a set of trace variables, and P be a set of propositional variables.
HyperQPTL formulas are generated by the following grammar:

φ := Qπ. φ | Qq. φ | ψ
ψ := aπ | q | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

where Q ∈ {∀,∃} is a quantifier, π ∈ V is a trace variable, q ∈ P is a propositional variable,
and a ∈ AP is an atomic proposition. We use the usual derived boolean connectives ∨,→,↔,
boolean constants ⊤,⊥, and temporal operators eventually ( ψ := ⊤U ψ) and globally ( ψ :=
¬ ¬ψ).

The semantics of HyperQPTL is given with respect to a trace assignment Π : V ⇀ (2AP )ω

mapping trace variables to traces, and a propositional assignment ∆ : P ⇀ Bω, where B =
{⊤,⊥} is the set of booleans. Intuitively, the propositional variable q ∈ P holds in step i ∈ N
iff ∆(q)(i) = ⊤. For π ∈ V and t ∈ (2AP )ω, we write Π[π 7→ t] for the updated trace assignment
that maps π to t. For q ∈ P and τ ∈ Bω we define ∆[q 7→ τ ] analogously. Given a transition
system T , a trace assignment Π, a propositional assignment ∆, and position i ∈ N, we define:

Π,∆, i |= aπ iff a ∈ Π(π)(i)

Π,∆, i |= q iff ∆(q)(i) = ⊤
Π,∆, i |= ¬ψ iff Π,∆, i ̸|= ψ

Π,∆, i |= ψ1 ∧ ψ2 iff Π,∆, i |= ψ1 and Π,∆, i |= ψ2

Π,∆, i |= ψ iff Π,∆, i+ 1 |= ψ

Π,∆, i |= ψ1 U ψ2 iff ∃j ≥ i.Π,∆, j |= ψ2 and ∀i ≤ k < j.Π,∆, k |= ψ1

Π,∆ |=T ψ iff Π,∆, 0 |= ψ

Π,∆ |=T Qπ. φ iff Qt ∈ Traces(T ).Π[π 7→ t],∆ |=T φ

Π,∆ |=T Qq. φ iff Qτ ∈ Bω.Π,∆[q 7→ τ ] |=T φ

A system T satisfies a HyperQPTL property φ, written T |= φ, if ∅, ∅ |=T φ, where ∅ denotes
a trace or propositional assignment with an empty domain. See [24] for more details.

ω-Automata. A non-deterministic Büchi automaton (NBA) (resp. universal co-Büchi au-
tomaton (UCA)) over alphabet Σ is a tuple A = (Q,Q0, δ, F ) where Q is a finite set of states,
Q0 ⊆ Q is a set of initial states, δ : Q × Σ → 2Q is a transition function, and F ⊆ Q is a
set of accepting (resp. rejecting) states. A run of A on a word u ∈ Σω is a infinite sequence
q0q1q2 · · · ∈ Qω such that q0 ∈ Q0 and for every i ∈ N, qi+1 ∈ δ(qi, u(i)). A word u ∈ Σω is
accepted by an NBA A if there exists some run on u that visits states in F infinitely many
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times. A word u ∈ Σω is accepted by a UCA A if all runs on u visit states in F only finitely
many times. Given an NBA or UCA A, we write L(A) ⊆ Σω for the set of words accepted by
A. We can translate NBAs into UCAs and vice versa with an exponential blowup using, e.g.,
automata complementation.

4 Model Checking for HyperQPTL

The algorithm implemented in AutoHyperQ builds on the automata-based model-checking al-
gorithm proposed by Finkbeiner et al. [25] (which is limited to HyperLTL). In this section,
we extend this algorithm to also handle propositional quantification in HyperQPTL. In the
following, let T = (S, S0, κ, L) be a fixed transition system.

Zipping Assignments. We zip a trace and propositional assignment into an infinite trace.
Concretely, given a trace assignment Π : X → (2AP )ω and propositional assignment ∆ : Y →
Bω (where X ⊆ V and Y ⊆ P are the domains of both assignments), we define the trace
zip(Π,∆) ∈ (2(AP×X)∪Y )ω by, for each i ∈ N, setting

zip(Π,∆)(i) :=
{
(a, π) | π ∈ X ∧ a ∈ AP ∧ a ∈ Π(π)(i)

}
∪
{
q | q ∈ Y ∧∆(q)(i) = ⊤

}
.

That is, (a, π) ∈ AP ×X holds on zip(Π,∆) in the ith step iff a holds in the ith step on trace
Π(π), and q ∈ Y holds on zip(Π,∆) in the ith step iff ∆(q)(i) = ⊤.

Note that zip defines a bijection between pairs (Π,∆) of assignments Π : X → (2AP )ω,∆ :
Y → Bω and traces in (2(AP×X)∪Y )ω.

Definition 1. Let φ be a HyperQPTL formula with free trace variables X ⊆ V and free propo-
sitional variables Y ⊆ V. An NBA or UCA A over 2(AP×X)∪Y is T -equivalent to φ if for
all trace assignments Π : X → (2AP )ω and propositional assignments ∆ : Y → Bω we have
Π,∆ |=T φ if and only if zip(Π,∆) ∈ L(A).

Note that our definition of T -equivalence differs from the one used in the context of Hyper-
LTL model checking [10, 25] as we summarize a trace and propositional assignment.

Model Checking. Let φ̇ be some fixed HyperQPTL formula that is closed, i.e., contains no
free trace and propositional variables. Our model-checking algorithm proceeds by inductively
constructing a T -equivalent automaton Aφ (either an NBA or UCA) for each subformula φ of φ̇.
For the (quantifier-free) LTL-like body of φ̇, we can construct this automaton via a standard
LTL-to-NBA construction [25]. We then, iteratively, eliminate quantifiers by computing the
product with the given system T (to eliminate trace quantifiers) and computing the existential
or universal projection (to eliminate propositional quantifiers):

• Case φ′ = ∃π. φ: We are given an inductively constructed automaton Aφ = (Q,Q0, δ, F )
over 2(AP×(X⊎{π}))∪Y for some X ⊆ V and Y ⊆ P that is T -equivalent to φ. We ensure that
Aφ is an NBA (by possibly translating a UCA into an NBA) and define the NBA Aφ′ over
alphabet 2(AP×X)∪Y as Aφ′ := (S ×Q,S0 ×Q0, δ

′, S × F ) where δ′ is defined as

δ′
(
(s, q), σ

)
:=

{
(s′, q′) | (s, s′) ∈ κ ∧ q′ ∈ δ

(
q, σ ⊎

{
(a, π) | a ∈ L(s)

})}
for σ ∈ 2(AP×X)∪Y . Intuitively, Aφ′ guesses a trace in T and uses this trace to fill in the
propositions for trace variable π (i.e., all propositions of the form (a, π) for a ∈ AP).
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• Case φ′ = ∀π. φ: We are given an automaton Aφ over 2(AP×(X⊎{π}))∪Y . We ensure that
this automaton is a UCA (by possibly translating from an NBA) and define Aφ′ as the UCA
that is syntactically identical to the NBA constructed in the previous case.

• Case φ′ = ∃q. φ: We are given an automaton Aφ = (Q,Q0, δ, F ) over 2(AP×X)∪Y ⊎{q}. We
ensure that Aφ is an NBA, and define the NBA Aφ′ := (Q,Q0, δ

′, F ) where

δ′(q, σ) := δ(q, σ) ∪ δ(q, σ ⊎ {q}).

This effectively computes the existential projection of Aφ on 2(AP×X)∪Y .

• Case φ′ = ∀q. φ: We are given an automaton Aφ over 2(AP×X)∪Y ⊎{q}. We make sure that
this automaton is a UCA and define Aφ′ as a UCA that is syntactically identical to the NBA
in the previous case, effectively computing the universal projection of Aφ on 2(AP×X)∪Y .

Proposition 1. For every subformula φ, Aφ is T -equivalent to φ.

As the final formula φ̇ is closed, we obtain a T -equivalent automaton Aφ̇ over the singleton
alphabet 2∅. By definition of T -equivalence, we have T |= φ̇ iff ∅, ∅ |=T φ̇ iff Aφ̇ is non-empty
(which we can decide [19]).

Complexity. The computationally expensive steps in the above algorithm are the transfor-
mations of NBAs into UCAs and vice versa, which – in the worst case – increase the size of
the automaton exponentially. Such a transformation is necessary whenever we encounter a
quantifier alternation within the formula. The size of the final automaton Aφ̇ is thus m-fold
exponential (i.e., a tower of m exponents) in the size of T and m + 1-fold exponential in the
size of (the body of) φ̇, where m is the number of quantifier alternations. These bounds are
tight, as already shown by Rabe for HyperLTL [41].

5 AutoHyperQ: Tool Overview

AutoHyperQ is written in F# and implements the algorithm from Section 4 by extending the
HyperLTL model checker AutoHyper [10]. AutoHyperQ reads an explicit-state transition system
T and a HyperQPTL formula φ and determines if T |= φ. As for AutoHyper [10], AutoHyperQ
features a pre-processor that can translate symbolic NuSMV [14] systems with finite variable
domains into explicit-state transition systems.

Internally, we store automata (both non-deterministic and universal) with symbolic alpha-
bets, i.e., represent each transition as a boolean formula over (AP ×X)∪Y for X ⊆ V, Y ⊆ P.
We store the transition formulas in disjunctive normal form to enable very efficient SAT-solving
during the product construction and projection.

The expensive step during model checking is the translation of NBAs to UCAs and vice
versa, which we realize using automata complementation. Our tool poses complementation
queries in the Hanoi automaton format [3]. For the present evaluation, we use spot (version
2.11.4) [22], but any tool supporting the Hanoi format can be substituted easily.

AutoHyperQ is available at autohyper.github.io. All experiments in this paper were con-
ducted on Macbook with an M1 Pro CPU and 32GB of memory. We execute all tools in a
Docker container.
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Figure 1: We use AutoHyperQ to check Equation (1) for each output proposition in each of the
SYNTCOMP benchmarks. For each instance, we depict the system size and verification time (in
seconds). Note that both axes are logarithmic.

6 Evaluation - Model Checking Promptness

In this section, we evaluate the model-checking capabilities of AutoHyperQ. As HyperQPTL
is strictly more expressive than HyperLTL, AutoHyperQ is also applicable to existing Hyper-
LTL benchmarks. On those instances, AutoHyperQ performs as fast AutoHyper [10], which is
unsurprising as the underlying algorithm (cf. Section 4) constitutes a proper extension of the
algorithm presented in [25] and implemented in AutoHyper. In our evaluation, we thus focus on
properties that are not expressible in HyperLTL; thus truly highlighting the additional power
of AutoHyperQ.

As we already discussed in the introduction, an important class of properties expressible
in HyperQPTL are promptness requirements, i.e., properties that require a bound (common
among all traces of the system) up to which some event must have happened.

SYNTCOMP Benchmarks. Promptness properties are particularly interesting in reactive
systems, i.e., systems that continuously read inputs from the environment and produce outputs.
To obtain an interesting set of reactive systems, we use benchmarks from annual the reactive
synthesis competition (SYNTCOMP) [35]. SYNTCOMP includes a collection of LTL formulas that
specify requirements for a diverse collection of reactive systems. We use existing synthesis tools
(in our case spot’s ltlsynt [22]) to synthesize a strategy for each realizable LTL specification
and translate them into a transition system that generates all traces of that strategy. We obtain
a dataset of 317 transition systems with varying sizes.

6.1 Simple Promptness

As a first experiment, we checked – in each SYNTCOMP system T and for each output o ∈ AP –
the simple promptness property in Equation 1. That is, we check if each output is set after a
fixed number of steps (common across all traces of the system). For each instance, we plot the
time taken by AutoHyperQ against the system size in Figure 1.
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Figure 2: We use AutoHyperQ to verify event-specific promptness (Equation 2) in reactive
systems obtained from SYNTCOMP benchmarks. For each instance, we depict the system size and
verification time (in seconds). Each green circle marks an instance where 2 holds, and each red
cross marks an instance where 2 does not hold. Note that both axes are logarithmic.

6.2 Event-Specific Promptness

The simple promptness property used in Section 6.1 (cf. Equation (1)) demands a common
bound up to which some event must have happened but does not support more general prompt-
ness requirements. For example, in many situations, one is interested whether whenever some
request-event has occurred (e.g., “a request for some resource has been made”), some response-
event (e.g., “a resource grant has been given”) occurs within a fixed number of steps (common
among all traces). To express such event-specific requirements in HyperQPTL, we use the
alternating-color technique by Kupferman et al. [38]. Assume we are given LTL formulas ψreq

and ψres that describe the request-event and response-event, respectively. We construct the
following HyperQPTL promptness query:

∃q.∀π. q ∧ ¬q ∧(
ψreq(π) →

((
q → (q U(¬q U ψres(π)))

)
∧
(
¬q → (¬q U(q U ψres(π)))

)) (2)

Proposition q gives the color of each step, and we require that the color alternates infinitely
often ( q ∧ ¬q). We then demand that whenever ψreq holds on π (denoted by ψreq(π)),
ψres holds within two color changes (see [38, 24] for details).1

Experiments. For each transition system T generated from the SYNTCOMP benchmarks, we
use spot’s randltl [22] to randomly generate 5 request and response events (i.e., concrete
LTL formulas ψreq over T ’s inputs and ψres over T ’s outputs) and use AutoHyperQ to (fully
automatically) check the above promptness requirement. We plot the time taken by AutoHyperQ
on each instance against the size of T in Figure 2.

1The color alternation of q is common among all traces of the system, but the length of each coloring sequence
might vary based on the current timestep. The above formula thus expresses a time-dependent promptness
requirement, i.e., for every n ∈ N and all time points i ≤ n where ψreq holds, there exists a common bound
(which can depend on n) up to which ψres must have happened. This is similar to the treatment used in [24].
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Figure 3: In Figure 3a, we compare AutoHyperQ with the 6 best QPTL-to-NBA algorithms
implemented in GOAL on SYNTCOMP benchmarks. We set the timeout to 20 seconds. To keep the
experiment reproducible in reasonable time, we restrict to the smallest 250 realizable SYNTCOMP
benchmarks. In Figures 3b and 3c, we compare AutoHyperQ against GOAL’s couvreur on 50
randomly generated QPTL formulas with 2 quantifier alternations. We compare the running
time (in Figure 3b) and the size of the resulting automaton (in Figure 3c). The gray area
denotes a timeout (which we set to 20 seconds).

Our experiments show that AutoHyperQ can verify promptness in systems of considerable
size, despite the fact that the promptness formula contains a quantifier alternation and thus
requires an expensive automaton complementation. We stress that, to the best of our knowledge,
AutoHyperQ is the first model-checking tool that can handle promptness requirements expressed
in some general temporal logic.

7 Evaluation - QPTL Translation

An important first step in explicit-state model checking (using, e.g., SPIN [33]) is to transform
the specification into an ω-automaton. The algorithmic core of AutoHyperQ – in particular,
its projection functionality coupled with the translation from non-deterministic to universal
automata and vice versa – can be reused to convert a QPTL formula into an ω-automaton.

In this section, we compare the QPTL-to-NBA translation based on AutoHyperQ against
GOAL [43] – a library that implements multiple QPTL-to-NBA translation algorithms proposed
in the literature [36, 28, 20, 37]. By focusing on QPTL-to-NBA translations (which can be seen
as a specialized case of HyperQPTL model checking), we can compare the automata-based core
of AutoHyperQ (cf. Section 4) with existing tools (which is not possible for HyperQPTL model
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checking as, prior to AutoHyperQ, no tool support existed). We emphasize that all expensive
computations in AutoHyperQ are condensed into automata complementations for which we rely
entirely on external tools (in our case spot [22]). Our experiments in this section thus do not
evaluate the internal performance of AutoHyperQ but rather show that the underlying algorithm
– when coupled with efficient automata complementation tools – works well in practice.

Evaluation on SYNTCOMP Benchmarks. To obtain a realistic set of QPTL formulas,
we resort to the SYNTCOMP benchmarks already used in Section 6. Given an LTL formula ψ and
sets I and O of input and output propositions (as specified in each SYNTCOMP benchmark), we
construct a QPTL formula transform(ψ) := ∀a∈I a.∃a∈O a. ψ. The idea is that transform(ψ)
is satisfiable iff, for any input sequence, there exists some output sequence that satisfies ψ. Note
that this is a weaker requirement than realizability of ψ. If ψ is realizable, then transform(ψ)
is satisfiable. Conversely, transform(ψ) might be satisfiable, but ψ may not be realizable (as a
strategy, e.g., needs information on future inputs). We use AutoHyperQ and GOAL to translate
transform(ψ) into an NBA (over alphabet 2∅) and depict the running times as a survival plot
in Figure 3a. We observe that AutoHyperQ can translate more instances and performs faster
than all existing algorithms implemented in GOAL.

Evaluation on Random Benchmarks. In QPTL, the number of quantifiers (or, more pre-
cisely, the number of alternations) has a direct impact on the complexity of the QPTL-to-NBA
translation. We use spot’s randltl to randomly sample LTL formulas and transform them
into QPTL formulas by randomly adding quantification over (some of the) propositions. We
translate the resulting QPTL formulas into NBAs using both AutoHyperQ and GOAL’s couvreur
(which performs best out of all algorithms implemented in GOAL). We depict the time taken
by both solvers in Figure 3b and the sizes of the resulting automata in Figure 3c. We observe
that AutoHyperQ performs faster than GOAL (Figure 3b) and produces (in most cases) smaller
automata (Figure 3c) – an important prerequisite for efficient model checking.

8 Conclusion and Future Work

The combination (and arbitrary interleaving) of trace and propositional quantification makes
HyperQPTL an attractive hyperlogic. It has already been used (in theory) in various important
settings where less powerful logics, such as HyperLTL, are not sufficient. In this paper, we
have presented AutoHyperQ, the first practical model-checking tool for HyperQPTL, making
the existing (thus far, only theoretical) use cases of HyperQPTL [17, 8, 41, 24] applicable
in practice. Our early experiments show that verification of important properties such as
promptness is possible in realistic reactive systems.

Having access to a fully-automatic HyperQPTL model checker opens numerous interesting
avenues for future work. As an immediate next step, we plan to use AutoHyperQ to automat-
ically check causes in reactive systems using the theory developed by Coenen et al. [17] based
on Halpern and Pearl’s [32] actual causality. Such use cases demonstrate how our HyperQPTL
model checker can provide elegant algorithmic solutions to seemingly unrelated problems; in
this case, the explanation of counterexamples using techniques from causality analysis.
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hyperproperties combined with functional specifications. In ACM/IEEE Symposium on Logic in
Computer Science, LICS 2022. ACM, 2022.

[7] Raven Beutner and Bernd Finkbeiner. A temporal logic for strategic hyperproperties. In In-
ternational Conference on Concurrency Theory, CONCUR 2021, volume 203 of LIPIcs. Schloss
Dagstuhl, 2021.

[8] Raven Beutner and Bernd Finkbeiner. Prophecy variables for hyperproperty verification. In IEEE
Computer Security Foundations Symposium, CSF 2022. IEEE, 2022.

[9] Raven Beutner and Bernd Finkbeiner. Software verification of hyperproperties beyond k-safety.
In International Conference on Computer Aided Verification, CAV 2022, volume 13371 of Lecture
Notes in Computer Science. Springer, 2022.

[10] Raven Beutner and Bernd Finkbeiner. AutoHyper: Explicit-state model checking for HyperLTL.
In International Conferenc on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2023, volume 13993 of Lecture Notes in Computer Science. Springer, 2023.

[11] Raven Beutner and Bernd Finkbeiner. HyperATL∗: A logic for hyperproperties in multi-agent
systems. Log. Methods Comput. Sci., 2023.

[12] Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Second-order hyperprop-
erties. In International Conference on Computer Aided Verification, CAV 2023, Lecture Notes in
Computer Science. Springer, 2023.

[13] Laura Bozzelli, Adriano Peron, and César Sánchez. Asynchronous extensions of HyperLTL. In
ACM/IEEE Symposium on Logic in Computer Science, LICS 2021. IEEE, 2021.

[14] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore,
Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An opensource tool for
symbolic model checking. In International Conference on Computer Aided Verification, CAV 2002,
volume 2404 of Lecture Notes in Computer Science. Springer, 2002.

[15] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe,
and César Sánchez. Temporal logics for hyperproperties. In International Conference on Principles
of Security and Trust, POST 2014, volume 8414 of Lecture Notes in Computer Science. Springer,
2014.

[16] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In IEEE Computer Security Foun-
dations Symposium, CSF 2008. IEEE, 2008.

[17] Norine Coenen, Bernd Finkbeiner, Hadar Frenkel, Christopher Hahn, Niklas Metzger, and Julian

33



Model Checking Omega-Regular Hyperproperties with AutoHyperQ Beutner and Finkbeiner

Siber. Temporal causality in reactive systems. In International Symposium on Automated Tech-
nology for Verification and Analysis, ATVA 2022, volume 13505 of Lecture Notes in Computer
Science. Springer, 2022.

[18] Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup. Verifying hyperliveness.
In International Conference on Computer Aided Verification, CAV 2019, volume 11561 of Lecture
Notes in Computer Science. Springer, 2019.

[19] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal Methods Syst. Des., 1(2), 1992.

[20] Jean-Michel Couvreur. On-the-fly verification of linear temporal logic. In World Congress on
Formal Methods in the Development of Computing Systems, FM 1999, volume 1708 of Lecture
Notes in Computer Science. Springer, 1999.

[21] Volker Diekert and Paul Gastin. First-order definable languages. In Logic and Automata: History
and Perspectives, volume 2 of Texts in Logic and Games. Amsterdam University Press, 2008.

[22] Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexandre Gbaguidi
Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, Antoine Martin, Jérôme Dubois, Clément
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