EPiC Series in Computing Sl
omputing

Volume 56, 2018, Pages 73-83
Proceedings of the 5th International m
OMNeT++ Community Summit (‘\

Towards evaluating Named Data Networking
for the IoT"
A framework for OMNeT++

Amar Abane!'?, Paul Muhlethaler®, Samia Bouzefrane!, Mehammed Daoui?, and
Abdella Battou*

! Conservatoire National des Arts et Metiers, Paris, France
2 University Mouloud Mammeri of Tizi-Ouzou, Algeria
3 Inria, Paris, France
4 National Institute of Standards and Technology, MD, USA

Abstract

Named Data Networking is a promising architecture for emerging Internet applications
such as the Internet of Things (IoT). Many studies have already investigated how NDN can
be an alternative for IP in future IoT deployments. However, NDN-IoT propositions need
accurate evaluation at network level and system level as well. This paper introduces an
NDN framework for OMNeT++. Designed for low-end devices and gateways of the IoT,
the framework is capable of simulating NDN scenarios at the boundary of the network
and the system. The framework implementation is presented and used to study a typical
aspect of NDN integration in IoT devices.

1 Introduction

Current IoT systems are deployed on the IP protocol suite that has been used to build the
worldwide Internet decades ago. However, by involving constrained physical devices, the ToT
puts the IP model to the test and highlights its limitations. For example, security is still focused
on communication channels when the data itself needs to be secured. Moreover, IoT systems
need efficient support for resource naming and discovery, which is not easy to deploy with IP
in constrained infrastructures. Although dedicated adaptations such as CoAP and 6LoWPAN
have been developed, under the hood, matching the IoT vision is still a challenge for IP [12].
While adapting IP for the IoT might be seen as cutting corners, alternative architectures
based on the Information Centric Networking (ICN) paradigm promise to natively satisfy emerg-
ing Internet applications. One of these architectures is Named Data Networking (NDN) [15].
The NDN project was funded by NSF! under the Future Internet Architecture (FIA) program.
The main entity in NDN is the content. Networking operations are performed on names, and
hosts (without logical addresses) request named-content directly from the network. Native fea-
tures come along with this principle, such as: communication without establishing end-to-end

1National Science Foundation

A. Forster, A. Udugama, A. Virdis and G. Nardini (eds.), OMNeT 2018 (EPiC Series in Computing, vol. 56),
pp. 73-83

Towards evaluating NDN for the IoT: A framework for OMNeT++ Abane et al.

connections and name-to-address resolution. Moreover, no consumer-provider path or session
needs to be maintained, which provides a native support of connection disruption resulting from
mobility.

In recent years, many studies investigated the suitability of NDN for the IoT, making NDN
more and more powerful. However, important challenges need to be addressed to build a
strong NDN-IoT duo. Specifically, integrating NDN in low-end devices, over low-power wireless
standards is mandatory due to the degree of freedom allowed by NDN in terms of unbounded
name length, packet structure and semantics. NDN-based solutions for the IoT need accurate
evaluation, and relative results should be provided further to convince industrials, investors and
IP-enthusiasts. Examples of scenarios in which such evaluation can be useful are: NDN-based
networking for robots [5], NDN for public safety and tactical networks, NDN for WSN [2] and
NDN over IEEE802.15.4 [1].

Although some of these scenarios can be evaluated in testbeds, implementations are com-
monly based on realistic needs, and sometimes do not support certain features or “outlandish”
scenarios. However, a pure network simulator does not allow to model internal interactions of
a system. Therefore, experimental NDN-IoT design requires the best of both worlds: a tool
capable to simulate network protocols and system-level interactions. We introduce in this pa-
per our implementation of an NDN framework for the OMNeT++ [8] simulator?. OMNeT++
can be used to simulate wired and wireless networks as well as on-chip networks, and so on.
We designed the NDN framework with the following objectives in mind: (i) Evaluating how
a design affects NDN entities in a given topology/scenario. (ii) Evaluating packet processing
approaches (e.g. compression). (iii) Providing a good visualization of NDN communications
at network and system levels for testing and teaching purposes. (iv) Providing an easy-to-use
framework to quickly experiment initial NDN parameters without additional implementation,
particularly for wireless networks and constrained devices.

The rest of this paper is organized as follows: The first part presents an overview of NDN
(Section 2) and our framework design (Section 3). In the second part, the NDN framework is
used to study a key aspect of NDN in IoT (Section 4). Section 5 gives a summary with future
directions.

2 Named Data Networking

In NDN, the content is named independently from the producer location. Names are hierar-
chical, URI-like and formed by a sequence of components separated by slashes. Applications
are free to design their own naming scheme as routers do not interpret the whole name. A
producer can append components to the initial name to provide more information about the
content (e.g. timestamp, sequence number, etc.).

The NDN architecture uses two types of packets: Interest and Data. Each NDN node has
three data structures to process packets: (i) a Forwarding Information Base (FIB): associates
content names to Face(s) through which the content can be retrieved, (ii) a Pending Interest
Table (PIT): stores each forwarded Interest associated to its incoming Face(s), while waiting to
get the corresponding Data packet. The notion of Face represents a network device interface
or a local application in an NDN node. (iii) A third optional structure, Content Store (CS) is
used to store forwarded Data packets to satisfy similar future Interests; which provides native
in-network caching in NDN.

Typically, a communication is initiated by the consumer, and operates according to the

2Source code available at https://github.com/amar-ox/NDNOMNeT

74

https://github.com/amar-ox/NDNOMNeT

Towards evaluating NDN for the IoT: A framework for OMNeT++ Abane et al.

following steps: (1) The consumer requests a content by sending an Interest carrying the name
of the content (e.g. home/rooml/temperature). (2) A node that receives the Interest checks if
matching Data already exists in its local CS: if the corresponding Data is found, it is sent back.
Otherwise, the router checks if an Interest with the same name is already in the PIT; if so, the
new Interest is not forwarded and only the incoming Face is added to the existing PIT entry.
If no similar Interest is found in the PIT, the new Interest is forwarded according to the FIB
information, and stored in the PIT. (3) When the producer receives the Interest, it sends back
a Data packet containing the requested content, or a part of it. The Data packet follows the
reverse path of the Interest following traces left in the PIT of each router. (4) When the Data
packet reaches a router, it is forwarded to the Faces from which the corresponding Interests
were received. After that, the router removes the entry from the PIT, and stores the recent
Data packet in its CS.
Figure 1 summarizes the Interest and Data processing steps in a typical NDN node.

N =
- Forward
v l\f ¢ﬂ

Interest

Return Add incoming Drop
Data interface Interest

(o= PIT « o

cache v (%
Data
a4

~Forward Drop
Data Data

!.Interest @Data ¥ Matching #Miss
Figure 1: NDN forwarding process

NDN packets are encoded in the TLV (Type-Length-Value) format. TLV encoding repre-
sents an NDN packet as a collection of sub-TLVs. A TLV block is a sequence of bytes starting
with a marker ¢, followed by its length [and a sequence of [bytes that represent the value.

3 Our framework design

OMNeT++ is not a native network simulator. However, ready-to-use domain-specific function-
alities are provided by frameworks such as INET [6] which contains models for the IP protocol
stack, link layer protocols, mobility, etc. Therefore, our framework is based on INET.

3.1 Overview

The NDN core module is designed as a network layer (NdnL3) that implements the network
layer interface of INET (INetworkLayer). Within an NDN host, NdnL3 is connected to the
upper layer; expected to be the application layer, and the lower layer consisting on wired /wire-
less network interfaces. However, the NDN network layer can run on top of (or beside) IP with
minimal adaptations. Following the modular approach of OMNeT++, we designed the NDN
entities as independent modules included in the NdnL8 module (Figure 2).

OMNeT++ modules use message passing through connected Gates to communicate. The
notion of Gate provides a native abstraction of the Face concept; making the NdnL8 module
interact with upper (i.e. application) and lower (i.e. link) layers in a transparent way.

(6]

Towards evaluating NDN for the IoT: A framework for OMNeT++ Abane et al.

Due to space limitations, we report only the main components we implemented and a de-
scription of the packet representation we used.

Figure 2: NDN network layer (NdnL3)

3.2 Host and Application Modules

NDN hosts: To represent NDN-based IoT devices, a base NDN wireless host (Ndn Wire-
lessHostBase) is implemented. It includes the typical wireless host components and the NDN
layer (NdnL38). This module is used directly as a relay node since it does not include any
application (Figure 3). By extending Ndn WirelessHostBase, a typical IoT end-device is created
(NdnWirelessHost) with consumer and/or producer applications.

interfaceTable
'

status ‘OE i
ndnifayer

energysStorage
[,

T EREET wlan[nufhRadios]
mobility

Figure 3: NDN relay node (NdnWirelessHostBase)

Applications: Two base applications are implemented. A producer (ProducerAppBase)
with the following parameters: (i) prefir; under which the content is produced. (ii) dataLength;
if not provided, the TLV length is used. (iii) startTime. (iv) stopTime. (v) dataFreshness [13].
A consumer (ConsumerAppBase) with the following parameters: (i) startTime. (ii) stopTime.
(iii) prefiz; for which Interests are issued, with additional name components (e.g. sequential
number) (iv) interestLength; if not provided, the TLV length of the Interest is computed and
used. (v) sendInterval; time to wait between two issued Interests. (vi) numlnterests; number
of Interest to issue. (vil) interestReTz; maximum number of Interest retransmissions. (viii)
interestLifetime; value of the Interest lifetime field.

Figure 4 shows a typical NDN end-device with applications (Ndn WirelessHost).

76

Towards evaluating NDN for the IoT: A framework for OMNeT++ Abane et al.

(]

2
g
2
g
8

3
&
£=3

Figure 4: NDN end-device (NdnWirelessHost)

3.3 NDN layer Modules

Pending Interest Table: IPit is an abstraction of the PIT. It includes a typical entry
which stores the following information: (i) A copy of the forwarded Interest, (ii) Incoming
Face(s) of the Interest, (iii) Face(s) to which the Interest is forwarded, (iv) Expire time of the
entry and, (v) Source MAC. NDN-to-MAC mapping is discussed in the next Section.

IPit provides the following functions: (i) Lookup, (ii) Create, (iii) Remove, (iv) Update,
and (v) Print.

On Interest timeout, IPit implementations can emit a signal with a notification that includes
the Interest, its incoming Face(s) and source MAC address(es).

A base implementation (PitBase) of IPit is provided with the following parameters: (i)
interestLifetime. If no value is provided, the lifetime value of the Interest is used instead. (ii)
mazSize. When the PIT is full, no Interest can be forwarded.

Forwarding Information Base: [Fib is an abstraction of the FIB. It includes a typical
entry which keeps the following information: (i) Name prefix, (ii) Face(s), (iii) Destination
MAC address, (iv) Expire time of the entry (optional).

IFib provides the following functions: (i) Lookup, (ii) Create, (iii) Remove, (iv) Update, (v)
Register prefix; used to create an entry to the local application and, (vi) Print.

When a prefix expires, [Fib implementations can emit a signal with a notification that
includes the prefix and its corresponding Face(s) and MAC address(es).

A base implementation of IFib (FibBase) is provided with the following user parameters:
(i) entryLifetime and, (ii) mazSize.

Content Store: ICs is an abstraction of the CS. It includes a typical entry which stores
the following information: (i) A copy of the Data packet and, (ii) A stale flag to manage the
freshness of the Data [13].

ICs provides the following functions: (i) Lookup, (ii) Add, (iii) Remove, (iv) Update fresh-
ness and, (v) Print.

A base implementation of ICs (CsBase) is provided. It uses the FIFO replacing policy and
the cache size can be defined (mazSize).

Ezxperimental unit: Some internal NDN processes that can be imagined to improve ef-
ficiency cannot be assimilated to the forwarding strategy, and are not related to native NDN
entities (i.e. PIT, FIB, CS). Packet compression and Fuzzy logic NDN forwarding [10] can be
cited as examples of such processes. To provide a clean and flexible way to implement such

7

Towards evaluating NDN for the IoT: A framework for OMNeT++ Abane et al.

experimental design without disturbing the NDN base implementation, an eXperimental Unit
module (XU) is included.

This module is designed to evaluate future Al-based operations such as semantics extraction
from names, intelligent routing, etc.

IXu is an abstraction of the eXperimental Unit. The following signals can be emitted by
IXu implementations to notify on processing progress: (i) Packet received, (ii) Packet process-
ing begin, (iii) Packet processing end, (iv) Packet processing error and, (v) Packet processing
success.

Forwarding: The forwarding module is the main component of our design and it is con-
nected to PIT, FIB, CS and XU.

The forwarding process is abstracted in the IForwarding interface which provides the follow-
ing functions: (i) processLLInterest; process Interest coming from lower layer. (ii) processLL-
Data; process Data coming from lower layer. (iii) processHLInterest; process Interest coming
from higher layer (i.e. application layer). (iv) processHLData; process Data coming from higher
layer. (v) forwardInterestToRemote; forward Interest to remote Face (e.g. radio). (vi) forward-
DataToRemote; forward Data to remote Face. (vii) forwardInterestToLocal; forward Interest
to local application. (viii) forwardDataToLocal; forward Data to local application. (ix) map-
ToMAC,; encapsulate Interest or Data considering the given unicast or broadcast MAC address.
(x) onInterestTimeout; when receiving an Interest timeout signal. (xi) onPrefizEzpired; when
receiving a prefix expired signal.

The communication with PIT, FIB, CS and XU can be either through message passing or
direct module access as provided by OMNeT++. However, the message passing communication
allows to model time processing of each module separately and independently. The forwarding
module implementation is intended to subscribe to PIT, FIB and XU signals in order to handle
NdnL8 events.

The current framework implementation includes a base forwarding strategy (Forwarding-
Base). Tt supports the following parameters: (i) ndnMacMapping; code of the NDN-to-MAC
mapping to use. (ii) cacheUnsolicited; whether to cache unsolicited Data packets or not. (iii)
forwarding; whether to forward Interests (router) or not (end-device).

3.4 Messages and packets

To represent NDN packets, we use the OMNeT++ message representation in order to provide
an easy way to create packets and access their fields. However, for packet-related evaluation,
a set of tool functions are provided to generate the TLV representation and to compute the
actual size of a packet from the OMNeT++ packet representation.

For evaluation purposes, Interest and Data have a common superclass (NdnPacket) which
includes non-NDN fields. These fields are of two types: (i) inherited from OMNeT++ Packet
class [9] and, (ii) additional fields that include a sequence number, a type (i.e. Interest or Data),
a hop count and other fields that help for statistic or experimental implementations.

4 Use case: NDN over low-rate wireless technology
In this section, we use our framework to study an aspect of integrating NDN over a low-power
low-rate wireless technology. Considering the IEEE802.15.4 standard, one of the enablers of

the IoT, fundamental questions need to be explored and revisited for NDN as described in the
following.

78

Towards evaluating NDN for the IoT: A framework for OMNeT++ Abane et al.

4.1 NDN wireless forwarding strategies

In one hand, wireless forwarding strategies are generally based on a flood-and-learn mechanism
[3,11,14]. Although lightweight mechanisms for constrained devices are rare in literature, a
simple one has been proposed in [4]: Reactive Optimistic Name-based Routing (RONR) and
detailed further.

On the other hand, different approaches may be used to map learned information, which
are in form of NDN names, to MAC addresses. This question has been investigated in [7] where
different mappings are discussed: (i) broadcast for Interest and Data (IBDB), (ii) broadcast for
Interest and unicast for Data (IBDU), (iii) unicast for Interest and broadcast for Data (IUDB),
(iv) unicast for Interest and Data (IUDU). The study is particularly focused on CPU usage and
system wakeup comparison.

To show a typical use of our framework, we simulate a wireless forwarding mechanism to
enhance the NDN-to-MAC exploration cited above, by studying both network performance and
device state in static and mobile scenarios, under different parameters. Therefore, we combined
RONR with a related solution for wireless NDN forwarding [3]. The implemented mechanism
(ForwardingBase) works as follows:

1. When a consumer issues an Interest for unknown content, an Interest flooding is performed
by the relay-nodes until reaching the producer. Interest retransmissions are randomly
delayed to minimize the risk of collisions.

2. After the first Data is sent back by the producer, each relay-node that solicited the Data
creates a temporary FIB entry with the corresponding prefix.

3. Subsequent Interests are forwarded only by the nodes that have the corresponding entry
in the FIB.

4. The Interest flooding phase is performed again when an entry is expired or after an Interest
timeout (a flood flag is used by the consumer).

4.2 Simulation and results

We configured a local wireless network composed of 9 fixed routers, 5 mobile producers and a
mobile consumer, in an area of 100m x 100m. Each producer has a unique content of 30 pieces
that are randomly requested by the consumer. Figure 5 shows the OMNeT++ visualization
of the simulated network. Caching is disabled in order to study the behavior in a complete
consumer-producer path. The rest of the simulation parameters are reported in Table 1.

Parameter Value

MAC layer CSMA with 250kbps data rate
Communication range 30m

Interests number 100

Max Interest retransmissions 3

Interest send interval 1s

Interest size 30 kb

Data size 100 kb

Mobility model Random Waypoint

Table 1: Simulation parameters

79

Towards evaluating NDN for the IoT: A framework for OMNeT++ Abane et al.

Each simulation is executed with 7 random seeds and the average results are reported. The
following metrics are measured: (i) number of duplicated Interests received by relay-nodes, (ii)
mean/max PIT size and PIT lookup in relay-nodes, (ii) number of collisions observed by all
nodes, (iv) Interest satisfaction rate and Interest-Data RT'T measured by the consumer.

il 3,

yﬂ’Demu

& a2
ndnProd[4]

}' ndibrod1]
vy
AN .
BN

ndnProd[2]

\ um’;nn[s]
¥ ’l [' l ”

ndnRt(e] ndnRL[7 P

QA

Figure 5: Simulated scenario

ndnProd(0]

As expected, the two mappings that use Interest broadcast (i.e. IBDB and IBDU) always
achieve the highest Interest duplication value, as well as PIT size, PIT lookups and collisions
(Figure 6 to 9). Indeed, the broadcast mechanism generates more Interests in the network,
which leads to more PIT lookups, more retransmissions due to flooding, and thus more collisions.
For the same reason, Interest and Data unicast (IUDU) causes the lowest number of Interest
duplications and PIT lookups.

However, contrary to what we might expect, IUDU does not cause the lowest number of
collisions, for both mobile and static scenarios as shown in Figure 9. The lowest number of
collisions is achieved by the ITUDB mapping, followed by IUDU. This can be explained by the
fact that Data broadcast prevents some nodes from unnecessary Interest retransmission. During
the flooding phase, nodes can overhear Data broadcast, while Interest unicast phase reduces
the number of potential forwarders in consumer-producer direction. IUDB can be considered
as a good compromise when flood-and-learn techniques are used, especially in mobile scenarios.

We observe that changing from one mapping to another has the same effect in mobile and
static scenarios in terms of Interest duplication, PIT size, PIT lookups and collision number.
However, performances are slightly higher in the static case, as we can expect (Figure 10 and
11).

IUDU achieves the best performance in the static scenario (Figure 10 and 11). This indicates
that the Interest broadcast only causes extra computation without improving the performance.
The study in [7] also reports that ITUDU mapping provides the highest Interest satisfaction rate
in static scenario. However, in the mobility scenario, IUDU only achieves the second better
performance, while the best one is achieved by the IBDU mapping. This is certainly due to the
exploratory nature of broadcasting Interests. Although this feature is not so helpful in static
configurations, it helps to find the content producer when the hosts are mobile.

80

Towards evaluating NDN for the IoT: A framework for OMNeT++

W |BDB static ™ IUDU static

"FF

Abane et al.

IUDB static ® IBDU static

IUDU static IUDB static

IBDU static

W Mean PIT size ™ Max PIT size

100 100
90 90
£ 80 | = 80
2 70 2 7w
P o o
E e
;2 I ;2 I
= 40 = 40
g 4l | B gl
= =
a 2 3 20
104 | To !
0 0
W [BDE mobile ™ IUDU mobile IUDBE mobie ™ IBDU mobile
Figure 6: Interest duplication
-
6
5 =)
£ 4 | =
w1 w
a 34 | AP
= =
T | il
i
o . : . .
IBDB mobile IUDU mobile IUDB mobile IEDU mobile IEDE static
W Mean PIT size ® Max PIT size
Figure 7: PIT size
350

PIT lookups ()
PIT lookups (#

&

W IBDE mobile ™ IUDU mobile ~ IUDE mobile ™ IEDU mobile

Figure 8: PIT lookups

5 Summary and future work

: 350
300 - | 300 -
250 - _— | — 250
200 200 =
| " f e !
100 - | 100 |
50
0- | 0

mEDE static ™ [UDU static

IUDB static ™ IBDU static

The proposed NDN framework is intended to be used to evaluate NDN for low-end IoT so-
lutions, by focusing on both local wireless networks and system state of constrained devices.
Although for some evaluations, a simulation cannot serve as a suitable substitute for a real-
world testbed, the proposed framework can quickly provide accurate results for different aspects
of the solution. For example, it can be used to evaluate the following aspects: (i) packet frag-
mentation, encoding/decoding and other NDN packet processing, (ii) secured and trust-based
wireless forwarding, (iii) hybrid NDN-IP gateways and, (iv) impact of NDN names to MAC

addresses mapping approaches.

The current implementation does not support all NDN features; the Interest forwarding

81

Towards evaluating NDN for the IoT: A framework for OMNeT++ Abane et al.

1200

Collision (¥)

W IBDE mobile ™ IUDU mobile

Satisfaction rate (%)

® IBEDE mobile m IUDU mobile

RTT (ms)
5

® IBEDE mobile m IUDU mobile

1000 - 1
600

400 - s |
200 |
0 |

IUDE mobile ® IBDU mobile

Callision (#)

1200

1000

800 -|

600

400 - o
I

200 -

0

W IBDB static ™ [UDU static ~ IUDB static ™ IBDU static

Figure 9: Collision number

75 - 3 |
65 - I |

45 - |
35

15 |
5

IUDE mobile = IEDU mobile

Satisfaction rate (%)

75 - —_ —

65 I |
55

45

35 -
25

15

5 i

m |[BDB static ™ [UDU static ~ IUDB static ™ IBDU static

Figure 10: Consumer Interest satisfaction rate

40 - |
35 B
: 1

25 | x |
15+ |
10

5 |
0-f

IUDE mobile = IEDU mobile

RTT (ms)

o

30

25+ I

20 i
15+

10

0 s

W |[BDB static m [UDU static ~ IUDB static ™ [BDU static

Figure 11: Consumer Interest-Data RT'T

implemented is based on names only, while hop limit and lifetime should be considered also.
As a future work, we plan to improve the framework with two main features: (i) A fully-
customizable forwarding strategy that take the most of OMNeT++ module parameters. (ii) A
memory usage model for NDN entities, as well as accurate packet processing time measurement,
in addition to the mobility and energy consumption models provided by INET.

References

[1] Amar Abane, Mehammed Daoui, Samia Bouzefrane, and Paul Muhlethaler. Ndn-over-zigbee: A
zigbee support for named data networking. Future Generation Computer Systems, 2017.

82

Towards evaluating NDN for the IoT: A framework for OMNeT++ Abane et al.

2]

8l

(4]

(11]

(12]
(13]

[14]

[15]

M. Amadeo, C. Campolo, A. Molinaro, and N. Mitton. Named data networking: A natural design
for data collection in wireless sensor networks. In 2018 IFIP Wireless Days (WD), pages 1-6, Nov
2013.

Marica Amadeo, Claudia Campolo, and Antonella Molinaro. Forwarding strategies in named data
wireless ad hoc networks: Design and evaluation. Journal of Network and Computer Applications,
50(Supplement C):148 — 158, 2015.

Emmanuel Baccelli, Christian Mehlis, Oliver Hahm, Thomas C. Schmidt, and Matthias Wahlisch.
Information centric networking in the iot: Experiments with ndn in the wild. In Proceedings of
the 1st ACM Conference on Information-Centric Networking, ACM-ICN ’14, pages 77-86, New
York, NY, USA, 2014. ACM.

Loic Dauphin, Emmanuel Baccelli, Cedric Adjih, and Hauke Petersen. NDN-based IoT Robotics.
ACM ICN’17 - 4th ACM Conference on Information-Centric Networking, September 2017. Poster.
INET. ”INET Framework”. [Online]; https://inet.omnetpp.org/.

Peter Kietzmann, Cenk Giindogan, Thomas C. Schmidt, Oliver Hahm, and Matthias Wahlisch.
The Need for a Name to MAC Address Mapping in NDN: Towards Quantifying the Resource Gain.
In ACM ICN 2017 - 4th ACM Conference on Information-Centric Networking , Berlin, Germany,
September 2017.

OpenSim Ltd. ”OMNeT++". [Online|; https://www.omnetpp.org/.

OpenSim Ltd. 7OMNeT++ Simulation Library”. [Online]; https://www.omnetpp.org/doc/
omnetpp/api/classomnetpp_1_1cPacket.html.

Spyridon Mastorakis, Kevin Chan, Bongjun Ko, Alexander Afanasyev, and Lixia Zhang. Ex-
perimentation with fuzzy interest forwarding in named data networking. CoRR, abs/1802.03072,
2018.

Meisel Michael, Pappas Vasileios, and Zhang Lixia. Listen first, broadcast later: Topology-agnostic
forwarding under high dynamics. In Annual conference of international technology alliance in
network and information science, 2010.

Wentao Shang, Yingdi Yu, Ralph Droms, and Lixia Zhang. Challenges in IoT networking via
TCP/IP architecture. Technical Report NDN-0038, NDN, February 2016.

NDN Team. ”NDN Packet Format Specification”. [Online]; http://named-data.net/doc/
NDN-packet-spec/current/.

Lucas Wang, Alexander Afanasyev, Romain Kuntz, Rama Vuyyuru, Ryuji Wakikawa, and Lixia
Zhang. Rapid traffic information dissemination using named data. In Proceedings of the 1st ACM
Workshop on Emerging Name-Oriented Mobile Networking Design - Architecture, Algorithms, and
Applications, NoM 12, pages 7-12, New York, NY, USA, 2012. ACM.

Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick Crowley, Chris-
tos Papadopoulos, Lan Wang, and Beichuan Zhang. Named Data Networking. ACM SIG-COMM
Computer Communication Review, 44(3):66—77, July 2014.

83

https://inet.omnetpp.org/
https://www.omnetpp.org/
https://www.omnetpp.org/doc/omnetpp/api/classomnetpp_1_1cPacket.html
https://www.omnetpp.org/doc/omnetpp/api/classomnetpp_1_1cPacket.html
http://named-data.net/doc/NDN-packet-spec/current/
http://named-data.net/doc/NDN-packet-spec/current/

	Introduction
	Named Data Networking
	Our framework design
	Overview
	Host and Application Modules
	NDN layer Modules
	Messages and packets

	Use case: NDN over low-rate wireless technology
	NDN wireless forwarding strategies
	Simulation and results

	Summary and future work

