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Abstract 
This study details a procedure to derive high resolution snow cover information 

using low-cost autonomous cameras. Images from time lapse photography of target 
areas are used to obtain temporally resolved binary snow-covered area information. 
Various image processing steps, such as distortion correction, alignment, projection 
using the Digital Elevation Model (DEM), and classification using clustering are 
described. Several innovations, such as matching the mountain silhouette with the 
DEM, and application of specific filters are described to make this terrestrial remote 
sensing method generally applicable to derive valuable snow information. 

1 Introduction 
In hydrology and snow science, the snow water equivalent (SWE), is a key variable representing the 
quantity of water contained in the snowpack. It is essential to model hydrological processes in 
mountainous regions where water is temporally stored in form of snow as this provides relevant 
information to various domains such as land and water management, agriculture, ecology and natural 
hazard prevention [1]. The spatial distribution of snow in mountains is difficult to estimate due to 
terrain complexity, unpredictable meteorological conditions or effects resulting from wind and 
radiation interaction with the terrain, leading to large spatial variability of SWE within a given 
catchment [2]. As a result, economically measuring snow cover evolution at spatial scales between the 
point and the satellite pixel has been elusive.  
Time-lapse photography is an increasingly used technique for monitoring the environment. The 
technique has recently been implemented in various catchments for modelling the snow cover 
evolution to assess the effect of topography on snow spatial distribution [3,4]. Snow cover 
information can be combined with numerical snow cover models to get information on SWE. 
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Corripio [5] has developed a methodology for geo-referencing terrestrial photography for snow 
albedo estimation. Based on the camera location and orientation, a virtual view of the digital elevation 
model (DEM) grid can be projected on the picture of the studied terrain. The information in the 
photograph pixels are consequently directly associated locations on the map. Coupled with time-lapse 
photography, this approach has an important potential in monitoring applications by its easy 
implementation, its low cost of installation and the high spatial and temporal resolutions of the data 
provided over small-scale catchments.  
The main purpose of this paper is to describe some practical hurdles and innovative solutions to 
overcome them in application of a procedure for snow cover extraction to a case study in the Swiss 
Alps. We describe several elements for an automated procedure for snow detection in the terrain that 
can use pictures from different sources at different locations. These elements form steps towards the 
applicability of a large-scale crowdsourced snow information collection. Recently, a few promising 
approaches in this direction have been launched and carried out, for instance the citizen observatory 
WeSenseIt1 or the snow depth collection project SnowAlp2 [6]. 

2 Study area and data used for the development  
From 2008 to 2014, data was acquired at various locations in the Val Ferret catchment, Switzerland, 
to capture spatial variability of the environmental variables over a complex mountainous terrain. In 
addition to numerous meteorological stations of the project [7,8], three inexpensive cameras (Canon 
PowerShot A490 and A495) were converted into solar powered autonomous cameras and placed at 
two different locations to evaluate snow cover evolution by means of hourly photographs, from 2012 
to 2014. In this study, as a proof of concept, pictures from two cameras with different orientation, 
mounted side by side near the summit of La Dotse, are analysed over the period May 15 to June 27, 
2012.  

3 Description of the methodology 
To make time-lapse photography a valuable tool in the context of snow monitoring, it is needed to 
have an approach, which is applicable in any situation and also able to manage the possible changes 
of the camera position for time series processing. In this study, an automated processing of pictures 
has been designed for tracking snow evolution in the camera’s viewshed. The procedure is composed 
of two steps, (a) pictures’ alignment and (b) snow pixel extraction, and should handle a large number 
of acquired photographs, in a reasonable computational time. The method is presented below step by 
step. 

3.1 Alignment of pictures 
Due to wind effects on the cameras mounted on 2 meter poles with guy wires, or slight changes in the 
ground surface, the field of view is not constant over time. The first key aspect is then to stabilize the 
pictures for reliable time series analysis. This consists of rotating and translating pictures such that 
any physical point is always at the same place on the pictures. Since changes in the camera position 
are limited, influence on the variation of scale on large landscape pictures is small. Bad quality 
pictures are discarded to avoid misclassification at the snow extraction step. The following sections 
present the steps of image processing applied to the sequence of pictures to produce a suitable data set 
for further analysis. 

                                                        
1 More information on the website: wesenseit.com.  
2 More information on the website: arpa.vda.it. 
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3.1.1 Distortion correction 
Distortion is an optical aberration due to the lens of the camera. It results in an altered image of the 
reality, making rectilinear projection inapplicable. In the classification step in this study, correction is 
needed to ensure correct geo-referenced projection of the DEM on the picture. For this, the camera 
lens specifications were determined and images were corrected accordingly. 
3.1.2 Image stabilization and picture removal 
Time series images are repositioned relatively to each other’s. From each picture, some local features, 
such as edges or corners, can be detected, and their properties and location extracted. For pictures of 
the same object, the extracted features should be similar, regardless of the camera position and 
orientation. This allows to compute feature point pairs between images to determine the 
transformation between two pictures as shown in Figure 1. The transformations are applied on the 
time series so that all the pictures are correctly aligned.  
The same features can be useful to remove bad quality pictures: being usually more or less plain 
(snow on lens / clouds in valley), only a few features are detected on those pictures. Pictures not 
meeting a minimum number of detected features needed for further processing were removed. 

 
Figure 1. Two consecutive pictures with many matching features. The red and green markers design the features’ 

locations while the yellow lines show the features’ matches. 
3.1.3 Silhouettes matching 
The camera location and the ground control points provided by the user may not be accurate enough 
to allow for a simple projection of the DEM on the pictures in the next steps. We introduce here a 
method to increase precision and enable further automation of the procedure.  
The algorithm finds the necessary transformation to fit the mountains’ silhouette extracted from a 
clear photograph in the time series with the one extracted from the DEM virtual view (Figure 2 (a) 
and (b)). The latter is computed from the viewshed based on the camera location and the target point 
(the real world location corresponding to the centre of the picture), according to [5]. It depicts a 2D 
projection image of the terrain according to the DEM and the camera orientation. The fit between the 
two silhouettes is measured through the normalized 2D cross correlation of the pictures [9,10]. From 
the maximum correlation found, the transformation between the two silhouettes is applied on all the 
pictures of the time series (Figure 2 (c) and d)). 
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a)  b)  

c)  d)  
Figure 2. Example of silhouette fitting: (a) DEM virtual view, (b) projection of the DEM on the picture, (c) fit of 

DEM and silhouette, (d) fit after aligning DEM and picture. In this example, the correlation was 0.76 after a 
rotation of 0.5° and a translation of 6.5 pixels up and 0.5 pixels left. 

3.2 Snow classification  
An automated procedure requires robust and efficient snow detection in most situations. For the 
establishment of snow cover from terrestrial photographs [11], and [12] set a simple threshold on the 
blue channel but this technique implies to define a different one on each picture, in order to respond to 
changes in the weather and light conditions. A Normalized Difference Snow Index (NDSI) based on 
visible light (VIS) has been developed by [13] to bypass this issue. Nevertheless, a non-supervised 
method as the one suggested by [3] appears to be more appropriate. Because of the changing weather 
conditions, snow classification cannot be simply based on a defined colour threshold: snow may be a 
brilliant white surface during a sunny day but appears grey or has shade of blue under other light 
conditions. Even on a clear sky day, light conditions on a slope of a given exposition change over a 
day as a result of the trajectory of the sun in the sky. An automatic, non-supervised algorithm should 
to be able to deal with these variations during a day.  However, the pixels representing snow are 
supposed to have similar colour properties within a single photography.  
We proceed using the K-means algorithm [14], a non-supervised clustering approach, for snow 
classification, as it has already proven its efficiency for this purpose on terrestrial photographs [3,15]. 
The algorithm aims at forming n groups with comparable properties. The similarity between the 
object and the group is evaluated using the Euclidean distance between the object's value and the 
mean value of the group. For the snow detection, the objects are the picture's pixels, and the 
classification is realized on their associated values on the red, green and blue (RGB) bands. The 
desired output is two pixels groups representing the categories snow and no-snow. Due to the presence 
of hard shadows on the snow surface during some times of the day, or the appearance of greenish 
patches in summer, the number of groups created from the K-means algorithm is set to 4, and these 
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are labelled: snow, shadowed snow, light rock/meadow, dark rock. The four clusters are subsequently 
aggregated into two classes: snow and no-snow. 

4 Results 
4.1 Snow classification 
Figure 3 presents snow classification results from our case study. A mask, computed from the 
mountains' silhouette, is applied on the picture to exclude the sky from influencing the clusters. 
Shadows from clouds are identified and labeled in the correct category (Figure 3 (b) and (f)), as well 
as the green meadow (Figure 3 (h)). The first two clusters (snow and shadowed snow) are then 
aggregated into a single one being snow and the two other ones into no-snow. 
As one can notice by comparing Figure 3 (c) and (d), some misclassification may occur due to 
particular light conditions and long distance of objects from the camera. Rocks and snow in the 
shadow of the back mountain (left side of the picture) are almost identical in color and barely 
distinguishable. To reduce the error associated with shadow, it has been chosen, to pick only the 
photographs shot between 11 a.m. and 4 p.m., when the sun zenith angles are smallest during the day. 
The picture presented in Figure 3 (c), shot at 10 a.m., is then removed from the initial pictures set. 
Misclassification also exists in areas composed of really light grey rocks. On Figure 3 (e) and (f), the 
light cloud shadow on snow does not affect clustering but some small rocky regions are labelled as 
shadowed snow. 

(a)  (b)  

 

(c)  (d)  

 

(e)  (f)  
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(g)  (h)   

 

 

   
Figure 3. Snow classification by the K-means algorithm. Left: original pictures, right: classification results. 

4.2 Snow cover and melt-out date maps 
The snow classification result is associated with the DEM’s cells through the virtual DEM view in 
order to obtain a map of the snow cover in the visible part of the catchment. From these observations, 
it is possible to produce maps of snow cover evolution over the catchment. Figure 4 (a) shows a map 
of the date of snow disappearance for the viewshed of the camera.  

 

 
(a) Map of snow disappearance 
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(b) 15 May (c) 01 June  (d) 15 June (e) 27 June 
     

Figure 4. Map of snow disappearance date and time series of snapshots over the melting period. 
Figure 4, including the snapshots of the snow-covered area, can be reconstructed from a single -ascii 
file containing a map of the melt-out date. It should be noted, however, that in case accumulation 
events occur during the melt season, a melt-out date map would no longer contain all information, and 
a series of snapshots needs to be saved. The available data also allow for the computation of snow 
depletion curves, an example for the results obtained from the camera at the Dotse site is shown in 
Figure 5.  
 

 
Figure 5. Snow cover depletion curve for the observed area. 

5 Discussion 
As visible in Figure 4, time-lapse photography of the catchment provides snow extent evolution at 
high spatio-temporal resolution. While the time component depends on the number of pictures 
retrieved after the alignment process, spatial resolution mainly depends on the DEM resolution. 
Regarding the computational time demand, the procedure took approximately 30 minutes on a regular 
PC to handle the initial 773 images from one of the two cameras and finally obtain the snow map 
Figure 4 (a). Employing this quantity of images may be excessive and using only one or two pictures 
per day may be sufficient and would reduce the computation time. 
Although time-lapse photography offers high-resolution monitoring of a catchment, several sources of 
errors may lead to a wrong mapping. The accuracy of the picture decreases with distance since the 
pixels represent larger areas, resulting in a less precise snow detection in the remote areas than in the 
zones closer to the camera. Along the same idea, even if the match between the DEM and the picture 
silhouettes is rather good, a slight drift may exist. A tiny difference on the picture corresponds to an 
important distance in reality, leading to errors on the projected map. It is all the more important in 
mountainous regions: due to highly variable topography, snow accumulation may be very different 
between two close locations. 
Apart from spatial issues, the snow detection step could misclassify pixels when bad quality images 
are not removed in the previous stage. Identifying elements, such as clouds, on the picture is 
challenging using visible range only. The high frequency of observations enables a cross check of the 
classification with pictures from the previous and next epochs. 
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The accuracy of the classification still needs to be assessed. Nonetheless, similar snow depletion 
curves were retrieved for the two studied time series, while the classification process is independent 
for the two locations, which is a promising sign regarding the robustness of the results. 
To extract more information from the time-lapse photography, graduated poles should be deployed in 
the near range of the camera, as suggested by [4] to estimate the snow height evolution. Automatic 
reading of the graduated poles is also possible via image processing. 

6 Conclusion 
Time-lapse photography constitutes an interesting alternative to conventional terrestrial remote 
sensing techniques for the monitoring of a catchment. The proposed methodology is intended for 
hydrological applications, particularly given the low implementation requirements and the high 
resolution of the outputs. The resulting maps help studying snow distribution and its relationship with 
topographic factors. Image processing should be tested further with photographs originating from 
other sources, e.g. hikers, skiers or ski resort webcams. The silhouettes matching, as well as the geo-
localisation from GPS data stored in cell phone pictures, would be key aspect for handling these 
pictures in the automated procedure. The algorithm could also be integrated in a snow monitoring 
system to update snow forecast in real time, according to the snow cover observations. 
Follow-up work is focusing on combining the snow cover information with a snow physics model, 
with the aim of deriving information on snow depth and snow water equivalent by data assimilation of 
the binary snow cover information into the model results that ensure mass and energy balance. 
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