EPiC Series in Computing Sl
omputing

Volume 107, 2025, Pages 165-174

Proceedings of EUNIS 2025 annual congress in Belfast E ; ii

Rapid Development Moving between Public
Cloud and On-Premises

Marius Politze!'*, Bernd Decker!’ and Uta Christoph!

'"RWTH Aachen University, Germany
politze@itc.rwth-aachen.de, decker@itc.rwth-aachen.de,
christoph@itc.rwth-aachen.de

Abstract

Within this paper we present our approach towards using public cloud services within
for speeding up development and deployment times for university-wide software
services. Within three use cases we discuss challenges faced by development teams in
adapting workflows. By employing Infrastructure as Code principles, teams can
standardize environment setups and automate provisioning processes, significantly
reduce setup times, and allow migration to on-premises infrastructures for sustainable
operation. This demonstrates the value of being able to strategically choose between
public cloud and on-premises services to accelerate software development cycles.

1 Introduction

Digitization is a constant driver in higher education and research. Universities’ IT services,
therefore, are constantly professionalizing their workflows. Hence, within the IT Center of RWTH
Aachen University, several departments are performing genuine software development to support
members of the universities within their various roles: students, teachers, researchers and
administration. While the extent and contextual bounding conditions vary greatly based on the
supported processes, the overall environment as well as technical bounding conditions are often
comparable or even identical.

As part of this case study, we present three use cases from two departments targeting different
audiences within the university: “university-wide, student life-cycle management and e-learning
services”, “research data management services” and “lecture support”. All use cases were carried out
mostly independently from one another within different teams, with their own agenda and time
management. However, involved lead engineers and architects were given the freedom to peek into the
other projects and thus could directly share experiences.

* https://orcid.org/0000-0003-3175-0659
T https://orcid.org/0000-0002-9627-5695

L. Desnos, R. Vogl, L. Merakos, C. Diaz, J. Mincer-Daszkiewicz and S. Mclellan (eds.), EUNIS 2025 (EPiC
Series in Computing, vol. 107), pp. 165-174

Rapid Development Moving between Public Cloud and On-Premises Politze et al.

From the perspective of application, the teams are facing quite different challenges, but due to the
organizational structure of the IT Center, they technically have several commonalities: Traditionally,
departments that are devoted towards software, process development and consulting do not operate their
own hardware but internally rely on server infrastructures operated in a model that would be considered
a private cloud environment today. While this reduces control over the execution environment this
enforces a strong separation between service development and service operations. Hence, we often see
a clear separation of concerns in different teams for operation of IT systems, development of custom
solutions, and adaptation of existing, often commercial, products.

Overall, this makes it especially hard to extensively adopt invasive technologies like Kubernetes
that would require a synchronized effort crossing all involved teams at the same time. We see this also
reflected in other university ICT providers, generally adopting cloud technologies rather slowly (Okai,
Uddin, Arshad, Alsaqour, & Shah, 2014; Gholami, Daneshgar, Beydoun, & Rabhi, 2017). Furthermore,
long term experiences and impact as well as mobility or dependency to certain vendors remains partially
unclear (Kratzke & Quint, 2017).

In this paper, we present a combined list of experiences and best practices from several teams
totaling about 35 developers and stakeholders ranging from students, university staff, and faculty
members to externals in third-party-funded projects. Based on these experiences this paper aims to
provide a consolidated answer to the following research questions:

- RQ1: Under which conditions can public cloud offers complement on-premises IT operations?

- RQ2: What factors need to be considered to ensure mobility of application between cloud

providers or into the private cloud.

2 Current Situation

Different teams have adopted a wide range of cloud technologies for different phases of their
software-life-cycle and to support their daily work. Based on the different teams’ shared experiences,
the following sections give an overview of these in the form of best practices implemented in
conjunction with public cloud providers, where they support software development and adjacent
processes. To support their engineering process, the teams use SCRUM based workflows that are
technically supported by GitLab (Politze & Christoph, 2020; Politze, et al., 2023). This gives a state-
of-the-art environment for professional software development and forms a common starting point for
the software development teams.

2.1 Private Cloud Development Environments

The actual implementation work is done on personally assigned virtual machines resembling the
production environments as close as possible or rarely on local computers / laptops. Development and
production environment synergically share the same infrastructure, making the mode of operation
economically efficient. Hence, IT operations personnel is responsible for maintaining the development
environments. While the close connection of development and production environments greatly helps
ensuring transferability and reproducibility of issues, it drastically increases reaction times to changing
hardware requirements. This is mostly due to communication overhead between the operations and
development departments. Changes on development environments are competing against maintenance
work for the production systems. Consequently, this reduces the innovative potential especially when
introducing disruptive technologies like containers or Kubernetes that would require significant
deviation of infrastructures.

Issues with this mode of operation are further pointed out as more funding is coming from third
parties and therefore connected with more binding timelines compared to basic funding. While this has
increased innovation potentials, it put even more pressure on advancing IT infrastructures — first for

165

Rapid Development Moving between Public Cloud and On-Premises Politze et al.

development of new services and enhancement of existing services and finally for putting these services
into operation. To ensure success of these projects it was therefore necessary to reduce time-to-market
and to reduce friction within development, prototyping and finally deployment of these services.

2.2 Advancing Development Infrastructures

An initially proposed solution to the problem was to separate the development and production
infrastructures and make them more or entirely independent. While this would provide complete
freedom for developers, it would also come with the burden of having to maintain a so far entirely
unknown technology stack, including server hardware, virtualization stacks and operating systems that
were previously not within the scope of the development team. Apart from additional workload for the
development team, setting up an entirely new system also jeopardizes the economic synergies of the
current joint operating model. Consequently, this approach was quickly disregarded.

To reduce direct infrastructure costs and limit the depth of technical knowledge acquisition, the
groups decided to make use of public cloud offers that allow scaling infrastructures as needed and
provide ready-to-use virtualization environments that require little to no additional knowledge. At the
same time these environments allow for rapid prototyping as they feature a set of clearly defined
interfaces that can be directly used and integrated into running projects and allow gradual adaption
within the development teams. Furthermore, individual teams could choose the right technology partner
for their current project. This was especially easy since many public cloud providers have signed the
OCRE contracts with Géant which in turn allowed quick and low-threshold subcontracting for small
projects as well as discounted rates.

3 Use Cases

As described previously several project teams made the transition towards the new mode of
operation in parallel. This allows to analyze the slightly independent approaches taken and allow a
slightly broader evaluation. All presented use cases have the goal of creating a rapid development model
and to one extend or another cover the range from development of a new software to deployment of a
prototype for a designated group of users.

3.1 Development Environment: Coscine.nrw

For development environments, the use case illustrates the provisioning of development sandboxes
for teams with approximately 30 individuals in total contributing to the open source data management
platform Coscine.nrw and DataStorage.nrw (Politze, et al., 2020; Politze, Heinrichs, Hunke, Lang, &
Eifert, 2025). The team members have diverse roles and expertise ranging from full stack software
development to high level quality assurance and service management. The goal of this use case was to
allow setup of defined development environments for the teams, especially the creation of multiple
virtual machines per person, with limited machine lifespans, typically one to twelve months. Moving
these environments into the public cloud additionally has the advantage of better isolation for the
production environments.

Based on experiences gained in the FAIR Data Spaces project, the team decided to make use of the
Open Telekom Cloud (OTC), a Germany based “super scaler” with data centers in Germany and The
Netherlands (Politze, 2022). A thing that was noted while working on the demonstrator was that the
discounted rates were only valid for the Dutch datacenter of OTC. While this had little to no technical
effect, it shows that even for presumably simple projects cost models of providers need to be analyzed
and a cost controlling needs to be established to avoid overspending.

166

Rapid Development Moving between Public Cloud and On-Premises Politze et al.

Technically, the use case is set up using Terraform. Terraform provides a configuration language
and a toolset to define (cloud) infrastructure as code (IaC). Hence, the description of the development
infrastructure is standardized through predefined templates and managed via a shared Git repository,
ensuring consistency and facilitating automation through GitLab CI pipelines. This approach greatly
suited the development team that was used to work with GitLab and source code in general and allowed
a more natural handling of infrastructure topics and reduced the necessary depth of knowledge
acquisition needed for the overall team. The integration of Terraform with GitLab CI furthermore
enables automated infrastructure provisioning and management. Terraform scripts define the desired
state of cloud resources, which are executed through GitLab CI pipelines upon code commits. This
approach ensures that infrastructure changes are version-controlled, reviewed, and consistently
deployed, enhancing reliability and reducing the likelihood of configuration drift. Terraform modules
encapsulate reusable infrastructure components, promoting modularity and reducing complexity in
infrastructure definitions. This modular approach facilitates scalability and maintainability, essential
for managing large and dynamic cloud environments.

Additionally, to IaC code, the setup required an explicit definition on how to set up development
environments. This was realized with a set of scripts that are executed on provisioning of the virtual
machines. Making these setup steps explicit was putting additional workload on the team but in turn
had a quick payoff in documenting and unifying setup of machines — for development and ultimately
for production environments. These definitions allowed the development team on the one hand to adopt
container-based application deployment and on the other hand helped IT operations personnel
transferring the requirements to the local infrastructure.

As shown in Figure 1 the development network consists of a set of development servers — typically
one for each member of the development team. Connection from the workstations are tunneled through
proxy servers for SSH and HTTPs. This was done to cut costs for external IP addresses; development
servers are only connected to an internal network. For the different types of servers specialized
provisioning scripts ensure reproducibility of the setup.

p -*.vulcanus
SSH jumphost.vulcanus SSH O
—(22)—> (sshd) (22’7 (podman, traefik, ui, api,

virtuoso, elasticsearch)
HTTP

(52080)

___HTTPS proxy.vulcanus /
@43) 7] (traefik)

build.vulcanus
(gl-runner)

Figure 1: Schematic overview of the created infrastructure within the development environment.

The resulting development infrastructure closely resembles the structures that were maintained on-
premises previously. Hence, only a fraction of the cloud native features offered by the OTC were put
into practice. In turn this allows synchronization of cloud and on-premises infrastructures that is needed
to put services into long term operation.

3.2 LLM Development: KI:connect.nrw

In the second use case, the project KI:connect.nrw is presented. The goal of this project is to provide
data protection-compliant access to generative Artificial Intelligence (Al) for employees and students
of universities within the German federal state North Rhine-Westphalia (NRW). Since the introduction
of ChatGPT in November 2022 and the subsequent discussions regarding the impact of Al on research,
teaching, and administration, the demand for powerful Al solutions has increased significantly.
Accordingly, there was considerable pressure to provide an adequate solution promptly. A key
prerequisite was that the developers could quickly familiarize themselves with the new technologies

167

Rapid Development Moving between Public Cloud and On-Premises Politze et al.

while concurrently establishing the necessary infrastructure. The critical components included, in
particular, Large Language Models (LLMs) and vector databases for Retrieval-Augmented Generation
(RAG).

To meet these requirements the team decided to host the development infrastructure in the Microsoft
Azure Cloud. In coordination with the IT operations team, care was taken to select only technologies
that could also be hosted on-premises at a later stage. This strategic choice ensured that the project's
advancements would be sustainable and transferable to local infrastructure, aligning with long-term
operational goals.

Since existing contracts for the use of Azure were already in place, development could commence
immediately. By leveraging the cloud infrastructure, the team significantly reduced the setup time
typically required for physical infrastructure, thereby accelerating the project's time to market. Via
Azure OpenAl, endpoints to different LLMs were provided. Additionally, the necessary open-source
infrastructure for RAG was constructed using a Qdrant vector database, Fileservers and NoSQL
database for logging and billing processes (see Figure 2 for the development system architecture). In
parallel, the IT operations team began acquainting themselves with the RAG infrastructure and
implement it on-premises, while a partner project started with the local hosting of open-source LLMs.
This strategy allowed different work packages, which would typically be handled sequentially, to be

processed simultaneously.
ﬁs Azure N

-
[va g Private endpoint
% Shibboleth

Azure OpenAl

Endpoint
o I
:&‘_" ’@u M
Developer Kl:connect.nrw % s _— ‘

Indexed

k Logging & Billing Files v:ectors)

Figure 2: KI:connect.nrw development system overview.

For the utilization of the LLMs, the "pay-as-you-go" cost model was chosen, whereby only the
actually consumed prompt tokens are billed. In the development phase, token consumption was
minimal, as only the development team accessed the endpoints. Furthermore, small and cost-effective
LLMs were used, given that the focus was on the technical implementation rather than the quality of
the generated responses. This strategy minimized the monthly costs for this aspect of the development.
The sizing of the RAG infrastructure was also deliberately kept modest, resulting in low expenses.
Consequently, the monthly costs for the development infrastructure were maintained well below €100.

This approach allowed the KI:connect.nrw project to rapidly develop a compliant and scalable Al
solution, effectively meeting the urgent demands of the academic community while laying a solid
foundation for future on-premises deployment (see Figure 3 for the current system architecture).

3.3 Lecture Environment

A use case slightly outside of the core development team is the support of the lecture “Large Scale
IT and Cloud Computing”. The lecture aims to teach students basics of scalable IT systems. Scalability
is regarded from several viewpoints: business process, software architecture, implementation and
operations. While most concepts can be taught on a purely theoretical basis on the students’ laptops, we
decided to take a more practical approach: Applying the principles of participatory live coding
(Nederbragt, Harris, Hill, & Wilson, 2020) the students should implement and deploy a simple IT
supported business process to cloud infrastructures. The requirements in this scenario include high

168

Rapid Development Moving between Public Cloud and On-Premises Politze et al.

2
RWTH AA \ o HEI hosted
DFN-AAI
K - AR perere ENdpoint

!
!
'
]
- 4= ,: Open Source LLM
1
1
1
|
\

Shibboleth
HEI hosted

pereoue Endpoint

n Source LLM

s Login

"
Admin Ul ==

|
Azure OpenAl
. Endpoint
GPT-40
NN Y
' ' (4

Azure OpenAl

Endpoint

I
Kl:connect nrw ~>— —
— — GPT-01
u Azure OpenAl

NRW University Looging & Biling Files Endpoint
GPT-c3-mini

Figure 3: KI:connect.nrw overall system architecture.

siodpua ajenld

autonomy for the students, short machine lifespans (ranging from one to fourteen days), and the ability
to scale for large participant numbers.

In an initial iteration of the lecture, we used local infrastructures of the IT Center. In this case we
had potentially hundreds of students operating virtual machines within the universities’ IT
infrastructure. This setting had several drawbacks: a) allowing students to operate within the
infrastructure potentially exposes high risks and b) the one-time setup overhead is high and again
involves teachers responsible for the lectures as well as IT operations personnel. Students and their
results had to be monitored intensively effectively reducing their autonomy for trying out the presented
technology. Also, they are limited by the explicitly offered setups.

This previous approach proved to be hardly scalable and switching to a public cloud-based model
was desirable to address exiting drawbacks. Our initial iteration leveraged Microsoft Azure through
education grants for approximately 20 participants, expanding to Google Cloud for around 120
participants. The existing education grants allowed each student to individually create an account and
have complete freedom to experiment with the infrastructure. On the other hand, it required the students
to track costs themselves as the education grants are limited to currently approximately 100€ and
students must retain enough funds to complete all contents covered within the lecture over the progress
of the semester. Certainly, this makes the lecture dependent on the cloud providers generosity to provide
education grants. Transferring the educational grants to the OCRE offers is very well possible but
requires substantial funding for the lecture and a proper identity management if potentially hundreds of
students need to be authorized to access the cloud environment. Quota limits help reducing the risk of
overspending.

The creation and deployment of virtual machines, as well as the installation of container runtimes
were taught as part of the lecture, but students were not limited to that. The cloud setup greatly increased
autonomy of the students being able to use the entire available offers of the respective cloud, it makes
reproducibility of their results harder for teachers. Consequently, students were obliged to document
the necessary infrastructures as code using Terraform. Terraform automates the deployment and
teardown of their environments, ensuring efficient resource utilization and management. This approach
additionally allows students to save on their limited funds by making use of the teardown feature and
thus only paying for infrastructure while it is used during the lecture.

Opverall, the integration of real world cloud infrastructure provides relevant and realistic experiences
for the students and provides insights on infrastructure management as well as the resulting direct costs
of infrastructures.

169

Rapid Development Moving between Public Cloud and On-Premises Politze et al.

4 Evaluation & Lessons Learned

In the previous section the three use cases presented the approach of different teams towards
outsourcing workload into the public cloud. All scenarios were carried out intending to allow migration
of already operated infrastructure from the public cloud offers to on-premises infrastructures.

Within the development environment use case the team was able to reduce the setup time of a
development server from approximately two weeks to roughly 5 minutes. The majority of time savings
comes from the reduction of manual steps and idle times after handovers between development and IT
operations team within the provisioning process. Similarly, in the KI:connect.nrw use case, leveraging
cloud-based services allowed the development team to circumvent the delays typically associated with
setting up on-premises infrastructure, thereby achieving a significantly faster time to market. The
immediate availability of Azure resources enabled the team to rapidly initiate the development process
and gain hands-on experience with LLMs and RAG technologies.

From both the lecture case and the development environment case, we see the [aC definitions are
key for reproducibility and fast setup times. Especially for costly infrastructure components separation
in stateful and stateless parts is essential to plan teardown effectively and without the risk of data loss.
While the mostly experimental scenario of the lecture has little to no risk, development environments
may contain uncommitted code and work of several days. Clear guidelines for committing code to
GitLab are required to minimize the risk of loss. Changes on individual machines need to be
documented within the [aC to assure reproducibility of infrastructure setup after a potential teardown.
This was a significant change in the way developers worked e.g. needing to document package
installations in startup scripts or container images once they have stabilized.

Cost management was a critical aspect across all use cases. While cloud providers document these
costs rigorously and send bills accordingly it is more a matter of understanding their models. In the
KI:connect.nrw project, the use of the "pay-as-you-go" model and the deployment of small, cost-
effective LLMs kept operational expenses low during the initial development phase. This financial
prudence allowed the project to remain within budget constraints while still achieving its technical
objectives promptly. For on-premises we see that many IT centers within the HEI context do not, and
sometimes even cannot, fully assess costs of their infrastructures. This complicates truly comparative
analysis of costs.

As part of this study, we conducted a comparative cost analysis between on-premises virtual server
hosting and leveraging the Open Telekom Cloud. This revealed significant differences in infrastructure
and personnel costs. On-premises solutions incur higher initial costs from setup, software deployment,
and configuration. In contrast, the public cloud offers scalable pricing models with lower upfront costs
and reduced personnel overhead, especially scaling well for frequent setups and teardowns. Looking at
costs, both for on-premises as well as cloud infrastructures requires insights into cost models.

Supporting these different use cases required being able to access public cloud services in short time
frames. The OCRE contract framework provided by Géant posed a more than sufficient starting point:
Most importantly the agreements with cloud providers can be arranged ahead of time — especially before
first projects express explicit demands. This can greatly speed up response time to provision the tenants
required for individual use cases. A widespread integration into provisioning, accounting, and billing
processes, e.g. to separate bills by organizational unit or even project, can be explicitly demanding for
the university administration and for the cloud provider. If an organization plans to make use of hyper
scalers in the future it is worth investigating these issues before first use cases are technically starting
off as contracting and financial issues may inhibit forthcoming in later phases of the projects.

Even though the three use cases come from different parts of the service spectrum and mostly
independent teams, retrospectively we can observe some common choices: All teams decided to restrict
their usage of the offered features mostly to Infrastructure as a Service (IaaS) offers or to APIs that are
specified on an abstract and functional level. Effectively the teams set up virtual machines and
respective network infrastructures and then deployed workloads mostly traditionally running

170

Rapid Development Moving between Public Cloud and On-Premises Politze et al.

containerized applications. While all considered cloud providers had more elaborated “cloud native”
Platform Services, e.g. “Kubernetes as a Service”, “Database as a Service” or “Functions as a Service”
readily available this was a deliberate choice to ensure an exit scenario where the cloud infrastructure
would need to be transferred to the on-premises environment. Clearly this puts additional workload on
the teams setting up the infrastructure but on the other hand this approach, evident in the KI:connect.nrw
project, ensured that the project's advancements would be sustainable in the long term, facilitating a
smoother transition from cloud-based to local infrastructure.and ensures digital sovereignty.

Finally, we want to reconsider the initially posed research questions:

- RQI1: Under which conditions can public cloud offers complement on-premises IT operations?

We have shown in the three use cases that public cloud offers, both from hyper scalers as well as
from European “super scalers” can complement IT infrastructures readily available on-premises. This
is especially due to shorter provisioning cycles. In phases of the use cases where environments are
subject to frequent changes or very specialized hardware was required, the projects could profit from
the cloud model. In turn local operations profited from more elaborated and well documented
requirements after initial development and prototyping phases.

- RQ2: What factors need to be considered to ensure mobility of application between cloud

providers or into the private cloud.

A great selling argument by cloud providers are integrated Platforms as a Service (PaaS). While
these services offer mostly simple interfaces to hide complex infrastructures like a database service or
a deployed LLM, usage of these interfaces needs to be well considered as they likely increase
dependency to the interfaces offered by the cloud provider. This reduces mobility between different
cloud offers but also complicates exit scenarios. Within the presented use cases we have shown that by
restricting to IaaS service the teams could greatly reduce their dependencies. PaaS interfaces were
evaluated thoroughly and verified to be replicable using (locally) deployed software. Even after years
of advancement of cloud technologies interoperability between cloud offer still is a major issue for
mobility (Kratzke & Quint, 2017).

5 Conclusion

Within the three presented use cases we have shown different approaches on outsourcing parts of
the development and production environments into public cloud offers. Due to new changed funding
requirements, increased pressure to modernize software development and service deployment
environments or changing demands for hardware. We clearly see the public cloud offers to supplement
available local infrastructures rather than replacing them.

Once requirements are known and have stabilized, running services on-premises allows using
synergies during operation and retains digital sovereignty. This effectively reduces workload on IT
operations teams and increases time-to-market speed of development teams without the need of
permanently operating parallel infrastructures. The definition of IaC makes setup of the environments
more reproducible and served as a common means of communication between development teams and
IT operations.

We greatly profited from the OCRE contracts allowing us to flexibly use cloud offers without tender
processes and streamlining procurement. This was especially true for Microsoft Azure with whom our
university had a contract even before the describes use cases started. Existing Azure contracts enabled
immediate development initiation, contributing significantly to the reduced time to market. We can
clearly advise to strategically pick some partners and start the contracting process even before concrete
use cases are established. In our environment we made sure to have at least one hyper scaler and one
European provider available to ensure digital sovereignty. While cloud providers allow virtually infinite

171

Rapid Development Moving between Public Cloud and On-Premises Politze et al.

scalability we can easily profit for ad-hoc and high peak scenarios, but teardown processes and cost
models need to be understood thoroughly for larger deployments to prevent surprisingly high costs.

Additionally, we conclude to ensure the exit scenario while setting up public cloud use cases. In the
described use cases we mostly refrained from using software as a service (SaaS) offers but built the
services using infrastructure as a service (IaaS) components and available open source software. In the
case of SaaS LLMs we ensure that local deployments comply to the same interfaces. This ensured
portability of the provisioned infrastructure between cloud providers and on-premises.

The projects demonstrate how strategic use of cloud services can accelerate development processes,
reduce time to market, and lay the groundwork for future on-premises operations. The methodologies
serve as valuable models for similar initiatives aiming to balance rapid deployment, cost efficiency, and
long-term sustainability in technology adoption within the higher education sector.

6 Acknowledgements

DataStorage.nrw is funded by Ministerium fiir Kultur und Wissenschaft des Landes Nordrhein-
Westfalen (MKW: 214-76.01.09-7-7937 DFG: INST 222/1530-1), KI:connect.nrw and Coscine.nrw
are funded by Ministerium fiir Kultur und Wissenschaft des Landes Nordrhein-Westfalen as part of the
statewide digitalization strategy.

The conceptual work was supported with resources granted by NFDI4Ing, funded by Deutsche
Forschungsgemeinschaft (DFG) under project number 442146713, NFDI-MatWerk, funded by
Deutsche Forschungsgemeinschaft (DFG) under project number 460247524,

7 References

Gholami, M. F., Daneshgar, F., Beydoun, G., & Rabhi, F. (2017). Challenges in migrating legacy
software systems to the cloud — an empirical study. Information Systems, 67, 100—113.
doi:10.1016/}.i5.2017.03.008

Kratzke, N., & Quint, P.-C. (2017). Understanding cloud-native applications after 10 years of cloud
computing — A systematic mapping study. Journal of Systems and Software, 126, 1-16.
doi:10.1016/j.jss.2017.01.001

Nederbragt, A., Harris, R. M., Hill, A. P., & Wilson, G. (2020). Ten quick tips for teaching with
participatory live coding. PLoS computational biology, 16. doi:10.1371/journal.pcbi.1008090

Okai, S., Uddin, M., Arshad, A., Alsaqour, R., & Shah, A. (2014). Cloud Computing Adoption Model
for Universities to Increase ICT Proficiency. SAGE Open, 4. doi:10.1177/2158244014546461

Politze, M. (2022). Hybrid Cloud Scaleout: Orchestrating Workloads with GitLab. In J.-F. Desnos, R.
Yahyapour, & R. Vogl (Ed.), EPiC Series in Computing: Proceedings of EUNIS 2022 — The
28th International Congress of European University Information Systems. 86. EasyChair.
doi:10.29007/nwh7

Politze, M., & Christoph, U. (2020). Migrating from Team Foundation Server to GitLab — A Progress
Report. In Proceedings of the EUNIS 2020 Congress (pp. 51-53). Helsinki, Finland. Retrieved
from https://www.eunis.org/download/2020/EUNIS Book-of-Abstract 2020.pdf

Politze, M., Christoph, U., Decker, B., Hristov, P., Lang, 1., Nelesen, M., & Yazdi, M. A. (2023).
Supporting Software Development Processes for Academia with GitLab. EPiC Series in
Computing: Proceedings of European University Information Systems Congress 2023.
EasyChair. doi:10.29007/9157

Politze, M., Claus, F., Brenger, B., Yazdi, M. A., Heinrichs, B., & Schwarz, A. (2020). How to Manage
IT Resources in Research Projects? Towards a Collaborative Scientific Integration

172

Rapid Development Moving between Public Cloud and On-Premises Politze et al.

Environment. In Proceedings of the EUNIS 2020 Congress (pp. 45—48). Helsinki, Finland.
Retrieved from https://www.eunis.org/download/2020/EUNIS _Book-of-Abstract 2020.pdf

Politze, M., Heinrichs, B., Hunke, S., Lang, 1., & Eifert, T. (2025). FAIR Digital Objects: FAIRtilizer
for the Digital Harvest. EPiC Series in Computing. 105, pp. 284-274. EasyChair.
doi:10.29007/hfzk

8 Authors’ biographies

Dr. Marius Politze is head of the department “Research Process and Data Management” at the IT
Center of RWTH Aachen University. Before that he held various posts at the IT Center as software
developer, software architect and as a teacher for scripting and programming languages. His research
focuses on Semantic Web, Linked Data, and architectures for distributed and service-oriented systems
in the area of research data management. (CRediT: Project administration, Software, Supervision,
Conceptualization, Writing — original draft)

Bernd Decker is deputy head of the Department “Process Management and Digitalization in
Learning & Teaching” at the IT Center of RWTH Aachen University since 2011. From 2006 to 2009,
he worked at the IT Center as a Software Developer, and since 2009 he has is leading the development
group. His work focuses on IT solutions for processes in the fields of Learning Management Systems,
E-Services, and Generative Al.(CRediT: Project administration, Software, Writing — original draft)

Uta Christoph is deputy team lead of the group ‘“Process and Application Development for
Teaching” at the IT Center of RWTH Aachen University since 2018. She has worked at RWTH Aachen
University as Project Manager and Software Developer since 2014. From 2012 to 2014 she was an
international consultant for airport and cargo process optimization with Inform GmbH. Her work is now
focused on the IT support of the quality management and accreditation process of RWTH Aachen
University. (CRediT: Conceptualization, Investigation, Writing — review & editing)

173

