
EPiC Series in Computing

Volume 45, 2017, Pages 42–48

SCSS 2017. The 8th International Symposium on
Symbolic Computation in Software Science 2017

Asynchronous testing of real-time systems

Puneet Bhateja

DA-IICT Gandhinagar, India
puneet bhateja@daiict.ac.in

Abstract

Conformance testing is an operational way of determining whether an implementation
conforms to the specification or not. It has a rich underlying theory wherein the specifi-
cation and the implementation under test (IUT) are each modeled by a timed automaton
with inputs and outputs (TAIO), a variant of the classical timed automaton [1]. Test
cases generated from the specification TAIO are symbolically executed against the im-
plementation TAIO. Depending upon how test cases interact with the IUT, testing can
be synchronous or asynchronous. In synchronous testing a test case interacts with the
IUT directly, whereas in asynchronous testing a test case interacts with the IUT through
a pair of first-in-first-out (FIFO) channels. Different approaches for synchronous testing
of real-time systems have already been proposed [5],[7],[4],[8]. In this paper we propose
an approach which is aimed at testing real-time systems asynchronously (i.e., remotely
through some medium)

1 Introduction

We begin this section by defining TAIO, a state-based model that is central to our framework.

TAIO Definition: Formally, a TAIO is a tuple A = (Q, q0, C,Σ, I, E) where:

• Q is a finite set of locations.

• q0 ∈ Q is the initial location.

• C is a finite set of clocks.

• Σ is a set of actions (or the alphabet) which is further partitioned into set of input actions
Σin and set of output actions Σout.

• I is a function which assigns an invariant to each location. Formally, I : Q → Ψ(C) where
Ψ(C) refers to the set of constraints over C. Each constraint is of the form c#x, where
c ∈ C, x is an integer constant, and # ∈ {<,≤,=,≥, >}

• E is a finite set of edges e = (q, q′, φ, r, a) where:

– q, q′ ∈ Q are the source and destination locations, respectively.

M.Mosbah and M.Rusinowitch (eds.), SCSS 2017 (EPiC Series in Computing, vol. 45), pp. 42–48



Asynchronous testing of real-time systems P. Bhateja

S

True

c ≤ 3

True

I1

True

c ≤ 3

True

I2

True

True

True

!b

?a; {c}

!b; c = 2

?a; {c}

!b; 1 ≤ c ≤ 4

?a; {c}

– φ ∈ Ψ(C) is a guard.

– r ⊆ C is a set of clocks to be reset to zero.

– a ∈ Σ is an action.

TAIO differs from the classical timed automaton [1] in two respects. One, the alphabet of
TAIO is partitioned into input alphabet and output alphabet. The partitioning helps modeling
of reactive systems, that is, systems which constantly interact with their environment. Sec-
ondly, there is an invariant associated with each location. A TAIO can remain in a location
only as long as the invariant is true. Associating invariants with locations helps modeling of
systems which are time-reactive.

Semantics of TAIO Suppose we are given a TAIO A = (Q, q0, C,Σ, I, E). Now this
TAIO A implicitly defines an infinite labeled transition system LTS(A) = (S,→A, s0). Here
S is a set of states, s0 is the initial state, and →A is a transition relation. Each state s ∈ S

is of the form (q, γ), where q ∈ Q is a location of the underlying TAIO A and γ is a clock
valuation. The initial state s0 is equal to (q0, γ0), where γ0 is the valuation assigning each
clock zero. LTS(A) admits both discrete and timed transitions. A discrete transition is of the

form (q, γ)
a
→A (q′, γ[r]) where a ∈ Σ, and there is an edge (q, q′, φ, r, a) ∈ E such that γ |= φ

and γ[r] |= I(q′). Here γ[r] is obtained from γ by resetting to zero all the clocks in the set r

while leaving other clocks unchanged. A timed transition is of the form (q, γ)
t
→A (q, γ + t)

where t ∈ R and it is the case that ∀t′ ≤ t : γ + t′ |= I(q). If ∃s1, s2, · · · sn ∈ S such that

(s0
a1→A s1)∧ (s1

a2→A s2)∧ · · · ∧ (sn−1
an→A sn), then we say that there is a path from the initial

state s0 to some state sn on a1.a2 · · · an. We also say that string a1.a2. · · · an is a trace of the
TAIO A. The set of all traces of A is denoted by Traces(A).

Synchronous testing Let us now explain the formal framework for testing real-time sys-
tems. The specification and the IUT are described by TAIOs S and I, respectively. The notion
of conformance is described by the relation ≤tr defined over the set of all TAIOs. We say that
I ≤tr S holds iff it is the case that Traces(I) ⊆ Traces(S). Informally, an IUT is said to be
in conformance with the given specification if and only if it executes only those traces that are
mentioned in the specification. Figure above shows three TAIOs. Here S is the specification,
and I1 and I2 are two different IUTs. It should be noted that I1 conforms to the specification
S. On the other hand I2 does not conform to S because a4b ∈ Traces(I2) \ Traces(S). Note
that in the figure we have not shown guard φ associated with an edge, provided its value is
True. Likewise, we have not shown set of clocks r, provided it is an empty set.

Test generation means generating a test suite from the given specification TAIO. A test
suite is essentially a set of test cases, each described as a labeled transition system. Some of
the states of a test case are labeled fail. In synchronous testing the execution of a test case T

against the IUT I is described by the process T ‖LTS(I), called synchronous product of T and
LTS(I). Note that here LTS(I) refers to the labeled transition system defining the semantics of
I. Processes T and LTS(I) will perform common actions simultaneously. If T while executing

43



Asynchronous testing of real-time systems P. Bhateja

A

c ≤ 1

True FIFO

FIFO

! tea; {c}

? coin; c ≤ 3

against the IUT I lands in state fail, we say that the I has failed the test case T . While we
generate a test suite, we should ensure that the structure of each test case T should be such
that it lands in a state fail only if the IUT is non conforming.

2 Asynchronous Behavior

We now explain, by an example, what do we mean by an asynchronous behavior of a system.
The figure that follows shows a TAIO A interacting asynchronously with its environment,
through a pair of FIFO queues (the input queue and the output queue). What is output queue
for the system is input queue for the environment and vice versa. Asynchronous behavior of A
means the behavior of A visible at the other end of the queues. Note that the TAIO A describes
a tea-vending machine. The machine outputs tea spontaneously, and then goes on accepting
coin repeatedly for three time units. Now the asynchronous behavior of A will be different from
its actual behavior due to two reasons. (1) After A puts tea into its output queue, the tea will
reach the user after a certain delay caused by the queue. (2) The queues may cause distortion
also. For example, while the tea is still in the queue, the user may insert some coin into its
output queue. This means that the actual behavior of A which is tea!.(coin?)⋆ could appear to
the user as coin?.tea!.(coin?)⋆, as coin?.coin?.tea!.(coin?)⋆, and so on.

All this suggests that test cases generated for synchronous testing cannot be applied asyn-
chronously. If we want to test a system asynchronously, we must first devise an approach for
modeling the asynchronous behavior of the system from which test cases can be generated.

Now we show how to capture the asynchronous behavior of a given TAIO A with the help
of another TAIO A′. The idea is to consider the given TAIO A and the pair of queues as
one indivisible system A′ so that the asynchronous behavior of A is equal to the synchronous
behavior of A′ [9]. To put forth our idea formally, we make following assumptions.

1. Each of the channels has a bounded capacity cp.

2. Once a message enters an input or output queue, it cannot stay there for more than ub

(upper bound) units of time.

Given a TAIO A = (Q, q0, C,Σin,Σout, E, I), we define TAIO A′ = (Q′, q′0, C
′,Σ′

in,Σ
′
out, E

′, I ′)
where:

• C′ = C ∪ Cin ∪ Cout

Apart from the set of clocks C in the given TAIO A, we need Cin = {ci1, c
i
2, · · · , c

i
cp} and

Cout = {co1, c
o
2, · · · , c

o
cp} for our purpose. We will reset an input clock c ∈ Cin when a

message enters into an input queue, and likewise we will reset an output clock c ∈ Cout

when a message enters into an output queue.

44



Asynchronous testing of real-time systems P. Bhateja

• Σ′
in = Σin and Σ′

out = Σout.

The set of input actions and the set of output actions for A′ are same as that of the given
A.

• Q′ comprises tuples of the form (Fin, u, q, v, Fout).

Here Fin ⊆ {1, 2, · · · , cp} is a set of indexes of input clocks that are not in use (or are yet
to be reset). Likewise Fout ⊆ {1, 2, · · · , cp} is a set of indexes of the output clocks that
are not in use. Symbol u ∈ (Σin × N)⋆ is a string of pairs that describes the contents of
the input queue. Here each pair in the string is of the form (a, n) where a ∈ Σin and n

denotes the index of the input clock that was reset when a got into the input queue. For
example, if u = (a1, n1).(a2, n2).(a3, n3) then it means that the composite system is in a
configuration wherein the contents of the input queue are a1.a2.a3. It also means that
when a1 was entered into the input queue, clock cin1

was reset and likewise clocks cin2

and cin3
were, respectively, reset when a2 and a3 made there way into the input queue.

Similarly v ∈ (Σout × N)⋆ describes the contents of the output queue. Finally q denotes
the location of the TAIO A.

• q′0 is equal to the tuple (Fin, ǫ, q0, ǫ, Fout)

Here Fin = Fout = {1, 2, · · · , cp} which means that initially all the clocks in the sets Cin

and Cout are free. Also note that initially the TAIO A is in state q0, and both the queues
are empty.

• For each state q′ = (Fin, u, q, v, Fout) in Q′, it is the case that I ′(q′) = I(q). In other words
the invariant associated with the composite state is same as the invariant associated with
its component q.

• The set of edges E′ can be obtained, starting from the initial state q′0, by the following
rules:

R1 ∀a ∈ Σ′
in : If ∃n ∈ Fin then

(Fin, u, q, v, Fout)
a;True;{ci

n
}

−→ (F ′
in, (a, n).u, q, v, Fout).

This rule says that it is always possible for an input symbol a to get into an input
queue provided there is space for it. When there is no space in the input queue, the set
variable Fin is empty. The moment a gets into the input queue the input clock cin is
reset. In the destination state the component u is changed to (a, n).u indicating that a

has entered into the input queue and when it entered input clock cin was reset. In the
destination state the set variable Fin is updated to F ′

in = Fin −{n} indicating that clock
cin is in use now.

R2 ∀x ∈ Σ′
out :

(Fin, u, q, v.(x, n), Fout)
x;co

n
≤ub;{ }
−→ (Fin, u, q, v, F

′
out).

This rule says that any output symbol x present at the front end of the output queue can
be removed provided it has not stayed in the queue for more than ub units of time. It
also implies that when the symbol x entered into the queue, an output clock with index

45



Asynchronous testing of real-time systems P. Bhateja

n (i.e., con) was reset. Now x can be removed from the output queue subject to fulfillment
of the constraint con ≤ ub. After removing x the clock con becomes free and therefore
F ′
out = Fout ∪ {n}. Finally no new clocks are reset during the transition.

R3 If (q, q′, a, φ, r) ∈ E, then

(Fin, u.(a, n), q, v, Fout)
τ ;(ci

n
≤ub)∧φ;r
−→ (F ′

in, u, q
′, v, Fout).

This rule says that if TAIO A has a transition from state q to q′ on input symbol a,
and the symbol a is available at the front end of the input queue then the TAIO quietly
extracts symbol a form the queue. In TAIO A′ this transition is labeled by symbol τ
which means that the environment could not observe it. The transition takes place when
cin ≤ ub and φ are simultaneously true. Besides r, no additional clocks are reset during
the transition. Since the input clock in no more in use, we have F ′

in = Fin ∪ {n}.

R4 If (q, q′, x, φ, r) ∈ E and ∃n ∈ Fout then

(Fin, u, q, v, Fout)
τ ;φ;r∪{co

n
}

−→ (Fin, u, q
′, (x, n).v, F ′

out)

This rule says that the TAIO A can quietly put symbol x into the output queue, without
the external environment getting known. In TAIO A′, this transition is labeled by action
τ . It can take place if the TAIO A has a transition from state q to q′ on output symbol
x, and at the same time there is a space in the output queue. Besides r, output clock con
is reset during the transition. After putting output clock with index n in use, we have
F ′
out = Fout − {n}.

3 Asynchronous Testing

Let us recall that S and I refer to the TAIOs describing the specification and the IUT, respec-
tively. Now suppose that S′ and I′ are the TAIOs describing the asynchronous behaviors of the
specification and the IUT, respectively. As part of asynchronous testing, we need to establish
whether I′ ≤tr S′ holds or not. In this regard we are confronted with various questions.

Do we really need to test? Note that here S′ and I′ are both non deterministic finite
state TAIOs. They would be non deterministic even if S and I (from which they are respectively
obtained) are deterministic. Non determinism stems from the fact that in a given state rules
R3 and R4 can be simultaneously applicable, and therefore there can be multiple transitions
on symbol τ from that state. Now for non deterministic timed automatons, language inclusion
is an undecidable problem [2]. This negative result rules out model checking, and leaves the
designer with no option but the test the implementation vis-a-vis the specification.

How effective would asynchronous testing be? If we carefully look at each of the rules
defining A′ from A, we would notice that in every rule the premise is a linear-time condition.
This means that the execution traces of A′ are determined only by the execution traces of A.
They are independent of the branching at each node of A. This proves that if Traces(I) ⊆
Traces(S) holds, then it is also the case that Traces(I′) ⊆ Traces(S′) holds. Conversely if our
test case predicts that I′ ≤te S

′ does not hold, it will also mean that I ≤te S does not hold.

What is our testing approach? Our approach is based on simulating asynchronous test-
ing by synchronous testing. Testing I asynchronously is equivalent to testing I′ synchronously.
As part of asynchronous testing, we will generate test cases from S′ (i.e., the asynchronous ref-
erence behavior), and execute them against I′, synchronously, to determine whether I′ ≤tr S′

46



Asynchronous testing of real-time systems P. Bhateja

holds or not. However we cannot use the same test generation algorithm that we used in syn-
chronous testing, because here S′ is non deterministic. Unfortunately we cannot convert S′ into
its deterministic equivalent as timed automatons are not closed under determinization. Even
determining determinizability is an undecidable problem for timed automaton [2]. Also note
that S′ is partially observable, that is, it has transitions on un-observable action τ also.

What is the algorithm for test generation? Our test generation algorithm takes as an
input a TAIO A′ = (Q′, q′0, C

′,Σ′, E′) which is assumed to be non deterministic and partially
observable. Let LTS(A′) = (S′,→A′ , s′0) be the labeled transition system defining the semantics
of A′. Now let us define an auxiliary notation. Any subset X ⊆ S′ is considered τ−closed when
(s ∈ X) ∧ (s

τ
→A′ s′) implies s′ ∈ X . For any finite subset X ⊆ S′, its τ -closure will be

denoted by [X ]τ . A typical test case is a sub graph of the following labeled transition system
T ′ = (ST ,→T , s

T
0 ) where

• ST = {[X ]τ |X ⊆ S′}

• sT0 = [{s′0}]τ

• X
a
→T [Y ]τ where Y = {s′|∃s ∈ X ∧ s

a
→A′ s′}

• X
a
→T fail if 6 ∃s ∈ X such that s

a
→A′ s′.

A test case is generated incrementally step by step, starting from the initial state. From a given
state, whether a test case should be generated any further is decided in a non deterministic
manner. Various non deterministic choices will give rise to different test cases.

We now explain the intuition behind the above test generation algorithm. Let us define a
notation first. If σ is some execution trace of A′, then Ob(σ) corresponds to the observable
trace which is obtained by removing τ actions. For example if σ = a2b3.5τ.2.5.a, then Ob(σ) =
a2b6a. T ′ is essentially that labeled transition system (1) which is in state {s1, s2, · · · , sn} after
processing Obs(σ) iff LTS(A′) after processing σ is in state s1 or s2 or ...or sn, and (2) which
is in state fail after processing Obs(σ) iff σ 6∈ Traces(A′).

Using this algorithm, we can generate a test suite from the reference asynchronous behavior
S′. It is not difficult to imagine that a test case while executing synchronously against the IUT
I′ will get into state fail only if I′ does not conform to S′.

4 Conclusion

In this paper we have proposed an approach for testing real-time systems asynchronously. While
the existing asynchronous approaches were based on testing non real-time systems [6],[3],[9],
ours is based on testing real-time systems.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 1994.

[2] R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. In International

School on Formal Methods for the Design of Computer, Communication and Software Systems,

SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, pages 1–24, 2004.

[3] P. Bhateja. A tagging protocol for asynchronous testing. In 5th IEEE Conference on theoretical

aspects of software engineering, X’ian, China, pages 11–18, 2011.

[4] L. B. Briones and M. Röhl. Test derivation from timed automata. In Model-Based Testing of

Reactive Systems, pages 201–231, 2004.

47



Asynchronous testing of real-time systems P. Bhateja

[5] A. Hessel and K. Larsen. Time-optimal real-time test case generation using UPPAL. In Formal

Approaches to Software Testing, Montreal, Canada, 2003, 2003.

[6] C. Jard, T. Jéron, L. Tanguy, and C. Viho. Remote testing can be as powerful as local testing. In
FORTE, pages 25–40, 1999.

[7] A. Khoumsi, T. Jéron, and H. Marchand. Test cases generation for nondeterministic real-time
systems. In Formal Approaches to Software Testing, Montreal, Canada, 2003.

[8] M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems. In 11th Interna-

tional SPIN Workshop, Barcelona, Spain, 2004.

[9] L. Verhaard, J. Tretmans, P. Kars, and E. Brinksma. On asynchronous testing. In Protocol Test

Systems, pages 55–66, 1992.

48


	Introduction
	Asynchronous Behavior
	Asynchronous Testing
	Conclusion

