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Abstract 

In this paper, we introduce RACCOON, a reasoner based on the connection calculus 

ALC 𝜃-CM for the description logic ALC. We describe the calculus, and present details of 

RACCOON’s implementation. Currently, RACCOON carries out only consistency 

checks, and can be run online; its code is also publicly available. Besides, results of a 

comparison among RACCOON and other reasoners on the ORE 2014 and 2015 

competition problems with ALC expressivity are shown and discussed. 

1 Introduction 

Description Logics (DLs) (Baader et al, 2003) are a set of knowledge representation formalisms, 

which received strong interest in the recent years, particularly after the Semantic Web inception. They 

constitute the basis for the W3C standard Web Ontology Language (OWL). DL reasoning has also 

deserved plenty of attention from practitioners from the field of automated reasoning. 

Surprisingly, DL reasoners based on the well-known connection method (Bibel, 1993) did not show 

up in this scenario so far, given the goal-directed search it implements and the fact that they have 

successfully been adapted to some popular non-classical logics, such as first-order intuitionistic and 

modal logics (Otten 2008, 2014). These distinctive features led us to the idea of proposing a connection 

method and its implementation specially tailored to infer over DL Semantic Web ontologies.  

In this paper, we present RACCOON (Reasoner based on the Connection Calculus Over 

ONtologies), an inference engine for the ALC description logic fragment. It is capable of parsing and 

reasoning over OWL 2 ALC ontologies, translating them into a functional syntax and then to a 

RACCOON internal format. The reasoner was developed using the C++11 standard for performance 

and portability. It is based on the DL connection method ALC 𝜃-CM (Freitas and Otten, 2016). 

The paper is organized as follows. Section 2 describes the connection method implemented in our 

reasoner. Section 3 presents details of the system’s architecture, internal data structures and pseudo-

code. Section 4 shows and discusses performance results. Section 5 concludes the article with a 

summary and outlook on ongoing and future work. 
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2 The Description Logic ALC  and the ALC 𝜃-CM calculus 

The RACCOON system currently supports the well-known DL ALC, whose concepts are formed 

according to the following syntax rule: C ::= A | ⊤ | ⊥ | C ⊓ D | C ⊔ D | ¬C | r.C | r.C, where A ranges 

over concept names, r over role names, and C, D over concepts. Two more restricted DLs, ALE and AL 

are also used in this paper: ALE is equal to ALC excluding disjunctions (C ⊔ D), and complements (¬C) 

apply only to concept names (¬A); AL is equal to ALE,  replacing r.C  by r.⊤. 

 An AL/E/C ontology O is an ordered pair (T,A), where the TBox T  is a set of basic axioms in one of 

the two forms C ⊑ D or C ≡ D, and an ABox A w.r.t. a TBox T  is a set of assertions of two types: (i) a 

concept assertion is a statement of the form C(a), and (ii) a role assertion r(a,b), where a,b are 

individuals. An ALC formula is either an axiom or an assertion. The semantics of concepts and 

ontologies is defined in the usual way - see, e.g., (Baader et al, 2013). 

2.1 ALC Matrix Representation 

The Connection Method (CM) (Bibel, 1993) deduces if an ontology O entails a formula 𝛼 (O ⊨𝛼) 
by checking O → 𝛼, i.e., if the formula 𝐶1 ∧ … ∧ 𝐶𝑛 →  𝛼 is valid; this holds iff ¬O ∨ 𝛼 is a tautology 

(in disjunctive normal form). The effects for the conversion of the formulae to DNF are: (i) axioms of 

the form 𝐸 ⊑ 𝐷 , since negated, translate into 𝐸 ∧ ¬𝐷;  (ii) ABox assertions are negated; (iii) the 

consequent 𝛼 is not negated. Below, we present definitions concerning ALC ontologies’ representation 

as matrices for the (ALC 𝜃-)CM. 

Definition 1 (ALC  literal, DNF, clause, (graphical) matrix). ALC Literals are atomic concepts or 

roles, possibly negated. An ALC formula in disjunctive normal form (DNF) is a disjunction of 

conjunctions (like 𝐶1 ∨ … ∨ 𝐶𝑛 ), where each clause 𝐶𝑖  has the form 𝐿1 ∧ … ∧ 𝐿𝑚  and each 𝐿𝑖  is a 

literal. An (ALC) matrix is a set {𝐶1, … , 𝐶𝑛}, where each 𝐶𝑖 has the form {𝐿1, … , 𝐿𝑚}. Literals involved 

in an universal or existential restriction (r.C or r.C) are underlined. When a restriction involves more 

than one clause, its literals are indexed with a same new column index number at their top. In a graphical 

matrix, clauses are columns, restrictions with indices are horizontal lines, while restrictions without 

indices are vertical lines (see Examples 2, 3 and 4). 

Definition 2 (Impurity, pure conjunction/disjunction). Impurity in an ALC formula is a disjunction 

in a conjunction, or a conjunction in a disjunction. A pure conjunction (PC) or disjunction (PD) does 

not contain impurities. 

Example 1 (Impurity, pure conjunction/disjunction). (a) ∃𝑟. 𝐴 and ⋀ 𝐴𝑖
𝑛
𝑖=1  are pure conjunctions, 

i.e., A and each 𝐴𝑖 are also PCs. (b) ∀𝑟. (𝐷0 ⊔ … ⊔ 𝐷𝑛 ⊔ (𝐶0 ⊓ … ⊓ 𝐶𝑚) ⊔ (𝐴0 ⊓ … ⊓ 𝐴𝑝)) is not a 

pure disjunction, as it contains two impurities: (𝐶0 ⊓ … ⊓ 𝐶𝑚) and (𝐴0 ⊓ … ⊓ 𝐴𝑝). 

Definition 3 (Two-lined disjunctive normal form). An ALC axiom is in two-lined DNF iff it is in DNF 

and in one of the normal forms (NFs): (i) �̂� ⊑ �̌�; (ii) 𝐸 ⊑ �̂�; (iii) �̌� ⊑ 𝐸, where E is a concept name*, 

𝐸 ̂𝑖𝑠 a pure conjunction, and �̌� is a pure disjunction. 

Example 2 (Two-lined disjunctive normal form). The axioms (i) �̂� ⊑ �̌�; (ii) 𝐸 ⊑ ∃𝑟. �̂�  and (iii) 

∀𝑟. �̌� ⊑ 𝐸, where 𝐸 ̂ = ⋀ 𝐶𝑖
𝑛
𝑖=1  and �̌� = ⋁ 𝐷𝑗

𝑚
𝑗=1  are represented in Figure 1. 𝐶𝑖, 𝐷𝑗  are ALC literals. 

                                                           
* The symbols E and �̂� were chosen here to designate a concept name and a pure conjunction rather than the usual C and �̂�, 

to avoid confusion with clauses, that are also denoted by C. 
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𝑖) 1𝑁𝐹: 

[
 
 
 
 
 

𝐶1

⋮
𝐶𝑛

¬𝐷1

⋮
¬𝐷𝑚]

 
 
 
 
 

      𝑖𝑖) 2𝑁𝐹: [
𝐸 ⋯ ⋯ 𝐸
¬𝑟 ¬𝐶1 ⋯ ¬𝐶𝑛

]          𝑖𝑖𝑖) 3𝑁𝐹: [
¬𝑟 𝐷1 ⋯ 𝐷𝑚

¬𝐸 ⋯ ⋯ ¬𝐸
]      

Figure 1: Examples of the three two-lined normal forms’ representations in ALC. 

Example 3 (Two-lined DNF). Table 1 shows examples of quantification restrictions. Vertical lines 

represent existential restrictions (∃𝑟. 𝐶), horizontal lines represent universal restrictions (∀𝑟. 𝐶) on the 

left-hand side axiom’s sub-formula or the opposite on the right-hand side. Note also that, if written in 

first-order logic (FOL), Skolem functions should appear in the two last NFs in Table 1 (e.g., ¬r(x,f(x)) 

would replace ∃𝑦…¬r(x,y)). 

Axiom  Matrix Negated FOL mapping 

∃𝑟. �̂� ⊑ ∀𝑠. �̌� 

with �̂� a pure 

conjunction,          

�̌� a pure 

disjunction 
[
 
 
 
 
 
 
 

𝑟
𝐸1

⋮
𝐸𝑛

𝑠
¬𝐷1

⋮
¬𝐷𝑚]

 
 
 
 
 
 
 

 

∃𝑥∃𝑦∃𝑧 
(r(x,y) ∧  

𝐸1(y) ∧…∧ 𝐸𝑛(y)  
∧ 

(s(x,z) ∧ 
 ¬𝐷1(z) ∧…∧ ¬𝐷𝑚(z)) 

𝐴 ⊑ ∃𝑟. �̂�   
A is a concept 

name, �̂� as above 

[
𝐴 ⋯ ⋯ 𝐴
¬𝑟 ¬𝐸1 ⋯ ¬𝐸𝑛

] 
∃𝑥∀𝑦((A(x)∧ ¬r(x,y)) 

∨ (A(x) ∧ ¬𝐸1(y))  
∨...∨ (A(x) ∧ ¬𝐸𝑛(y))) 

∀𝑟. �̌�  ⊑ 𝐴  

𝐴, �̌� as above 
[
¬𝑟 𝐷1 ⋯ 𝐷𝑚

¬𝐴 ⋯ ⋯ ¬𝐴
] 

∀𝑥∃𝑦  
(¬r(x,y) ∧ ¬A(x)) ∨ 

(𝐷1(y) ∧ ¬A(x)) ∨...∨ 
(𝐷𝑚(y) ∧ ¬A(x)) 

Table 1: Examples of quantification restrictions. 

Remark 1 (Two-lined DNF). Relying on these normal forms saves memory by avoiding redundancies 

in the matrix. To reach these forms, new symbols may be introduced (see Example 4). These symbols 

are neither allowed to occur in the original formula nor are they introduced in former steps of the 

normalization procedure. Nevertheless, normalized, “purified” TBoxes are conservative extensions 

(Ghilardi et al, 2006) of their originals, since to every model of the former there is a (sometimes distinct) 

model of the latter and, thus, validity is preserved. 

Definition 4 (Cycle, cyclic/acyclic ontologies and matrices). If A and B are atomic concepts in an 

ontology O, A directly uses B, if B appears in the right-hand side of a subsumption axiom whose left-

hand side is A. Let the relation uses be the transitive closure of directly uses. A cyclic ontology or matrix 

has a cycle when an atomic concept uses itself; otherwise it is acyclic (Baader et al. 2003); for instance, 

O = {A ⊑ ∃r.B, B ⊑ ∃s.A} is a cyclic ontology. 

Example 4 (Clause, ALC matrix). {𝑊𝑜𝑚𝑎𝑛 ⊓ ∃ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑. 𝑃𝑒𝑟𝑠𝑜𝑛 ⊑ 𝑀𝑜𝑡ℎ𝑒𝑟, 𝑀𝑜𝑡ℎ𝑒𝑟 ⊓

∀ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑. 𝐻𝑒𝑎𝑙𝑡ℎ𝑦 ⊑ 𝐻𝑎𝑝𝑝𝑦, 𝑊𝑜𝑚𝑎𝑛(𝑎), ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝑎, 𝑏), 𝑃𝑒𝑟𝑠𝑜𝑛(𝑏), 𝐻𝑒𝑎𝑙𝑡ℎ𝑦(𝑏)} ⊨ 𝐻𝑎𝑝𝑝𝑦(𝑎) reads 

∀𝑥 (𝑊𝑜𝑚𝑎𝑛(𝑥) ∧ ∃𝑦 (ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝑥, 𝑦)  ∧  𝑃𝑒𝑟𝑠𝑜𝑛(𝑦)))   → 𝑀𝑜𝑡ℎ𝑒𝑟(𝑥)  

∀𝑧 (𝑀𝑜𝑡ℎ𝑒𝑟(𝑧) ∧ ∀𝑘 (ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝑧, 𝑘)  → 𝐻𝑒𝑎𝑙𝑡ℎ𝑦(𝑘))) → 𝐻𝑎𝑝𝑝𝑦(𝑧)             ⊨ 𝐻𝑎𝑝𝑝𝑦(𝑎) 

𝑊𝑜𝑚𝑎𝑛(𝑎), ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝑎, 𝑏), 𝑃𝑒𝑟𝑠𝑜𝑛(𝑏), 𝐻𝑒𝑎𝑙𝑡ℎ𝑦(𝑏) 
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in FOL, and is represented by the following two-lined DNF FOL matrix (f is a Skolem function and A 

is a new symbol, introduced to transform the formula into the two-lined normal form):  

{{Woman(x), hasChild(x,y), Person(y), ¬Mother(x)}, {Mother(z), ¬Happy(x), A} {¬A, ¬hasChild(x,f(x))}, {¬A, 

¬Healthy(f(x))}, {¬Woman(a)}, {¬hasChild(a,b)}, {¬Person(b)}, {¬Healthy(b)}, {Happy(a)}} . 

The following ALC matrix represents the same matrix in our DL notation (the column indices mark the 

clauses’ pairs involved in a same restriction): 

{{Woman, hasChild, Person, ¬Mother}, {Mother, ¬Happy, A} {¬A, ¬ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑1 }, {¬A, ¬𝐻𝑒𝑎𝑙𝑡ℎ𝑦1 }, 

{¬Woman(a)}, {¬hasChild(a,b)}, {¬Person(b)}, {¬Healthy(b)}, {Happy(a)}} 

[

𝑊 𝑀𝑜 ¬𝐴 ¬𝐴 ¬𝑊(𝑎) ¬ℎ𝐶(𝑎, 𝑏) ¬𝑃(𝑏) ¬𝐻𝑒(𝑏) 𝐻𝑎(𝑎)

ℎ𝐶 ¬𝐻𝑎 ¬ℎ𝐶 𝐻𝑒
𝑃 𝐴

¬𝑀𝑜

] 

Figure 2: Example 4 represented as an ALC matrix. A is a new symbol, introduced to transform the formula to the 

two-lined normal form (see Definition 3) . Predicate names are abridged. 

2.2 The ALC 𝜃-Connection Calculus (ALC 𝜃-CM) 

 ALC 𝜃-CM differs from the classical CM in three aspects, just as other DL systems: (i) it rules out 

variables from the representation, (ii) it replaces Skolem functions and unification by 𝜃-substitutions, 

and, (iii) it employs blocking to assure termination. Below, we present the calculus’ formalization. 

Proofs of soundness, completeness of the calculus can be found in (Freitas and Otten, 2016). 

Definition 5 (Path, 𝜃-substitution, (𝜃-complementary) connection). A path through a matrix M 

contains exactly one literal from each clause in M. A 𝜃-substitution assigns each (possibly omitted) 

variable an individual or another variable (in the whole matrix), respecting the Skolem condition (see 

Definition 6 below). A connection is a pair of literals {𝐸, ¬𝐸} with the same concept/role name, but 

different polarities. A 𝜃-complementary connection is a pair of ALC literals {𝐸(𝑥), ¬𝐸(𝑦)}  or 

{𝑝(𝑥, 𝑣), ¬𝑝(𝑦, 𝑢)}, with 𝜃(𝑥) = 𝜃(𝑦), 𝜃(𝑣) = 𝜃(𝑢). The complement �̅� of a literal 𝐿 is 𝐸 if 𝐿 = ¬𝐸, 

and it is ¬𝐸 if 𝐿 = 𝐸. 

Definition 6 (Set of concepts, Skolem condition). The set of concepts 𝜏(𝑥) of a variable or individual 

x contains all concepts that were substituted/instantiated by 𝑥 so far, i.e. 𝜏(𝑥) ≝ {𝐸(𝑥) ∈ 𝑃𝑎𝑡ℎ}, where 

E is a concept and 𝐸(𝑥) is a substituted/instantiated literal coming from this concept. The Skolem 

condition ensures that at most one concept is underlined in the graphical matrix. The condition is 

formally stated as, ∀𝑎 | {𝐸𝑖(𝑎)  ∈ 𝑃𝑎𝑡ℎ } | ≤ 1, with 𝑎 a variable/individual, and i a column index. 

Remark 2 (𝜃-substitution). Simple term unification without Skolem functions is used to calculate 𝜃-

substitutions. Similarly to unification, the application of a 𝜃-substitution to a literal is an application to 

its variables, i.e. 𝜃(𝐸) = 𝐸(𝜃(𝑥)) and 𝜃(𝑟) = 𝑟(𝜃(𝑥), 𝜃(𝑦)), 𝐸 is a concept and 𝑟 is a role. Freitas and 

Otten (2016) show that using 𝜃-substitution (over formulae without any Skolem functions) under the 

ALC 𝜃-CM calculus (see next definition) is equivalent to using unification (with formulae possibly 

containing Skolem functions) under the classical connection calculus for ALC formulae in FOL, since 

ALC is a subset of FOL and both calculi embedding their respective procedures (𝜃 -substitution, 

unification) return the same results w.r.t. validity, when given the same inputs.  

Definition 7 (ALC connection calculus). Figure 3 shows the ALC 𝜃-CM calculus, adapted from the 

classical CM (Otten, 2010). The calculus’ rules are applied bottom-up. The basic structure is the tuple 
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<C, M, Path>, clause C being the open sub-goal, M the matrix corresponding to O ⊨𝛼, Path the active 

path, i.e. the (sub-)path currently checked. A clause 𝐶𝜇 is the 𝜇-th copy of clause C, 𝜇 ∈ ℕ. 𝜇 is the 

indexing function, increased when the Copy rule is applied for that clause (the variable x in 𝐶𝜇  is 

denoted by 𝑥𝜇). When the Copy rule is used, it has to be followed by an application of the Extension or 
Reduction rule, to avoid non-determinism. The Blocking Condition is stated as follows: for a new 

individual 𝑥𝜇 in the cycle, its set of concepts should be larger than/distinct from the set of concepts of 

the previous copied individual, i.e., 𝜏(𝑥𝜇) ⊈ 𝜏(𝑥𝜇−1)  (Schmidt and Tishkovsky, 2007, Freitas and 

Otten, 2016). 

𝐴𝑥𝑖𝑜𝑚 (𝐴)     
{ },𝑀, 𝑃𝑎𝑡ℎ

    

𝑆𝑡𝑎𝑟𝑡 𝑅𝑢𝑙𝑒 (𝑆)     
𝐶1, 𝑀, {}

𝜀,𝑀, 𝜀
   𝑤𝑖𝑡ℎ 𝐶1 ∈ 𝛼 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝑅)     
𝐶,𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}
  

𝑤𝑖𝑡ℎ 𝜃(𝐿1) = 𝜃(𝐿2
̅̅ ̅)  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑆𝑘𝑜𝑙𝑒𝑚 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠 

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝐸)  
𝐶2\{𝐿2},𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿1}      𝐶,𝑀, 𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ
 

𝑤𝑖𝑡ℎ 𝐶2 ∈ 𝑀,  𝐿2 ∈ 𝐶2, 𝜃(𝐿1) = 𝜃(𝐿2
̅̅ ̅)  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑆𝑘𝑜𝑙𝑒𝑚 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠  

𝐶𝑜𝑝𝑦 𝑅𝑢𝑙𝑒 (𝐶)  
𝐶 ∪ {𝐿1},𝑀 ∪ {𝐶2

𝜇
}, 𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ
 

𝑤𝑖𝑡ℎ 𝐶2
𝜇
 𝑖𝑠 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝐶1, 𝐿2 ∈ 𝐶2

𝜇
, 𝐶1 ∈ 𝑀,𝜃(𝐿1) = 𝜃(𝐿2

̅̅ ̅) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠 

Figure 3: The connection calculus ALC 𝜃-CM. 

Remark 3 (Copy rule, blocking Skolem condition, ALC connection calculus). The CM for FOL 

already copies clauses, using the indexing function 𝜇; however, since it does not need blocking an 

explicit rule is not needed. Here, the Copy rule implements blocking (Baader et al., 2003), portraying 

the cases when no alternative connection is available and cyclic ontologies occur. It restricts clause 

copies and the creation of new individuals, thus preventing non-termination due to the presence of an 

infinite cycle. Note, however, that, instead of working with the original matrix M, we may be using M’, 
which is M with some clauses copied. The Skolem condition avoids the situation where, in classical 

logic, unification fails for two distinct Skolem functions.  

Example 5 (ALC  𝜽-CM). Figures 4 and 5 show the connection proof of Example 4 by a graphical 

matrix and the formal calculus. For a step-by-step proof example, see (Freitas and Otten 2016). 

 

[

¬𝑃(𝑏) ¬ℎ𝐶(𝑎, 𝑏) ¬𝑊(𝑎) 𝑊 𝑀𝑜 ¬𝐴 ¬𝐴 ¬𝐻𝑒(𝑏) 𝐻𝑎(𝑎)

ℎ𝐶 𝐴 ¬ℎ𝐶 𝐻𝑒
𝑃 ¬𝐻𝑎

¬𝑀𝑜

] 

 

Figure 4: The matrix proof for Example 4. Labels over the arcs indicate individuals involved in the connection. 

The order of columns was changed to increase readability. 

 (a,b)      a           b 

a  a 

b    a 
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Figure 5: The connection proof using the formal ALC  𝜃-CM connection calculus. M is an abbreviation for  

𝑀 ={{W, hC, P, ¬Mo}, {Mo, ¬Ha, A} {¬A, ¬ℎ𝐶1}, {¬A, ¬𝐻𝑒1}, {¬W(a)}, {¬hC(a,b)}, {¬P(b)}, {¬He(b)}, {Ha(a)}}. 

3 RACCOON: A Reasoner based in ALC 𝜃-CM 

 We developed RACCOON (ReAsoner based on the Connection Calculus Over ONtologies), a 

reasoner based on the ALC 𝜃-CM calculus. It is coded in C++ and is publicly available at 

http://github.com/dmfilho/raccoon . Ontologies in the OWL functional format written in ALC or more 

restricted DLs can be verified for consistency with the reasoner online at 

http://raccoon.bitroot.com.br/test . RACCOON consists of three modules: Parser, Preprocessor and 

Reasoner, as displayed in Figure 6. 

 

Figure 6: RACCOON's modules, inputs and outputs. 

The parser loads the OWL ontology and converts it into an Abstract Syntax Tree which optionally 

can be reduced by the Preprocessor. The next step, normalization, is applied by the latter to create a set 

of ALC DNF two-lined normalized clauses. The normalization results in clauses following the forms 

described in Definition 3. Therefore, the input for the reasoner is an Abstract Tree in ALC DNF two-

lined normal form as described above, containing normalized clauses. 

3.1 Regularity 

As for optimizations, we did not implement yet any typical DL optimization, such as backjumping 

(Baader et al 2013), among others. In the preprocessing phase, clauses with pure literals, i.e., the ones 

without complements in the matrix, are eliminated (Brachman and Levesque, 2004).  
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The only optimization integrated is regularity (Letz et al, 1994), which is already successfully used 

in the CM for FOL. It avoids redundant literals by restricting the Extension rule to clauses which do 

not contain any of the literals already present on the active path. For the classical FOL connection 

method, the regularity condition requires that the active Path contains no literals from the extension 

clause 𝐶2,, under unification. For the ALC 𝜃-CM, the same condition holds, using 𝜃-substitution instead 

of unification. The regularity condition holds only if  

∄𝐿𝑐 ∈ 𝐶2, 𝐿𝑝 ∈ 𝑃𝑎𝑡ℎ | 𝜃(𝐿𝑐) = 𝜃(𝐿𝑝). 

Then, the Extension rule is restricted to clauses 𝐶2, such that the regularity condition holds. 

3.2 Normalization, Data Structures and Indexing 

 Although normalized, clauses are represented in a form slightly different from the two-lined DNF. 

The implemented DNF form represents clauses in the normal forms 𝐸 ⊑ �̂�, �̌� ⊑ 𝐸 (E is concept name, 

𝐸 ̂𝑖𝑠 a pure conjunction, and �̌� is a pure disjunction), as an one-lined submatrix. This is a small memory 

optimization in the representation, as, in many cases, it prevents literals to be repeated in the matrix 

and, thus, connected more than once (such as ¬𝐴 in Example 4). 

As for indexing, each clause contains a list of instances, where each instance is associated to one of 

its variables. Both literals and instances are uniquely identified by integers. Each literal has two lists of 

clauses containing the literal’s complements, i.e. clauses to which connections are possible. The Path 

is implemented as a stack.  

3.3 The Reasoning Algorithm 

RACCOON reasons by applying ALC 𝜃-CM rules, as displayed in the pseudo-code of Figure 7. For 

the sake of clarity, the pseudo-code was simplified, i.e., some lower-level steps were omitted.  

01: func proveLiteral (clause, literalIndex, path) { 
02:  if literalindex >= clause.size()  \\ check if clause literals exhausted 
03: return true;     
04: if path.contains (literalindex)  \\ regularity: if literal is already in the path 
05: return false;     
06:  if path.containsNeg (literalindex)  \\ Reduction rule 
07: return proveLiteral (clause, literalIndex+1, path)  \\ try next literal 
08: path.push (literalIndex);   \\ put literal on path 
09: for each connection in literal.connections {   \\ try each literal’s possible connection 
10: if connection.valid (path) {  \\ if we prove with the current connection 
11: path.pop ();    \\ remove literal from path to try next literal 

12: if proveLiteral (clause, literalIndex+1, path)  \\ and try the clause’s next literal 

13: return true;    
14:        path.push (literalIndex)  \\ if failed, push the literal back again 
16:    }     \\ and try next connection (backtrack) 
17: } 
18: path.pop (); 
19: return false;    \\ no connection worked; not proven 
20:} 

Figure 7: RACCOON's simplified pseudo-code. 

The Start Rule consists of calling the method proveLiteral with the first literal from the start clause, 

the literal with literalIndex of 0 (each clause is a literal array, with indices starting from 0). Any clause 

from consequent 𝛼, not created by the normalization, can be a start clause. Initially, the Path is empty.  
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Since it is a recursive method, the algorithm first checks the base case: if there are no more literals 

to be tested in the clause (line 2) then the method has proven this part, and the Axiom rule is reached 

(line 3). Next, to speed up processing, regularity is checked, by verifying whether the literal is already 

in the path (line 4). If this is the case, this search branch is abandoned.   

After these tests, RACCOON tries to apply the Reduction rule: function containsNeg (line 6) 

verifies if there is a literal negation (the complement) already in the Path. If so, the current branch is 

proven, and the next literal of the clause will be checked. 

The last, most expensive and main option to solve the current literal, the Extension Rule, is tested 

against each possible connection within the loop starting at line 8. The literal is put in the Path, and, in 

case the current connection worked, the literal is popped from the Path stack, and the next literal will 

be verified (line 12). If the connection did not work, the literal is reinserted in the Path stack for the 

algorithm to backtrack and try the next possible, available connection, if any.  
 The Skolem condition validation is performed inside the valid method from the connection class, 

called in line 10. This condition was easy to implement: it suffices to creates a flag for each variable/ 

individual in the Path being checked, denoting if the Path already contains an underlined concept for 

that variable/individual. In this case, a new connection cannot be set.  

The Copy Rule is also located within the same method. It does not actually copy a clause object into 

the matrix; instead, it represents the copy by allocating memory for a new set of instances for the clause, 

when the blocking condition holds. This implementation was inspired by the connection structure 

calculus (Eder 1992). 

A last remark on the algorithm refers to the backtracking possibilities. For connection calculi, the 

possibilities reside in varying (i) initial clauses, (ii) unifiers and (iii) connections. For ALC 𝜃-CM, 

regarding initial clauses, the method proveLiteral should be invoked for all clauses of the consequent 

𝛼, if necessary. As for unifiers, ALC 𝜃-CM does not include functions; thus, the 𝜃-substitutions are 

never complex, as they are either variable changes or a substitution of a variable by an individual, that 

can occur only once in each path. In any case, 𝜃-substitutions never include term decompositions; 

consequently, it is clearly a one-step procedure, without the need of further backtracking. The third 

possibility, the backtracking over possible connections, is carried out inside the algorithm. After having 

exhausted all possibilities without closing all paths, the ontology is deemed consistent, as the algorithm 

has failed in proving its inconsistency.  

4 Experiments  

 We conducted a practical evaluation of RACCOON and compared it to other reasoners that 

participated in ORE (Ontology Reasoning Evaluation), the yearly DL reasoner’s competition (Bail et al 

2014). The other reasoners are Konclude (Steigmiller et al, 2014), the current ORE champion, Hermit 

(Glimm et al, 2014) and FACT++ (Tsarkov and Horrocks, 2006). 

 In the experiments, only the ORE consistency task was considered. Each reasoner was tested on all 

ontologies, which had AL, ALE and ALC expressivity from the 2014 and 2015 ORE’s datasets. The 

former contains 1,621 ontologies of this kind, and the latter 401. Tests were run on a machine with 8 

GB RAM and Intel core i5 @ 2.3 GHz, with two cores. Only Konclude is multithreaded, i.e., it is the 

only reasoner that takes advantage of the two cores. Timeout for each problem was set to 250 seconds. 

Times were measured in microseconds summing up parsing, normalization and reasoning times; in the 

tables they are presented in seconds. The detailed results from each ontology, as well as consolidated 

results under many perspectives, are available at goo.gl/V9Ewkv . 

Results of the performance of RACCOON and other solvers on the ORE 2014, 2015 problem 

ontologies are displayed in the next two tables. We first analyzed, for each DL expressivity (AL, ALE  
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and ALC), the number of solved ontologies that each reasoner solved in the fastest time. These data are 

presented in Tables 2 and 3.  
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0 - < 0.1s 592 0 0 577 272 0 0 310 46 0 0 47 

0.1 - < 1s 201 143 659 195 194 125 393 285 8 26 51 9 

1 - < 10s 13 666 157 44 87 574 323 127 1 30 5 0 

10 - < 100s 7 11 7 9 30 26 4 18 1 0 0 0 

 100 - < 250s 0 1 0 0 3 8 3 0 0 0 0 0 

Timeouts 12 4 2 0 154 7 17 0 0 0 0 0 

Fastest 683 0 0 142 363 0 6 371 45 0 0 11 

Table 2: Results of RACCOON and ORE competitors for consistency on the ORE 2014 ontologies. 
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Ontologies 

by  

Time 

Interval 

AL – 167 ontologies ALE – 198 ontologies ALC  – 36 ontologies 
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0 - < 0.1s 77 0 0 73 55 0 0 60 12 0 0 13 

0.1 - < 1s 65 75 91 60 77 52 97 87 12 13 18 17 

1 - < 10s 13 83 63 23 40 123 75 32 7 19 14 3 

10 - < 100s 7 4 8 11 17 6 4 19 4 4 1 3 

 100 - < 250s 0 0 0 0 1 10 1 0 0 0 0 0 

Timeouts 5 5 5 0 8 7 21 0 1 0 3 0 

Fastest 141 0 0 26 143 0 1 54 23 1 0 12 

Table 3: Results of RACCOON and ORE competitors for consistency on the ORE 2015 ontologies. 

The first observation is the high number of 166 RACCOON timeouts in the ORE 2014 dataset (while 

Hermit and Fact++ had only 11 and 19, respectively). On the other hand, for the ORE 2015 dataset, 

RACCOON had far less timeouts than Fact++ (14 against 29), and almost as many as Hermit. 

 Konclude performed consistently excellent throughout all tests, not exceeding the 250s limit a single 

time; besides that, RACCOON and Konclude were almost always the fastest solvers in all segments. 

RACCOON was the fastest in most of the ontologies, in all expressivities and ontology sizes for both 

datasets (see detailed results at goo.gl/V9Ewkv). RACCOON’s good performance is likely due to the 

efficient parsing, and the few, small optimizations implemented in the reasoner. Furthermore, 

RACCOON is restricted to ALC, whereas the other solvers can also deal with larger DL fragments. 

Tables 4 and 5 exhibit statistics on average times with respect to the number of axioms in the 

ontologies of ORE 2014 and 2015 baselines. 

For the AL fragment, RACCOON exhibits the lowest average time for all ontology sizes in ORE 

2014 and 2015. For ALE ontologies, RACCOON has average times only marginally higher than those 

of Koncludeand similar to those of Fact++. In ALC, however, the lack of DL typical optimizations came 

into play, making RACCOON’s average times raise significantly. Another aspect to be noted is that 

RACCOON performs better for small ontologies, as can be seen in Figure 8. On the other hand, 

RACCOON is the reasoner whose times increase more rapidly when ontology size increases. 
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0-𝟏𝟎𝟑 axs 837 0.03 2.75 0.49 0.04 1.90 2.36 0.57 0.05 0.03 1.70 0.49 0.04 

𝟏𝟎𝟑-𝟏𝟎𝟒 315 0.14 4.22 0.82 0.17 2.87 2.60 0.84 0.17 8.22 2.10 0.75 0.16 

𝟏𝟎𝟒-𝟏𝟎𝟓 427 0.58 3.53 1.64 0.86 1.55 4.99 3.97 0.99 1.66 3.49 1.19 0.38 

𝟏𝟎𝟓-𝟏𝟎𝟔 39 14.80 25.58 20.91 27.99 15.65 66.63 16.65 15.32 - - - - 

≥ 𝟏𝟎𝟔axs 3 N/A 51.94 N/A 40.66 41.44 53.67 53.73 58.73 - - - - 

Average  - 0.30 3.34 0.94 0.55 2.79 5.60 2.45 1.21 0.79 1.92 0.58 0.08 

Table 4: Comparative evaluation of RACCOON and ORE competitors for the task of consistency on the 

ORE 2014 ontologies. “N/A” indicates that all ontologies of the segment timed out for the reasoner.  
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0-𝟏𝟎𝟑 axs 119 0.03 0.80 0.47 0.04 1.53 0.91 0.57 0.06 0.50 0.82 0.49 0.04 

𝟏𝟎𝟑-𝟏𝟎𝟒 96 0.12 1.09 0.73 0.15 7.67 1.25 0.77 0.22 10.94 1.17 0.82 0.19 

𝟏𝟎𝟒-𝟏𝟎𝟓 136 0.56 2.16 1.61 0.84 0.89 3.97 5.48 1.24 1.49 1.75 1.33 0.51 

𝟏𝟎𝟓-𝟏𝟎𝟔 48 11.43 13.86 26.30 21.45 10.07 84.00 9.26 16.81 11.42 15.74 13.89 15.19 

≥ 𝟏𝟎𝟔axs 2 N/A 41.80 N/A 38.72 - - - - 25.71 41.67 N/A 33.48 

Average  - 1.28 2.39 2.83 2.49 4.20 11.60 2.84 2.94 3.76 4.03 2.09 2.86 

Table 5: Comparative evaluation of RACCOON and ORE competitors for the task of consistency on the 

ORE 2015 ontologies. “N/A” indicates that all ontologies of the segment timed out for the reasoner.  

 

 Regarding timeouts, RACCOON’s performance was hampered by ontologies with higher 

complexity, in which cycles occur inside other cycles. Such structures were often found in the ALE 

segment of the 2014 ontologies; it seems that many of the ontologies were built by altering others from 

the same dataset, given their similarity. Such drawback can be addressed in one of the three ways: (i) 

by applying an ALC non-clausal calculus, which is being defined by our research group, based on the 

non-clausal calculus for classical FOL (Otten 2016) (ii) by using a FACTOR reduction, (Bibel, 1993, 

56-58), or (iii) by trying to integrate into our connection reasoner some DL tableaux optimizations 

Figure 8: Comparison of time complexity behavior. 
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implemented in the other reasoners that help solve these cases. Timeouts by expressivity and ontology 

sizes can be seen in Table 6. 
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Raccoon 166 12 154 0 1 9 152 2 2 14 5 8 1 1 5 6 1 1 

Hermit 11 4 7 0 0 0 0 10 1 12 5 7 0 0 0 0 12 0 

Fact++ 19 2 17 0 0 1 2 15 1 29 5 21 3 0 0 4 23 2 

Table 6: Reasoners’ timeouts for consistency of both datasets by DL expressivity and ontology size. 

5 Conclusions, Ongoing and Future Work 

In the current paper, a new reasoner, RACCOON is presented. It was implemented based on the 

new calculus ALC 𝜃-CM, and the first tests over AL, ALE  and ALC ontologies on the task of consistency 

were executed. Comparing its performance with other ORE reasoners has demonstrated that our 

implementation can be competitive. The high number of timeouts displayed in the ORE 2014 dataset 

will be tackled in a future version of RACCOON. 

 As for practical future work, in the short term, RACCOON will be improved to cope with the other 

two ORE tasks, realization and subsumption. Another important enhancement consists in finding good 

optimizations for treating ABoxes. In the medium term, other expressive constructs will be tackled, 

given good theoretical solutions are found to be encompassed by our current connection calculus. 

Other relevant future work, that involves theoretical investigations, consists in enlarging the 

expressiveness for the calculus and the reasoner. For instance, we already developed the theoretical 

foundations for ALC 𝜃-CM to deal with (in)equality, and therefore, with DL cardinality restrictions (≥

 / ≤ 𝑛 𝑟 for ALCN  and ≥ / ≤ 𝑛 𝑟. 𝐶 for SHQ). Hence, soon RACCOON will be capable of parsing and 

reasoning with EL++ ontologies thus enabling an ORE participation, once subsumption and realization 

are implemented. Nonetheless, the equality issue is a sensitive one in terms of performance for 

connection calculi implementations, given the known drawback that substitutions are applied to the 

whole matrix. 

Besides cardinality, in the medium term, other expressive constructs will be tackled for reasoning, 

once appropriate matrix representations have been developed. Indeed, an OWL 2 complete translation 

to matrices has been set (available at http://dl.adrianomelo.com/cm-rules.pdf). But reasoning with all 

this expressiveness requires solving subtle problems, which we have not addressed yet. For instance, 

creating good theoretical and practical solutions for our framework to encompass techniques such as 

sophisticated blocking schemes to emulate dynamic and double blocking for DL constructs like inverse 

roles (Horrocks and Sattler, 1999) and dealing with nominals, among other DL complex reasoning 

issues, are still on our agenda.  
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