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Abstract

This article shows that theory exploration arises naturally from the need to progressively
modify applied formal theories, especially those underpinning deployed systems that change
over time or need to be attack-tolerant. Such formal theories require us to explore a problem
space with a proof assistant and are naturally dynamic.

The examples in this article are from our on-going decade-long effort to formally syn-
thesize critical components of modern distributed systems. Using the Nuprl proof assistant
we created event logic and its protocol theories. I also mention the impact over this period
of extensions to the constructive type theory implemented by Nuprl. One of them led to
our solution of a long standing open problem in constructive logic.

Proof exchange among theorem provers is promising for improving the “super tactics”
that provide domain specific reasoners for our protocol theories. Both theory exploration
and proof exchange illustrate the dynamic nature of applied formal theories built using
modern proof assistants. These activities dispel the false impression that formal theories
are rigid and brittle artifacts that become less relevant over time in a fast moving field like
computer science.

1 Introduction

I believe that one of the major scientific accomplishments of computer science is the creation
of software systems that provide indispensable help in performing complex reasoning tasks
and in automating abstract intellectual processes. Among such systems are proof assistants.
They have helped people solve open mathematical problems, build provably correct hardware
and software, create attack-tolerant distributed systems, and implement foundational theories
of mathematics and computer science. These assistants are also finding a place in advanced
technical education [53]. This development fits John McCarthy’s early definition of computer
science as the subject concerned with the automation of intellectual processes [44], and I think it
would have fit Turing’s, who I regard as the founder of the field. In recognition of this historical
Turing celebration year, this article will include some bits of history related to Turing’s role in
logic and computer science and some bits related to constructive type theory.

These accomplishments with proof assistants are well documented in academic journals and
confirmed by industrial uptake. Nevertheless, many otherwise well-informed and influential
scientists believe that proof assistants are very difficult to use in these ways and that their
solutions are expensive, rigid, and inflexible [21]. I claim that in many cases the formal solutions
provided by proof assistants are flexible and easily modified. In some cases that I will discuss,
as in creating attack-tolerant networked systems, it is imperative that we automatically modify
the supporting formal theories.

The fact that we can easily modify, reuse, and replay formal theories might be the main
driving force spreading their widening use, just as it is a driving force in the universal spread
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J. Fleuriot, P. Höfner, A. McIver, A. Smaill (eds.), ATX 2012 (EPiC Series, vol. 17), pp. 1–15 1



Proof Assistants and the Dynamic Nature of Formal Theories R.L. Constable

of text editors, compilers, programming environments, and other commonly used “tools for
precise thought”. I predict that we will see in the near future dynamic formal theories that
are developed and maintained by a community of researchers using proof assistants to support
applied formal theories that in turn support deployed software systems “on the fly”. We already
see communal activity in joint efforts to build mathematical theories or settle open problems,
and that is a first step.

1.1 Overview

I explain these claims by referring to proof assistants that implement constructive type theories
– because these are the proof assistants I know best and because they also connect directly to
programming practice. Indeed, they support what has come to be called correct-by-construction
programming and formal system evolution [39, 36, 38]. This is because critical elements of the
executing code in deployed systems built this way are synthesized from proofs. To reliably
change that code, one must change the proofs and extract new code. Such applied formal theo-
ries commonly evolve with the application. Moreover, we see another interesting phenomenon,
namely the underlying foundational type theories also continue to evolve, perhaps faster than
foundational theories that mainly support established mathematics. Those deep theory ex-
tensions can be brought to bear on improving the applied theories embedded in them. I will
illustrate this and claim that type theories will continue to evolve for quite some time.

I mention briefly just one example of the gradual extension of Constructive Type Theory
(CTT), the theory implemented by Nuprl. This example led my colleague Mark Bickford and
me to solve an open problem in logic by finding a completeness theorem for intuitionistic first-
order logic [14]. We systematically, but gradually over a few years, expanded the use of the
intersection type over a family of propositions – at times treating it as a polymorphic universal
quantifier because it made program extraction simpler; this led us to the idea of uniform validity
which became the key to solving the open problem in logic.

Additions to the underlying foundational type theory can be indexed by the years in which
they were made, up to the one we used to solve the problem, say from CTT00 to CTT10. The
base theory is CTT84, and we are now using CTT12.1 By and large each theory is an extension
of the previous one, although there was a major improvement from CTT02 onwards along with
a corresponding change in the proof assistant from Nuprl4 to Nuprl5.

In the special case of proof assistants based on the LCF tactic mechanism [29], there is an
interesting way to create domain specific reasoners. This is simple to describe and remarkably
effective in the case of proof assistants with distributed computing capabilities as is the case
with Nuprl in support of Constructive Type Theory circa 2012 (CTT12). We turn briefly to
that example later.

These scientific contributions are enabled by a powerful and ubiquitious information tech-
nology that integrates programming languages, interactive provers, automatic provers, model
checkers, and databases of formal knowledge. I believe that this integrated technology is rapidly
moving toward a point at which it will provide tools for thought able to accelerate scientific
research and enrich education in ways computer scientists have only imagined before. The
practical integration of computing and logic seen for the first time in this research area has
made us aware in detail that there is a computational reality to logic which Turning glimpsed
in general outline in 1936.

1In contrast, I believe that the formalized Tarski-Grothendieck set theory used by the Mizar system [43] to
support the Journal of Formalized Mathematics has been stable from 1989 until now.
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1.2 Historical Background

According to Andrew Hodges [34], one of Alan Turing’s deepest insights about computing was
that his universal machines would compute with logical formulas as well as numbers. Hodges
says: “It put logic, not arithmetic, in the driving seat.” Turing believed that this extension
would allow computers to participate in the whole range of rational human thought. Turing
also understood that we would reason precisely about programs.

Turing also made the notion of a computable function a central concept in science. This in
turn made the notion of data types fundamental and linked them to Russell’s conception of a
type. Now we see types in the curriculum from the school level through university education.
Sets are taught in mathematics, types in programming. In modern type theory, we see sets (in
their infinite variety) as a special data type that appeals to mathematicians. So we take a brief
historical look at types to explain their use in proof assistants.2

1.3 Types in programming and logic

The notion of type is a central organizing concept in the design of programming languages,
both to define the data types and also to determine the range of significance of procedures
and functions.3 Types feature critically in reasoning about programs as Hoare noted in his
fundamental paper on data types [33]. The role of types in programming languages is evident
in Algol 60 [59] and its successors such as Pascal and Algol 68 (where types were called modes).
One of the most notable modern examples is the language ML, standing for MetaLanguage,
designed by Milner as an integral part of the Edinburgh LCF mechanized Logic for Computable
Functions [29]. This ML programming language with its remarkably effective type inference
algorithm and its recursive data types is widely taught in computer science and is central to a
large class of proof assistants.

Type theory serves as the logical language of several interactive theorem provers including
Agda [12], Coq [19, 4], HOL [28], Isabelle [48], MetaPRL [32], Minlog [3], Nuprl [3, 1], PVS
[51], and Twelf [52]. Among these provers, the constructive ones build correct by construction
software. All of them formalize mathematical theories whose logical correctness is assured to
the highest standards of certainty ever achieved. Interactive provers have also been used to
solve open mathematical problems, e.g. definitively proving the Four Color Theorem [27]. The
accumulation of large libraries of formalized mathematical knowledge using proof assistants
has led to the field of mathematical knowledge management. Constructive type theories for
constructive and intuitionistic mathematics serve as practical programming languages, a role
imagined forty years ago [47, 30, 15] yet only recently made practical in several settings. The
programming language ML also provides the metalanguage for several of the interactive proof
assistants in service today, including Agda, Coq, HOL, Isabelle, MetaPRL, Nuprl among others.

2 Automated Reasoning in Constructive Type Theories

The gap between data types in programming languages and those in foundational type theory
and from there to constructive type theory are large. That first gap can be traced to the influence
of Principia Mathematica and the second to the influence of the mathematician L.E.J. Brouwer

2I wrote a longer unpublished paper in 2010 for the 100 year anniversary of Principia Mathematica entitled
“The Triumph of Types: Principia Mathematica’s Impact on Computer Science”. It describes the influence
of type theory on computer science and is available at the celebration web page. These notes rephrase a few
examples used there.

3This use matches Russell’s definition of a type as the range of significance of a propositional function.
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and his intuitionistic program for mathematics. We look very briefly at these historical gaps to
establish the context for the work of modern proof assistants supporting applied formal theories
and correct-by-construction programming.

2.1 Comprehensive Mathematical Theories

Near the turn of the last century, Frege [24, 22], Russell [55] and Whitehead [58] strove to design
of a logical foundation for mathematics free from the known paradoxes and able to support an
extremely precise comprehensive treatment of mathematics in an axiomatic logical language.
Principia Mathematica (PM) was created with those goals in mind, intended to be safe enough
to avoid paradox and rich enough to express all of the concepts of modern pure mathematics
of its time in a language its authors regarded as pure logic.

For Russell and Whitehead, type theory was not introduced because it was interesting on
its own, but because it served as a tool to make logic and mathematics safe. According to
PM page 37: Type theory “only recommended itself to us in the first instance by its ability
to solve certain contradictions. ... it has also a certain consonance with common sense which
makes it inherently credible”. This common sense idea was captured in Russell’s definition of
a type in his Principles of Mathematics, Appendix B The Doctrine of Types [56] where he says
“Every propositional function φ(x) – so it is contended – has, in addition to its range of truth,
a range of significance, i.e. a range within which x must lie if φ(x) is to be a proposition at
all,....” It is interesting that later in computer science, types are used precisely in this sense:
to define the range of significance of functions in programming languages. It is also interesting
that Frege devised a judgment form: −A to indicate that the syntactic term A made sense or
was a proposition. The notation ` A is the judgment that proposition A is provable. Both
of these judgment forms were used in ITT82 and then adopted in CTT84. These forms have
proved to be extremely important in practice. In CTT84 they are used to exploit the Turing
completeness of the computation system and thus produce efficient extracted code, suitable for
practical use.

According to PM, statements of pure mathematics are inferences of pure logic. All com-
mitments to “reality” (Platonic or physical) such as claims about infinite totalities, the inter-
pretation of implication as a relation, the existence of Euclidean space, etc. were taken as
hypotheses. At the time of PM it appeared that there would emerge settled agreement about
the nature of pure inferences and their axiomatization. That was not to be. Even the notion
of pure logic would change.

2.2 Computation in logic and mathematics

While Russell was working on his theory of types [55], circa 1907-1908, another conception of
logic arose in the writings of L.E.J. Brouwer [31, 57] circa 1907, a conception that would depart
radically from the vision of Frege and Russell, as they departed from Aristotle. By the early
1930’s a mature expression of a new semantics of the logical operators emerged from the work
of Brouwer, Heyting, and Kolmogorov; it is now called the BHK semantics for intuitionistic
versions of formalisms originally developed based on truth-functional semantics. BKH semantics
is also called the propositions-as-types principle. By 1945 Kleene captured this semantics for
first-order logic and Peano arithmetic in his notion of recursive realizability based on general
recursive functions [35]. By 1968, a formal version of a comprehensive theory of types based
on the propositions as types principle was implemented in the Automath theories of de Bruijn
and his colleagues [20]. Unlike Kleene’s work, these theories did not take advantage of the
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computational interpretation of the logical primitives made possible by BHK, instead treating
them formally as rules in the style of PM.

This line of research eventually led to two extensional type theories, Intuitionistic Type
Theory (ITT82, ITT84) [41, 42] and Constructive Type Theory (CTT84) [17] related to ITT82.
Subsequently the type theory of the Calculus of Constructions (CoC) [18] was designed based
on Girard’s logic [25, 26]. Over the next few years, CoC moved closer to the ITT82 conception
and also built on the CTT82 recursive types [45, 46, 17] to produce the widely used (intensional)
type theory Calculus of Inductive Constructions (CIC) [19] implemented in the Coq prover [4].
Then an intensional version of ITT82 was defined [49], say ITT90, and implemented much
later in the Alf and Agda provers [12]. All three of these efforts, but especially CTT84 and
ITT82, were strongly influenced by Principia and the work of Bishop [11] presented in his book
Foundations of Constructive Analysis [11] who set about doing real analysis in the constructive
tradition.

Computational content is present in the provable assertions of the constructive type theories,
and one of the features of CIC, CTT, and ITT is that implementing the proof machinery makes it
possible to extract this content and execute it. This discovery has led to a new proof technology
for extracting computational content from assertions. That technology has proven to be very
effective in practice, where it is called correct-by-construction programming. There is a growing
literature on this subject with references in survey articles such as [1].

2.3 Effectively Computable, Turing Computable, and Subrecursive
Computation Systems

Brouwer’s notion of computability was not formal and not axiomatic. It was intuitive and
corresponds to what is called effective computability. The Church/Turing Thesis claims that
all effectively computable functions are computable by Turing machines (or any equivalent
formalism, e.g. the untyped λ-calculus). There is no corresponding formalism for Brouwer
Computable. However, I believe that this notion can be captured in intuitionistic logics by
leaving a Turing complete computation system for the logic open-ended in the sense that new
primitive terms and rules of reduction are possible. This method of capturing effective com-
putability may be unique to CTT in the sense that the computation system of CTT is open to
being “Brouwer incomplete” as a logic. We have recently added a primitive notion of general
process to formalize distributed systems whose potentially nonterminating computations are
not entirely effective because they depend on asynchronous message passing over a network
which can only be modeled faithfully by allowing unpredictable choices by the environment,
e.g. the internet.

3 A Case Study in Theory Exploration: the Logic of
Events

The PRL group’s most practical results in formal methods might be the optimization of protocol
stacks [39, 36]. The optimization system was adopted by Nortel as a product because it could
significantly improve the performance of a distributed system by using automatic compression
techniques that we proved were safe. That is, the optimized protocols produced identical results
to the original but over five times faster.

Based on our work in this area, we came to see that writing correct distributed protocols was
an extremely difficult business. Basically no one can write these protocols completely correctly
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“by hand”, so they are all gradually debugged in the field. This became an excellent target on
which to deploy formal methods, in particular correct-by-construction programming. To start
this we needed a specification language for distributed system behavior. We noticed that our
collaborators used message sequence diagrams as their main informal method of description and
reasoning. They did not use temporal logic in any form, they did not use any process algebra,
they did not use a logic of actions. So we decided to create a logic that matched their way of
thinking as closely as possible. As we spoke it with them, it gradually evolved. The tools of the
Nuprl proof assistant and its Logical Programming Environment greatly aided that evolution
in ways that I will explain as an example of theory exploration in action.

3.1 A sequence of theories

The interested reader could track the evolution of the logic of events from the first publications
in 2003 to the latest publications in 2012, [8, 13, 10, 9, 5, 6, 7]4 All stages of this evolution
were formalized and applied. They illustrate theory exploration in detail. I will summarize the
nature of the changes briefly here. In the lecture associated with this article, I will tell some of
the stories about why the changes were made and the formal tools used to manage them.

3.2 Summarizing an example of theory exploration and evolution

In A Logic of Events [8] circa 2003, we defined together a logic and a computing model. The
computing model was based closely on the IO Automata from the book of Nancy Lynch,
Distributed Algorithms[40]. We called our machines Message Automata (MA) because they
differed from IOA in the way they composed; we added frame conditions to the automata to
facilitate reasoning about composition. We also provide addresses which identified the machines
and explicit communication channels. We intermixed axioms about events with axioms about
the machines, and proved that these axioms were validated by the standard model of computing
for the automata. This model was close to that presented by Lynch and also the model used
in other textbooks [2]. We used axioms about sending and receiving messages, about state
change, and ordering of events, about kinds of events, about how processes represented as
Message Automata were composed, and how their computations validated the axioms. Later
in A Causal Logic of Events [10] circa 2005, we classified the event logic axioms more finely
in a progression, starting with axioms for event ordering, then events with values, then events
relative to states, and so on.

We learned that the key axiom for many proofs was that causal ordering [37] of events is well
founded. We could justify this property based on the computation model, and we made that
an explicit axiom. We used it to formally prove many important theorems and derive several
simple protocols. As we began to specify and prove properties about complex consensus proto-
cols, we discovered that small changes in the protocol would cause disproportionate expansion
of our proofs which had to be redone by hand. So we modified the theory to raise the level
of abstraction and increase the amount of automation connecting layers of abstraction. The
discovery of the notion of an event class by 2008 [5] allowed us to postpone reasoning about spe-
cific automata until we had the abstract argument finished at this much higher level. The event
classes eventually led us to a more abstract programming notation called event combinators
that we have now implemented directly [7].

By 2010 we could automatically generate proofs from the higher level event classes to the
lowest level process code, now implemented in our new programming interface to Nuprl built

4This style has the unintended consequence of citing a very large number of our own papers.
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by Vincent Rahli called EventML [54]. We were able to create domain specific tactics that
would automate in a matter of a day or two the work that previously took us a month or two
of hand proofs. By exploiting the distributed implementation of Nuprl, we can now run these
domain specific proof tactics in a matter of a few hours by using a cluster of many multi-core
processors.

During the period from 2005 to 2009 we learned to modify and extend the entire theory step
by step and replay all the proofs. Mark Bickford and Richard Eaton developed mechanisms
to replay the proofs, find the broken steps, and modify the tactics and then replay the entire
event theory library.

I can only cover one point of this long and rich technical story in this short article. We turn
to that one point next. In due course we will publish more “chapters” of the story now that
we have deployed our synthesized consensus protocols in a working system called ShadowDB
and have started collecting data about its performance [50]. We will also be studying how this
system adapts to attack by exploiting synthetic code diversity, discussed briefly later in this
article.

3.3 Evolving understanding – causal order

We now look briefly at how our understanding of causal order changed as the theories evolved.
The same kind of story could be told about minimizing the role of state, about the need for
event combinators, and about the need for sub-processes that live only for short periods. All
of this would take a monograph. So I will focus on only one such aspect.

Lamport discovered in 1978 that causal order was the right notion of time in distributed
systems [37]. Intuitively, an event e comes before e′ if e can influence e′. We give the definition
below.

To show that causal order is well-founded, we notice that in any execution of a distributed
system given by reduction rules, we can conduct a “tour of the events” and number them so
that events caused by other events have a higher number. Thus causal order is well founded
and if equality of events is decidable, then so is causal order. We show this below.

3.3.1 Signature of EOrder

The signature of these events requires two types, and two partial functions. The types are
discrete, which means that their defining equalities are decidable. We assume the types are
disjoint. We define D as {T : Type | ∀x, y : T. x = y in T ∨ ¬ (x = y in T )}, the large type of
discrete types.

Events with order (EOrder)

E: D
Loc:D
pred?: E → E + Loc
sender?: E → E + Unit

The function pred? finds the predecessor event of e if e is not the first event at a locus or
it returns the location if e is the first event. The sender?(e) value is the event that sent e if e
is a receive, otherwise it is a unit. We can define the location of an event by tracing back the
predecessors until the value of pred belongs to Loc. This is a kind of partial function on E.
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From pred? and sender? we can define these Boolean valued functions:

first(e) = if is left (pred?(e)) then true else false

rcv?(e) = if is left (sender?(e)) then true else false

The relation is left applies to any disjoint union type A+B and decides whether an element is
in the left or right disjunct. We can “squeeze” considerable information out of the two functions
pred? and sender?. In addition to first and rcv?, we can define the order relation

pred!(e, e′) == (¬ first(e′)⇒ e = pred?(e′)) ∨ e = sender(e′).

The transitive closure of pred! is Lamport’s causal order relation denoted e < e′. We can
prove that it is well-founded and decidable; first we define it.

The nth power of relation R on type T , is defined as

xRoy iff x = y in T
xRny iff ∃z : T. xRz & zRn−1y

The transitive closure of R is defined as xR∗y iff ∃n : N+.(xRny).

Causal order is x pred!∗y, abbreviated x < y.

3.3.2 Axioms for event structures with order (EOrder)

There are only three axioms that constrain event systems with order beyond the typing con-
straints.

Axiom 1. If event e emits a signal, then there is an event e′ such that for any event e′′ which
receives this signal, e′′ = e′ or e′′ < e′.

∀e : E.∃e′ : E. ∀e′′ : E. (rcv?(e′′) & sender?(e′′) = e)⇒ (e′′ = e′ ∨ e′′ < e)

Axiom 2. The pred? function is injective.

∀e, e′ : E. loc(e) = loc(e′)⇒ pred?(e) = pred?(e′)⇒ e = e′

Axiom 3. The pred! relation is strongly well founded.

∃f : E → N. ∀e, e′ : E.pred!(e, e′)⇒ f(e) < f(e′)

To justify f in Axiom 3 we arrange a linear “tour” of the event space in any computation.
We imagine that space as a subset of N× N where N numbers the locations and discrete time.
Events happen as we examine them on this tour, so a receive can’t happen until we activate the
send. Local actions are linearly ordered at each location. Note, we need not make any further
assumptions.

We can define the finite list of events before a given event at a location, namely

before(e) == if first(e) then[]
else pred?(e) append before (pred? (e))

8



Proof Assistants and the Dynamic Nature of Formal Theories R.L. Constable

Similarly, we can define the finite tree of all events causally before e, namely

prior(e) == if first(e) then[]
else if rcv?(e)
then < e, prior(sender?(e)), prior(pred?(e)) >
else < e, prior(pred?(e)) >

3.3.3 Properties of events with order

We can prove many interesting facts about events with order. The basis for many of the proofs
is induction over causal order. We prove this by first demonstrating that causal order is strongly
well founded.

Theorem 3.1. ∃f : E → N. ∀e, e′ : E. e < e′ ⇒ f(e) < f(e′)

The argument is simple. Let x � y denote pred!(x, y) and let x �n y denote pred!n(x, y).
Recall that x �n+1 y iff ∃z : E. x � z & z �n y. From Axiom 3 there is function fo : E → N
such that x � y implies fo(x) < fo(z). By induction on N we know that fo(z) < fo(y). From
this we have fo(x) < fo(y). So the function fo satisfies the theorem. The simple picture of the
argument is

x� z1 � z2 � . . .� zn � y

so
fo(x) < fo(z1) < . . . < fo(zn) < fo(y).

We leave the proof of the following induction principle to the reader.

Theorem 3.2. ∀P : E → Prop. ∀e′ : E. ((∀e : E. e < e′. P (e))⇒ P (e′))⇒ ∀e : E. P (e)

Using induction we can prove that causal order is decidable.

Theorem 3.3. ∀e, e′ : E. e < e′ ∨ ¬ (e < e′)

We need the lemma.

Theorem 3.4. ∀e, e′ : E. (e� e′ ∨ ¬ (e� e′))

This is trivial from the fact that pred!(x, y) is defined using a decidable disjunction of
decidable relations, recall

x� y is pred!(x, z)

and
pred!(x, y) = ¬ first(y)⇒ x = pred?(y) ∨ x = sender?(y).

The local order given by pred? is a total order. Define x <loc y is x = pred?(y).

Theorem 3.5. ∀x, y : E. (x <loc y ∨ x = y ∨ y <loc x)

The environment as well as the processes are players in the execution, determining whether
protocols converge or not and whether they converge sufficiently fast. However, unlike the
processes, the environment is not a Turing computable player. It’s behavior was not lawlike.
This means that the reduction rule semantics should not be taken as the whole story, and the
justification of causal order based on the computations is not the fundamental explanation,
only a suggestive approximation. The best explanation are the axioms that define what the
environment can contribute, and the induction principle on causal order.
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3.4 The formal distributed computing model - circa 2012

Here is a brief overview of our General Process Model circa 2010 [6]. From it we can generate
structures we call event orderings. We mention key concepts for reasoning about event orderings
from these computations. A system consists of a set of components. Each component has a
location, an internal part, and an external part. Locations are just abstract identifiers. There
may be more than one component with the same location.

The internal part of a component is a process—its program and internal (possibly hidden)
state. The external part of a component is its interface with the rest of the system. In this
account, the interface will be a list of messages, containing either data or processes, labeled
with the location of the recipient. The “higher order” ability to send a message containing a
process allows a system to grow by “forking” or “bootstrapping” new components.

A system executes as follows. At each step, the environment may choose and remove a
message from the external component. If the chosen message is addressed to a location that
is not yet in the system, then a new component is created at that location, using a given
boot-process, and an empty external part. Each component at the recipient location receives
the message as input and computes a pair that contains a process and an external part. The
process becomes the next internal part of the component, and the external part is appended to
the current external part of the component.

A potentially infinite sequence of steps, starting from a given system and using a given
boot-process, is a run of that system. From a run of a system we derive an abstraction of its
behavior by focusing on the events in the run. The events are the pairs, 〈x, n〉, of a location and
a step at which location x gets an input message at step n, i.e. information is transferred. Every
event has a location, and there is a natural causal-ordering on the set of events, the ordering
first considered by Lamport [37]. This allows us to define an event-ordering, a structure,
〈E, loc, <, info〉, in which the causal ordering < is transitive relation on E that is well-
founded, and locally-finite (each event has only finitely many predecessors). Also, the events
at a given location are totally ordered by <. The information, info(e), associated with event e
is the message input to loc(e) when the event occurred.

We have found that requirements for distributed systems can be expressed as (higher-order)
logical propositions about event-orderings. To illustrate this and motivate the results in the
rest of the paper we present a simple example of consensus in a group of processes.

Example 1. A simple consensus protocol: TwoThirds

Each participating component will be a member of some groups and each group has a name,
G. A message 〈G, i〉 from the environment to component i informs it that it is in group G.
The groups have n = 3f + 1 members, and they are designed to tolerate f failures. When any
component in a group G receives a message 〈[start ], G〉 it starts the consensus protocol whose
goal is to decide on values received by the members from clients. We assume that once the
protocol starts, each process has received a value vi or has a default non-value.

The simple TwoThirds consensus protocol is this: A process Pi that has a value vi of type
T starts an election to choose a value of type T (with a decidable equality) from among those
received by members of the group from clients. The elections are identified by natural num-
bers, eli initially 0, and incremented by 1, and a Boolean variable decidei is initially false. The
function from lists of values, Msg i to a value is a parameter of the protocol. If the type T of
values is Boolean, we can take f to be the majority function.

Begin
Until decidei do:
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1. Increment eli; 2. Broadcast vote 〈eli, vi〉 to G;
3. Collect in list Msg i 2f + 1 votes of election eli;
4. Choose vi := f(Msg i);
5. If Msg i is unanimous then decidei := true
End

We describe protocols like this by classifying the events occurring during execution. In this
algorithm there are Input, Vote, Collect, and Decide events. The components can recognize
events in each of these event classes (in this example they could all have distinctive headers),
and they can associate information with each event (e.g. 〈ei, vi〉 with Vote, Msg i with Collect,
and f(Msg i) with Decide). Events in some classes cause events with related information content
in other classes, e.g. Collect causes a Vote event with value f(Msg i).

In general, an event class X is function on events in an event ordering that effectively
partitions events into two sets, E(X) and E − E(X), and assigns a value X(e) to events
e ∈ E(X).

Example 2. Consensus specification

Let P and D be the classes of events with headers propose and decide, respectively. Then the
safety specification of a consensus protocol is the conjunction of two propositions on (extended)
event-orderings, called agreement (all decision events have the same value) and responsiveness
(the value decided on must be one of the values proposed):

∀e1, e2 :E(D). D(e1) = D(e2)

∀e :E(D). ∃e′ :E(P ). e′ < e ∧ D(e) = P (e′)

It is easy to prove about TwoThirds the safety property that if there are two decide
events, say Decide(e) and Decide(e′), then Decide(e) = Decide(e′). We can also show that if
Decide(e1) = v, then there is a prior input event, e0 such that Input(e0) = Decide(e1).

We can prove safety and the following liveness property about TwoThirds. We say that
activity in the protocol contracts to a subset S of exactly 2f + 1 processes if these processes all
vote in election n say at vt(n)1, ..., vt(n)k for k = 2f+1 and collect these votes at c(n)1, ..., c(n)k,
and all vote again in election n+1 at vt(n+1)1, ..., vt(n+1)k, and collect at c(n+1)1, ..., c(n+1)k.
In this case, these processes in S all decide in round n+ 1 for the value given by f applied to
the collected votes. This is a liveness property.

If exactly f processes fail, then the activity of the group G contracts to some S and decides.
Likewise if the message traffic is such that f processes are delayed for an election, then the
protocol contracts to S and decides. This fact shows that the TwoThirds protocol is non-
blocking, i.e. from any state of the protocol, there is a path to a decision. We can construct the
path to a decision given a set of f processes that we delay.

We also proved safety and liveness of a variant of this protocol that may converge to con-
sensus faster. In this variant, if Pi receives a vote 〈e, v〉 from a higher election, e > eli, then Pi

joins that election by setting eli := e; vi := v; and then going to step 2.

3.5 Attack Tolerant Distributed Systems

Networked systems will be attacked. One way to protect them is to enable them to adapt to
attacks. One way to adapt is to change the protocol, but this is dangerous, especially for the
most critical protocols. The responsible system administrators don’t ever want to modify the
most critical protocols such as consensus. One alternative is to switch to another provably
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equivalent protocol, a task familiar to us from the stack optimization work. So we proposed
to formally generate a large number of logically equivalent variants, store them in an attack
response library, and switch to one of these variants when an attack is detected or even pro-
actively. Each variant uses distinctly different code which a system under attack can install
on-the-fly to replace compromised components. Each variant is known to be equivalent and
correct.

We express threatening features of the environment formally and discriminate among the
different types. We can do this in our new GPM model because the environment is an explicit
component about which we can reason. This capability allows us to study in depth how diversity
works to defend systems. We can implement attack scenarios as part of our experimental
platform. It is interesting that we can implement a constructive version [16] of the famous
FLP result [23] that shows how an attacker can keep any deterministic fault-tolerant consensus
protocol from achieving consensus.

Synthetic Code Diversity We introduce diversity at all levels of the formal code devel-
opment (synthesis) process starting at a very high level of abstraction. For example, in the
TwoThirds protocol, we can use different functions f , alter the means of collecting Msg i, syn-
thesize variants of the protocol, alter the data types, etc. We are able to create multiple provably
correct versions of protocols at each level of development, e.g. compiling TwoThirds into Java,
Erlang, and F#. The higher the starting point for introducing diversity, the more options we
can create.

Acknowledgement The ideas reported here are based on the work of the PRL research
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Vincent Rahli, and by our collaboration with David Guaspari of ATC-NY corporation. Our
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and Ken Birman of the Cornell systems group and the recent work of Nicolas Schiper.
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