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Abstract

We present a system that utilizes machine learning for tactic proof search in the Coq
Proof Assistant. In a similar vein as the TacticToe project for HOL4, our system predicts
appropriate tactics and finds proofs in the form of tactic scripts. To do this, it learns from
previous tactic scripts and how they are applied to proof states. The performance of the
system is evaluated on the Coq Standard Library. Currently, our predictor can identify the
correct tactic to be applied to a proof state 23.4% of the time. Our proof searcher can fully
automatically prove 39.3% of the lemmas. When combined with the CoqHammer system,
the two systems together prove 56.7% of the library’s lemmas.

1 Introduction

The Coq Proof Assistant [37] is an Interactive Theorem Prover in which one proves lemmas
using a tactic language. This language contains a wide range of tactics, from simple actions
like intros and apply to complicated decision procedures such as ring and tauto and search
procedures like auto and firstorder. Although the second and third options provide a large
amount of automation, they still require human intervention to use. (1) Decision procedures
only apply to particular domains, requiring the user to know when they are appropriate, and (2)
Coq’s search tactics require careful construction of hint databases to be performant.

The system we present in this paper learns from previously written proof scripts and how
they are applied to proof states. This knowledge can then be used to suggest a tactic to apply
on a previously unseen proof state or to perform a full proof search and prove the current lemma
automatically. Learning on the tactic level has some advantages over learning from low-level
proof terms in Gallina, Coq’s version of the Calculus of Inductive Constructions [31]: (1) Tactics
represent coarser proof steps than the individual identifiers in a proof term. They are also more
forgiving; a minor modification to a tactic script is more likely to be nondestructive than a minor
modification to a proof term, making the machine learning task easier. (2) By learning on the
tactic level, we allow the user to introduce domain-specific knowledge to the system by writing
custom tactics. By using these tactics in hand-written proofs, the system will automatically
learn of their existence and start to use them.

Similar to the TacticToe project for HOL4 [11], our system has the following components.
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Proof recording First, we create a database of tactics that are executed in existing (human-
written) tactic scripts, recording in which proof states they are executed. We do not
constrain the type of tactic that can be recorded, which allows the system to discover
user-defined tactics dynamically.

Tactic prediction Using this database of pairs of tactics and proof states, we use machine
learning to generate a list of tactics likely applicable to the current proof state. This list
can either be used as a tactic recommendation system for the user, or as input to the next
component.

Proof search Finally, for a given proof state, we perform a proof search by repeatedly applying
predicted tactics to the proof state and subsequent states in the search tree until all proof
obligations are discharged.

These components are all implemented in OCaml (the implementation language of Coq)—without
external dependencies—and integrated directly with Coq, enabling us to eventually create a
user-facing tool that is easy to use, install, and maintain.

In this paper, we present the technical implementation of the components above and an
evaluation of the quality of tactic predictions and proof search. In Sections 2 to 4, we take a
deeper dive into the recording, prediction, and search components of our system. Section 5 gives
an overview of related work. Finally, Section 6 contains an evaluation of our system on the
Coq Standard Library. The dataset used for our evaluation, together with the software that
generated it is publicly available [4].

2 Proof Recording

The first component of the system is the recording of existing proofs. As said, this is done
on the level of tactics. Conceptually speaking, when a tactic script is executed, we record the
proof state before and after the execution of each tactic. The difference between these two
states represents the action performed by the tactic, while the state before the tactic represents
the context in which it was useful. By recording many such instances for a tactic, we create
a dataset representing an approximation of the semantic meaning of that tactic. In practice,
we currently only record the proof state before the execution of a tactic because, during proof
search, we do not yet evaluate the proof state’s quality after the execution of a tactic.

An important question is what exactly constitutes a tactic in Coq. On a low level, Coq utilizes
a proof monad in which tactics can be written on the OCaml level [25]. This monad supports
backtracking, among other things. It is, however, not immediately accessible by end-users. For
that, several tactic languages exist that are interpreted into the proof monad [20, 28, 14, 32].
The most used language is Ltacl [10]. In an ideal world, we would record tactics on the level of
the proof monad since that would allow us to record tactics from all existing tactic languages.
However, it does not appear to be possible to put recording instrumentation in place on the
monadic level. Therefore, we have chosen to only record tactics from the Ltacl language.

Within the Ltac language, it is also not immediately clear what a tactic is. One option is to
decompose a script into a series of the most primitive tactic invocations and record those. On
the other side of the extreme, one could view every whole vernacular expression as one tactic.
The first option greatly diminishes the advantages of the system because such low-level recording
would not allow domain-specific decision procedures or custom tactics to be recorded. The
second option means that many tactics will be unique and rather specific to a single proof state.
A good solution will lie somewhere in between. Striking this balance is further complicated by
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the possibility of tactics to backtrack. It is unclear whether we should record only the successful
trace of a tactic, or keep the backtracking procedure as one building block.

At the moment, we see every vernacular command as one tactic, except for tactic composition
(tacl; tac2) and tactic dispatching (tacl; [tac2 | tac3]). We treat tactics and their
arguments as one unit. The lack of global lemma prediction for tactic arguments is, in our
opinion, not of crucial importance in Coq due to the nature of its tactics. Tactics in Coq usually
accept a single lemma as an argument, rather than a list of premises like the metis tactic in
HOL4. Tactics that do accept multiple lemmas as arguments are usually a shorthand that
invokes a simpler tactic for every lemma. The semantics of tactics that accept a single lemma as
an argument, such as apply lem and rewrite lem, are mainly determined by the given lemma.
Therefore, it makes sense to predict these tactics and their arguments as one unit. However, as
a consequence, new lemmas will only be picked up by the system when it learns from a tactic
that mentions those lemmas. Finally, we acknowledge that the prediction of arguments pointing
to the local context is important. This is left as future work.

To record a tactic script, conceptually, we replace a tactic t with a custom recording tactic
r t that receives the original tactic as an argument. Tactic r t first records the current
proof state before executing t. Then this proof state is added to the database together
with tactic t. As an example of a tactic decomposition and recording, the tactic expression
tacl; [tac2 | tac3]; tac4d will be converted to r tacl; [r tac2 | r tac3]; r tac4.

3 Tactic Prediction

After creating a database of tactics and recorded proof states, we want to predict the correct tactic
to make progress in a new, unseen proof state. For this, we must find a good characterization
of the sentences present in a proof state. Currently, this characterization is a set of features.
The features of a sentence are all of its one-shingles and two-shingles, meaning they are all
identifiers and pairs of adjacent identifiers in the abstract syntax tree. For example, the sentence
(r+y)+ 2z=2a+ (y + 2) will be converted to the feature set

{eq, plus, z,y, z, eq_plus, plus_x, plus_y, plus_z, eq_z, eq_x }

modulo the fact that variables are represented by de Bruijn indices. For the characterization of
a proof state, we take the union of the feature set of all sentences in its hypotheses and the goal.

To find a list of likely matches for a new proof state, we run a k-nearest neighbor algorithm
on the vectors. We compare vectors using several standard metrics and similarities (specialized
for feature sets instead of feature vectors):

cosne( 1.1 = YLl enctia(fi ) = VIRURI=TRA AL jaeead(f ) = (522

Finally, we would like to weigh features based on their relative importance in a given proof
state with respect to the entire database. For this, we use the TfIdf statistic [19] (which is the
same as the Idf statistic since we use feature sets rather than bags). We then use a generalized
version of the Jaccard index to incorporate these weights into the predictions.

Zweflﬁfz tﬁdf(x)
Zwehuf? tfdf(x)

Here N is the database size, and |z|xy is the number of times feature x occurs in the database.

N
tfidf(z) = log e jaccard,,(f1, f2) =
N
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Our k-nearest neighbor algorithm outputs an ordered list [ of pairs ((d;,t;))x, where ¢; is
a tactic and d; the similarity between the current proof state and the proof state on which ¢;
was applied. If [ contains duplicate tactics, we select only the pair with the best score. The
list is ordered by the similarities d and can, therefore, immediately be used as a list of tactic
recommendations.

A major downside of the k-NN approach above is that it requires an exhaustive search of
the entire tactic database to obtain a list of recommendations. Therefore, the time complexities
of the algorithms grow linearly with the size of the database, which can be quite large. To
eliminate slow queries, we include an approximate k-NN algorithm that employs Locally Sensitive
Hashing [12]. LSH is a technique that uses hashing functions that map similar items to the same
integer with high probability (as opposed to the normal hashing function in which collisions
are avoided). These functions are then used with hashtables to map similar items to the same
bucket, at which point they can be retrieved in constant time. As long as the notion of similarity
of the hashing function agrees with the intended similarity, this can be used as a substitute
for the corresponding exhaustive k-NN algorithm. The downside of this method is that it is
approximate and can thus miss crucial tactics. In our implementation, we use a technique called
LSH Forest [3] to approximate the Jaccard index described above.

4 Proof Search

It is unlikely that the tactic prediction system will predict the correct tactic every time. For this
reason, a proof search must be performed, where not only the first predicted tactic is chosen.
We recursively explore the proof tree by executing a predicted tactic and then predicting a
new list of tactics based on the new proof state. We explore this tree using a skewed form of
breadth-first search, which we call diagonal search. Given a list of predictions, ((d;,t;))x, we
always explore the subtree starting from tactic ¢; one step deeper than the subtree starting
from tactic ¢;41. This diagonal exploration is continued recursively. If a tactic fails or does not
modify the proof state, the resulting subtree is pruned.

Diagonal search captures the idea that tactics that are predicted as better should be explored
more vigorously than other tactics. In the future, we intend to refine this search style by using
the similarity scores d; to determine how “diagonal” the search should be. Another interesting
approach is to take inspiration from AlphaGo Zero [35] and use a Monte Carlo Tree Search
algorithm for proof search. We should note, however, that such strategies have not born much
fruit for the TacticToe system of HOLA4.

5 Related Work

The high level of integration of our system with Coq and its lack of external dependencies is
a distinguishing feature compared to existing learning-guided systems for Coq. The ML4PG
system [26] provides tactic predictions and other statistics but is instead integrated with the
Proof General [1] proof editor and requires connections to Matlab or Weka to function. The
SEPIA system [15] provides proof search using tactic predictions and is also integrated with
Proof General. Note, however, that its proof search is only based on tactic traces and does not
make predictions based on the proof state.

Efforts to use neural architectures for Coq have also been made. GamePad [16] is a framework
that integrates with the Coq codebase and allows machine learning to be performed in Python.
Currently, the platform supports proof search and position evaluation (estimating the number of
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steps required to finish a proof). A limited proof search evaluation was performed on a synthetic
algebraic rewriting dataset. CoqGym [40] also extracts tactic and proof state information on a
large scale and uses it to construct a deep learning model capable of generating tactics and their
arguments. Although CoqGym’s approach is interesting, it performs significantly worse than
CoqHammer (introduced below) while using a much higher, impractical time limit. Another
downside is that tactics are generated using a fixed grammar, which precludes the system from
learning custom, domain-specific tactics as our system does.

The main inspiration for our system is the TacticToe [11] system for HOL4 [36]. Our work
is similar both in doing a learning-guided tactic search and by its complete integration in the
underlying proof assistant without relying on external machine learning libraries and specialized
hardware. More recent TacticToe-inspired systems that do not aim at complete independence
of external learning toolkits include HOList [2] and similar work by Wu et al. for HOL4 [39].
Although rather similar to TacticToe on the surface, differences in the logic of HOL4 and Coq
and the design of their tactic languages result in significant differences in implementation details.
For example, premise selection is important in HOL4 for automation tactics that require lists of
premises to be provided. As explained in Section 2, this is much less important for our system.
Coq’s automation tactics generally rely on hint databases instead of lists of premises. On the
other hand, a complicating feature of Coq is the notion of a (named) local context, while this
does not exist in HOL4. Finally, the technical implementation of proof recording and search is
quite different because Coq has a proof monad, while tactics in HOL4 are written directly in
Standard ML.

Significant work on learning-based guidance has been done in the context of connection-based
and saturation-based Automated Theorem Provers (ATPs) such as leanCoP [30] and E [34]. In
the leanCoP setting, (reinforcement) learning of clausal steps based on the proof state is done
in systems such as rlCoP [24, 29], and (FE)MaLeCoP [22, 38]. In E, given-clause selection has
been guided by learning in systems such as ENIGMA and its variants [17, 27, 18, 7, 13].

ATPs are also used in hammers [6, 21, 5, 23], where learning-based premise selection is used
to translate an ITP problem to the ATP’s target language (typically First Order Logic). A
proof found by the ATP can then be reconstructed in the proof assistant. A particular hammer
instance for Coq is the CoqgHammer system [8].

6 Evaluation

We use Coq’s standard library to evaluate the effectiveness of our system. The standard library is
an impartial choice that should represent the de facto proof script style (although we acknowledge
that many proof styles are available to users). The library contains modules with a variety of
complexity. Basic modules regarding logic and arithmetic contain relatively simple proofs, while
more complicated developments like the reals are also included. Evaluating the standard library
also allows us to compare our performance to CoqHammer. The dataset for the evaluation and
the software that generated it is publicly available [4].

6.1 Methodology

For our evaluation, we try to simulate how a hypothetical user might develop the standard
library. We assume that when the user tries to prove a new lemma, all previous lemmas are
already proven and can be used for learning. Hence, when evaluating a Coq source code file, the
tactic database starts with only information inherited from the file’s dependencies, if any. When
we evaluate a lemma in the file, we are only allowed to use state-tactic pairs from dependency
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Figure 1: Evaluation of different metrics used for k-nearest neighbor prediction. For every k,
the proportion of state-tactic pairs for which the correct tactic is in the candidate list is plotted.

files and pairs recorded in the file’s previous lemmas. In contrast, Hammer evaluations typically
use the less faithful approach of sorting the files topologically and letting all previous proofs
(not just those in the dependencies) inform the current search, giving them more learning data.

We start with an offline evaluation of the feature quality and tactic prediction quality. Then
follows a full evaluation of the search strategy and a comparison to CoqHammer. The standard
library of Coq v8.10 is used in the evaluations. All the experiments were run on a 32 cores
Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz server with 256 GB memory.

6.2 Tactic Prediction Evaluation

The quality of the tactic prediction directly influences the ability to synthesize entire proofs. As
the tactic predictions improve, the proof search procedure will require less backtracking. To
judge the prediction quality, we perform an offline evaluation. We have extracted a textual
representation of the tactic database of every file. For every pair of proof state s and tactic ¢ in
a file, we use the previous pairs in that file and its dependencies to predict an ordered list of
candidate tactics. We judge this prediction by how close to the top of the candidate list ¢ occurs.
Note that this offline evaluation is an under-approximation of the system’s real predictive power.
This is because we judge the system by its ability to predict exactly the original tactic ¢, while
there might also be alternative tactics that perform the same or better than the original.

An interesting question is whether a prediction may use tactics that have been recorded in
the lemma currently being proved. If so, the system could learn from a proof while the user
writes it, letting the user benefit from this within the same proof. A problem with this is that
the proof states within the same lemma are likely to be very similar, especially when using our
feature characterization. Therefore, if we allow intra-lemma learning, we can expect to see the
tactics from the current lemma predicted often.

We evaluate the different metrics we proposed for the k-nearest neighbor algorithm with
and without the intra-lemma learning described above. The results are shown in Figure 1. It
turns out that all our metrics perform quite similarly. Contrary to prior expectations, even the
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Tfldf-weighted version of the Jaccard measure does not improve the predictions. To evaluate
the level of locality enjoyed by tactics, we also include the “reverse-database” predictor, where
we rank tactics by when they were last added to the database. When we allow intra-lemma
learning, reverse-database does not perform much worse than the other predictors, suggesting
that predictors frequently output the previous tactic as their best choice. Obviously, this will
seldom be the correct tactic. A future line of research is to incorporate the local tactic execution
history (memory) into the predictors to combat this problem. However, with a larger k, the
reverse-predictor’s performance starts to go down, showing that our real predictors do nontrivial
learning. Finally, the LSHF predictor is performing only about 15% worse than the rest. Given
that it performs predictions in constant time, allowing for approximately a thousand predictions
per second, this is very promising. Especially considering that the file with the largest database
contains 90594 tactics, where an exhaustive prediction takes hundreds of milliseconds.

The main result of this evaluation is that the first predicted tactic is the correct one 23.4%
of the time with intra-lemma learning and 17.7% without intra-lemma learning. This number
goes up as we start to consider tactics that are predicted with lower similarity. For & = 10, the
correct tactic is among the predicted tactics 54.3% and 40.3% of the time, respectively. These
results are encouraging, considering that the theoretical best we can achieve is 77%. This limit
exists because whenever a tactic is encountered for the first time, it does not yet exist in the
tactic database. Therefore it is impossible for the system to give a correct prediction.

6.3 Proof Search Evaluation

For a full evaluation of the system, we want to know for how many of the lemmas in the library
a proof can be synthesized automatically. These experiments are performed as follows. Every
Coq source code file is compiled as usual. However, when the system encounters a lemma, it
disregards the original proof and tries to synthesize a new proof based on the current tactic
database. It then records whether the proof synthesis was successful and substitutes the original
proof back, thus ensuring that it can progress through the entire file in case no proof is found.
The tactics used in the original proofs are then added to the tactic database. Each proof search
is given 40 seconds, equal to the total time CoqHammer used in its evaluation.

We experiment with several configurations of our system. Exhaustive k-NN search is
performed using the Tfldf-weighted Jaccard measure. To keep the search speed under control,
we limit the size of the tactic database. First, we evaluate with only tactics that have executed
in the current file (no tactics from dependencies). Then we evaluate using only the last 1000,
2000 and 10000 recorded tactics at the moment a proof search is initiated. For completeness, we
also evaluate using all available tactics. Finally, an evaluation using the approximate Jaccard
predictor LSHF is performed.

Table 1 gives an overview of the performance of these evaluations, broken down for the
different developments of the standard library. The different configurations can prove between
28.4% and 34.0% of the library lemmas, with the LSHF configuration being the best. Together,
the configurations prove 39.3% of the library lemmas. From this, it is clear that the most crucial
factor is the speed at which the tactic predictions can be made. The faster the predictions,
the deeper the search tree can be explored. Since LSHEF’s speed is in the order of a thousand
predictions per second when using the full tactic database, it defeats the brute force k-NN
approaches despite missing some tactics due to its approximate nature. For the exhaustive
configurations, the versions with smaller databases work the best. Therefore, we conclude that
tactics exhibit good locality. That is, tactics that were recently executed are likely to be useful
again. It should be noted that the exhaustive configuration with a full database still proves
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Proof Length Exhaustive k-NN with db size n
Development | #Lem | Q2 @3 Max | File 1000 2000 10000 All | LSHF | Total
Arith 293 | 2 5 42 1 38.2 488 522 51.2 51.2| 61.8| 67.2
Bool 130 | 1 3 81838 931 923 923 93.1| 93.8| 938
Classes 191 1 4 19723 796 780 785 80.1| 80.1| 82.7
FSets | 1,137 | 6 15 471|276 296 289 287 277| 325 36.2
Init 166 | 3 6 257620 711 71.7 717 T1L7| 68.7| 729
Lists 388 | 8 15 74136.1 36.6 358 340 34.3| 40.5| 438
Logic 329 | 4 9 121]243 298 295 29.8 295| 33.7| 350
MSets 830 | 5 15 164 |34.7 36.1 346 343 33.5| 36.9| 423
NArith 288 | 5 10 54 | 347 36.1 378 347 344 | 385| 455
Numbers | 2,198 | 5 11 275|146 16.1 163 157 155 16.9 | 20.1
PArith 280 | 4 9 166 |29.6 31.8 321 325 31.1| 304 | 36.8
Program 28| 2 5 111429 821 786 786 786| 714| 821
QArith 295 | 5 9 80 |31.5 346 39.3 346 33.2| 383 | 475
Reals | 1,975 | 8 21 1,121 |23.2 243 234 210 183]| 25.0]| 314
Relations 37| 8 11 251324 324 297 297 29.7| 324 378
Setoids 4| 4 5 5| 0.0 100.0 100.0 100.0 100.0 | 100.0 | 100.0
Sets 2221 6 12 931333 41.0 405 38.7 39.2| 482 514
Sorting 136 | 8 15 100 | 23.5 25.7 243 21.3 19.1 24.3 | 324
Strings 7419 117 1,539 |13.5 176 18.9 27.0 243 21.6 | 29.7
Structures 390 | 3 7 711333 40.8 392 397 39.2| 50.0| 54.1
Vectors 37| 7 12 221216 189 243 189 189 | 37.8| 432
Wellfounded 36| 8 22 49| 83 194 111 111 111 16.7| 194
ZArith 952 | 3 7 871354 46.5 475 453 45.0| 47.6| 58.0
Total | 10,416 | 5 12 1,539 | 284 320 319 30.7 299| 340 39.3

Table 1: A breakdown of the performance of some configurations of the system against the
developments in the standard library, measured by the percentage of lemmas automatically
proved. This culminates in the Total column, where the performance of the union of all
configurations is measured. The Proof Length columns summarize the original proof lengths,
where Q2 and Q)3 are the second and third quartiles.

lemmas that are not proven by any other configuration. In those cases, its slow proof exploration
is compensated by the fact that it can find exactly the right tactic.

When looking at the different developments in the standard library, we see substantial
differences in performance, mostly due to differences in proof styles, with longer and shorter
proofs. For example, in Arith, we do quite well due to short proofs facilitated by existing
automation, such as auto. The most problematic development is Numbers due to its size and low
success rate. Although its proofs are not absurdly big long, they utilize complicated compound
tactics that are difficult for the system to decompose.

Figure 2 compares the lengths of the proofs found by the LSHF configuration with the
lengths of the original proofs, measured in the number of individual tactics executed. The
system easily finds most of the short proofs. Longer proofs are increasingly rare. However,
a proof that utilizes 19 individual tactics was found. One striking thing to note is that the
standard library contains quite a few extremely long proofs (the graph cuts off at length 80, but
a proof of length 1539 exists). These long proofs are not written manually by the user but are
the result of tactic sharing. An excellent example of this is the ascii inductive datatype. This
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Figure 2: Logarithmic occurrence count of successfully synthesized proof lengths (black) vs. the
original proof lengths in the library (grey), cut off at length 80.

type contains the obvious 256 cases. Proving a fact about ascii using case analysis requires
one to prove all 256 cases individually. All cases can usually be proved using the same tactic, for
example, auto. The human written proof then looks like destruct c¢; auto, while the system
records 257 individual tactic executions. Making use of such tactic sharing is future work related
to the issue of tactic recording granularity discussed in Section 2.

6.4 Comparison to CogHammer

CoqHammer utilizes several automatic theorem provers, such as Vampire [33], E [34] and Z3 [9]
with different settings and reconstruction tactics to generate proofs. Individually, these strategies
are reported to prove between 17.5% and 28.8% of the Coq v8.5 standard library [8]. Combining
all strategies leads to solving 40.8% library lemmas in total. Our individual configurations—and
especially the LSHF configuration that solves 34.0% of the lemmas—are generally better than
CoqHammer’s strategies, while the hammer narrowly beats us in overall coverage.

More importantly, our system is quite complementary to CoqHammer. That is, we can
prove many different lemmas. A direct comparison between the two systems is somewhat
problematic due to the use of different versions of Coq’s libraries and the technical difficulty of
rerunning CoqHammer’s original evaluation on the newer library. The v8.5 library used for the
CoqHammer evaluation has 9276 lemmas, while the later v8.10 library used by us contains 10416
lemmas. Therefore, we compare only lemmas that exist in both versions. A straightforward
method for aligning the lemmas in the two library versions yields 8231 common lemmas. Of
those, 3240 (39.4%) are solved by the union of our configurations, and 3534 (42.9%) by the
union of the CoqHammer strategies. The union of both systems yields 4666 (56.7%) proved
lemmas, adding 32.0% more solutions to those obtained by CoqgHammer. These results are a
substantial improvement for Coq users who can employ both methods and then expect over
55% automation.

7 Conclusion

We have shown that machine learning for tactics is a useful enterprise. On its own, our system
can fully automatically prove 39.3% of the standard library. Together with CoqgHammer, 56.7%
of the lemmas are proved, showing that these approaches complement each other very well.
Although the system is already quite strong, many avenues of improvement exist. One can think
of local parameter prediction, incorporating local tactic history in predictions, implementing
better search strategies, and a proper user interface. We leave this as future work.
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